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ABSTRACT  

The identification of stage-specific genes in the malaria parasite Plasmodium falciparum 

may provide a starting point to identify key elements for the malaria parasite to complete 

its life cycle.  In this study, we address this question through the combined analysis of 

gene expression data collected from two distinct microarray platforms.  Although it is 

intuitive that a joint analysis is likely to be more informative than that based on a single 

source, such analysis faces many statistical challenges in addition to different sets of 

genes may be probed on different platforms.  First, the platforms are sufficiently different 

that it is difficult to correlate expression levels measured on different platforms.  Second, 

the time resolution of the two data sets differs.  To address these challenges, we have 

developed novel statistical methods to integrate these two distinct platforms.  Based on 

our methods, we have identified genes that are either uniquely expressed or differentially 

expressed at the sporozoite and gametocyte stages. Some of these genes are known to be 
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specific at these two stages and some are novel, providing potential candidates for 

transmission-blocking vaccine development.  We also analyze the functions of the 

identified genes based on Gene Ontology (GO) classification and investigate the 

predicted interacting proteins.  The detailed results are available at 

http://bioinformatics.med.yale.edu/CAMDA2004. 
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1. INTRODUCTION  

DNA microarray technology allows the transcription levels of many genes to be 

measured simultaneously, and different microarray platforms are commonly used in gene 

expression studies.  For example, in the analysis of Plasmodium falciparum, the DeRisi 

group used microarrays based on long (70-nucleotide) oligonucleotides to quantify the 

relative mRNA levels of 4,488 predicted Plasmodium falciparum genes at 46 time points 

across the complete asexual intraerythrocytic developmental cycle (IDC) or asexual 

blood stages at a 1-hour resolution1.  Independently, the Winzeler group employed the 

Affymetrix (25-nucleotide) array to examine the gene expression profiles at 6 periodic 

asexual blood stages, including early ring, late ring, early trophozoite, late trophozoite, 

early schizogony, and late schizogony stages.  The parasite samples were synchronized 

by two independent methods: a 5% D-sorbitol treatment and a temperature cycling 

incubator.  Besides the asexual blood stages, the gene expression levels were also 

measured at the gametocyte and sporozoite stages2.  Our objective in this study is to 
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identify genes either uniquely or differentially expressed in sporozoites and gametocytes. 

In our study, the genes not expressed at the asexual blood stages but expressed in 

sporozoites/gametocytes are defined as the genes uniquely expressed at these two stages, 

while the genes differentially expressed in sporozoites/gametocytes represent the genes 

constitutively expressed at the blood stages and upregulated in sporozoites/gametocytes. 

Although the Winzeler data itself can be used alone to address this question, the higher 

resolution of the DeRisi data may offer additional information on gene expression during 

the asexual stages.  Therefore, we have developed statistical methods to combine 

information from these two studies to fully exploit the expression data from these two 

different data sources.  Although our methods are developed in the context of analyzing 

these two specific data sets, the general approach may prove useful for other similar 

studies in order to discover novel gene regulation patterns, and to validate previous gene 

expression profiles.  The genes identified to be uniquely or differentially expressed at the 

sporozoite and gametocyte stages may lead researchers to identify potential candidates 

for transmission-blocking vaccine development because the sporozoites are the infectious 

form injected to human blood by mosquitoes, and the gametocytes are the form by which 

the parasite is transmitted from human to mosquitoes. 

 

 2. METHODS  

2.1 Pre-processing of the Data  

For the Winzeler data, the 17 CEL files are processed using Affy R3.  The intensity levels 

of the two sporozoite replicates are averaged after normalization.  For the DeRisi data, in 

which the expression values were obtained from two-color microarray experiments with a 
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common reference used on all the arrays, we perform the print-tip group loess 

normalization method within arrays by using the Limma package 4, 5.  After 

normalization, the intensity values and log ratio values are averaged for a subset, 

including 8 time points that had more than one hybridization result.  

 

2.2 Identification of genes uniquely expressed at the sporozoite/gametocyte stages 

Our first objective is to identify genes uniquely expressed at the sporozoite/gametocyte 

stages, i.e. genes that are not expressed across the asexual blood stages but expressed at 

the sporozoite/gametocyte stages.  Because the DeRisi data did not cover the 

sporozoite/gametocyte stages, it is not informative on its own for the identification of 

these genes.  On the other hand, although the Winzeler data can be used to address this 

question, some genes that are expressed at the asexual blood stages data may be missed 

due to the lower resolution throughout the asexual stages in the Winzeler data.  Our 

strategy is to first use the DeRisi data to identify genes not expressed at the asexual stages 

and then use the Winzeler data to examine, among this set of genes, which genes are 

expressed at the sporozoite/gametocyte stages.  First, we need to define an objective 

criterion to infer whether a gene is expressed or not across the blood stages based on the 

DeRisi data.  To achieve this goal, we utilize the 281 “EMPTY” spots on the DeRisi 

arrays as negative controls.  For each channel, the intensities of all the “EMPTY” spots 

are standardized to have a mean of 0 and variance of 1 through linear transformation.  

The standardized intensities across all the 46 time points are then summarized.  The 

density distributions of the standardized intensity levels for the red channel and the green 

channel have very similar patterns (Fig.1).  Because some of the “EMPTY” spots may 
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hybridize and yield positive signals (as suggested by the long right tails in Fig. 1), we 

remove the spots corresponding to the upper 10% of the distribution, leaving 252 

“EMPTY” spots serving as negative controls in our following analysis.  

For each time point t, we calculate the mean empMeant and variance empVart of the red 

channel intensities of the 252 “EMPTY” spots, and then we standardize the intensities for 

all other spots on the arrays by 
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where  represents the intensity value of spot i at time point t.  The standardized 

intensities are summarized across all the 46 time points, so we get the value of 

 for each “EMPTY” spot.  The 95% percentile of these values was 

chosen as the expression cutoff.  The genes corresponding to the spots that have 

summarized intensities across all the 46 time points below this cutoff are considered as 

genes not expressed at the blood stages.   
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For the Winzeler data, we need to identify genes expressed at the sporozoites/gametocyte 

stages.  Similar to the DeRisi data, we need to choose an intensity value as cutoff to infer 

whether a gene is expressed or not at a specific stage.  Because there are no “EMPTY” 

spots that we can use to derive an expression cutoff for the Winzeler data, we have to resort 

to other methods in our analysis.  To this end, we assume that the proportion of genes not 

expressed at the blood stages based on the Winzeler data is the same as that based on the 

DeRisi data.  Our previous analysis on the DeRisi data yield the result that 17% of genes 

are not expressed at the blood stages.  Based on our assumption, we get the maximum 

value of the 17% percentile of gene expression levels for each of the 6 blood stages 
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obtained from the Winzeler data and increase the value to a certain extent so that 17% of 

the genes can be identified as not expressed at the blood stages with taking the adjusted 

value as the cutoff.  The genes with intensity values in the sporozoites/gametocytes above 

the expression cutoff are considered as genes expressed at the sporozoite/gametocyte 

stages.  Among this set of genes, those not expressed at the blood stages are identified as 

genes uniquely expressed at these two stages.   

 

2.3 Identification of genes up-regulated at the sporozoite/gametocyte stages 

In contrast to the identification of genes uniquely expressed at the sporozoite/gametocyte 

stages where only a cut-off is needed to infer whether a given gene is expressed or not at 

a given stage, the inference of expression level changes from the combined analysis of 

two distinct platforms is more difficult.  This requires the establishment of 

correspondence of measured intensity levels between the two platforms.  If the two sets 

of data had been collected at the same time points, such analysis would be relatively 

straightforward if we assume that the expression level of the same gene is rather similar 

in the two experiments.  However, the DeRisi data and the Winzeler data have rather 

different resolutions with 46 time points in the DeRisi data and only 6 time points in the 

Winzeler data across the asexual stages.  To address this problem, we first identify a set 

of “invariant” genes, which are constitutively expressed at the asexual stages and use the 

measured expression levels of these genes to derive the correspondence of measured 

expression levels between the two datasets.  For the DeRisi data, the variances of the log-

ratio values log2(Cy5/Cy3) are calculated for each expressed gene and the set of genes 

with a variance below a specific cutoff, 0.2 in this study, are considered as the “invariant” 
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gene set.  Similarly, the “invariant” gene set for the Winzeler data can be identified after 

the variances of the intensity values at the 6 blood stages are calculated.  Genes common 

in both invariant gene sets are then selected.  As the expression levels of these genes were 

relatively constant across the blood stages in both datasets, we calculate the mean of the 

gene expression values at the blood stages for each gene both based on the DeRisi data 

and the Winzeler data.  We then apply the local linear regression method to capture the 

relationship between the gene expression values obtained from the DeRisi data and those 

obtained from the Winzeler data through . { } );()(min
2
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Here, the kernel function  ensures that the observations whose covariate 

values  close to the point x are given the most weights in determining the estimate, and 

the smoothing parameter h controls the degrees of smoothing applied to the data
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r

ir ∑ −−= );()();( . The results are shown in Figure 2.   

Based on this nonparametric regression model, we may use the gene intensities at the 

sporozoite/gametocyte stages obtained from the Winzeler data to predict the values that 

would have been collected through the DeRisi platform.  These predicted values are then 

compared to the measured intensities throughout the blood stages in the DeRisi data to 

identify genes differentially expresses at these two stages.  In our study, the genes with 

constant expression levels at the blood stages and expression levels increased at least 1.5 

fold at the sporozoite/gametocyte stages compared to the blood stages are considered as 
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genes up-regulated at these two stages.  Down-regulated genes are not considered at the 

two stages because we are only interested in identifying the genes directly related to the 

transmission between human and mosquitoes.   

 

2.4 Gene Ontology Analysis 

Gene Ontology (GO) annotations are downloaded from PlasmoDB (http://plasmodb.org).  

There are 2,199 gene products (about 41% of the whole proteome) that have been assigned 

GO terms.  We map the GO terms to the more generalized or high-level terms (GO slim 

terms) to gain a high-level view of gene functions. The sporozoite and gametocyte stage-

specific genes are compared to the overall genes based on GO annotations using GO slim 

terms, and the comparisons are performed in the three GO ontologies - “molecular 

function”, “biological process” and “cellular component”.  As not all the gene products 

were assigned a GO term, we rescale the percentages of the proteins in each GO category 

so that the total is 100%.   

To assess the statistical significance for the GO term enrichment of the sporozoite and 

gametocyte stage-specific genes, we investigate whether the list of identified genes have 

any GO term overrepresented in their annotation compared to what would be expected by 

chance from the population of all the genes in P.falciprum. The p-value is calculated 

from the hypergeometric distribution as following:  
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where N represents the total number of genes in the population, in which N have a 

particular GO term annotation. And n and x represent the number of genes in the list of 

interst and the number of genes in the list annotated with the particular GO term, 

respectively.  The p-value is corrected for multiple testing using Bonferroni correction, a 

conservetive approach.  There are 9 GO slim terms tested for both “molecular function” 

and “biological process” ontology, and 7 GO slim terms tested for “cellular component” 

ontology.  These numbers are used for correcting the p-values.  The list of 

sporozoite/gametocyte stage-specific genes are considered as have a GO term 

overrepresented compared to the overall genes if the corrected p-value is less than 0.05.  

 

2.5 Protein-protein interaction pairs in P.falciparum  

To study whether proteins coded by genes uniquely/differentially expressed at the 

sporozoite/gametocyte stages interact with each other, we utilize the interaction data from 

yeast because there is a lack of data for P. falciparum.  More specifically, we perform 

“all-against-all” BLASTP comparisons of sequences of the Sacchromycces cerevisiae 

and P. falciparum proteomes, and the program INPARANOID7 is applied on the 

BLASTP results to identify orthologous groups.  Sequence pairs with reciprocal best hits 

are identified as putative ortholog pairs, and the sequences from the same species that are 

more similar to the putative orthologs than to any other sequences are considered as 

“paralogs”, belonging to the same group of orthologs.  Based on the concept of 

“interolog’8, we assume that if protein A and protein B interact in S. cerevisiae and have 

corresponding orthologs A’ and B’ in P. falciparum, then A’ and B’ would form an 

interacting protein pair in P. falciparum.  We use the interaction dataset for S. cerevisiae 
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in the MIPS9 database to predict interacting protein pairs in P. falciparum by transferring 

the protein interaction information between the two species. 

 

 

 

3. RESULTS  

3.1 Genes uniquely or differentially expressed at the sporozoite and gametocyte 

stages  

The Winzeler data includes results generated from two different procedures to 

synchronize P. falciparum.  We identify sporozoite/gametocyte stage-specific genes 

using data generated from both synchronization procedures.  Table 1 summarizes the 

results of our study. As shown in Table 1, both synchronizations yield similar results with 

an almost complete overlap between different synchronizations. 

A total of 408 genes are found to be expressed at the sporozoite stage but not expressed at 

the asexual blood stages, and 118 genes are constitutively expressed at the asexual blood 

stages and up-regulated at the sporozoite stage.  Among these genes, some of them are 

experimentally known to be sporozoite specific.  For example, the sporozoite surface 

protein 2 and the circumsporozoite surface protein are well-known markers of the 

sporozoite stage and are included in our identified gene set. 

Similarly, a total of 124 genes constitutively expressed at the asexual blood stages are up-

regulated at the gametocyte stage.  An additional set of 335 genes is identified as 

expressed at the gametocyte stage but not at the asexual stages.  Included in this list are 

well-known gametocyte-specific genes, such as those encoding meiotic recombination 
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protein DMC1 and 25kDa ookinate surface antigen.  Compared with the results in the 

Winzeler study, our gene set includes 76% of 61 genes identified as sporozoite specific 

and 69% of 210 genes identified as gametocyte specific in the Winzeler study 

respectively.  

Besides genes that are known to be stage-specific, we have also identified some genes 

that have not previously been shown as sporozoite- or gametocyte-specific in the 

Winzeler study.  For example, the protein encoded by MAL13P1.304 is a potential 

malaria surface antigen and was identified as up-regulated at the sporozoite stage in our 

results.  In addition, MAL6P1.195, encoding a RNA-binding protein MEI2, has been 

found to be specifically expressed in gametocytes in our analysis. Although the proteins 

encoded by these genes have been identified as sporozoite/gametocyte specific in the 

proteomics study based on mass spectrometry data10, these genes were not identified as 

sporozoite- or gametocyte-stage specific in the Winzeler study.  Therefore, our methods 

may provide a more comprehensive list of stage-specific genes that are worthy of further 

investigation and may represent potential candidate targets for the development of 

transmission-blocking vaccines. 

 

3.2 Gene Ontology Classification  

The comparisons of GO annotations with high-level GO terms between the 

sporozoite/gametocyte stage-specific genes and the overall genes are shown in Fig. 3a-3c, 

and the list of GO terms associated with a significant p-value are provided in Table 2. 

In the “molecular function” ontology, a higher percentage of proteins encoded by the 

sporozoite/gametocyte uniquely expressed genes are assigned to the “defense/immunity 
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protein” and “cell adhesion” categories compared to the overall gene products.  And the 

statistical analysis provides the evidence that the sporozoite/gametocyte uniquely 

expressed genes have these two GO terms overrepresented (Table 2). This result is 

reasonable as the genes specific in sporozoites/gametocytes are involved in the evasion of 

the host immune system and the cell communication process. 

Among all the categories in the “biological process” ontology, the identified stage-

specific genes, including 34% of sporozoite specifically expressed genes and 24% of 

gametocyte specifically expressed genes are over-represented in the “cell 

communication” category with p-values of 2.60E-13 and 5.05E-7 respectively.  These 

cell communication related genes are known to be involved in “host-pathogen 

interactions” or “cell-cell adhesion” processes, which may reflect the specific processes 

relevant to the sporozoite and gametocyte stages11.  

In the “cellular component” ontology, a higher percentage of sporozoite specific gene 

products belong to the “extracellular” category (with p-value of 9.46E-13).  More 

detailed analyses reveal that this is mainly due to the large number of erythrocyte 

membrane protein 1 and rifin genes in our identified gene set, and these genes have been 

shown as sporozoite/gametocyte specific in previous studies2, 10. 

We also compare the GO enrichment of our identified genes with the results from the 

Winzeler study.  We select the genes identified as gametocyte specific in the Winzeler 

results but are not included in our identified gene set and perform GO analysis on these 

genes (Fig. 4).  According to the “molecular function” and “biological process” 

ontologies, these genes do not show different GO term enrichment compared to the 
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overall gene products (with p-values larger than 0.05, supplementary data online).  This 

suggests that these genes as a group are different from the genes identified from our set. 

 

 

3.3 Correlate protein interaction with gene expression  

Based on comparative study, only 935 P. falciparum proteins have corresponding S. 

cerevisiae orthologs, and a total of 646 interacting protein pairs among these 935 proteins 

are predicted based on the ortholog list.  There may be correlation between expression 

patterns among the interacting protein partners because the functionality of the interacting 

pairs depends on the presence of two proteins participating the interaction.  To test our 

hypothesis, we study the number of interacting protein pairs among the sporozoite and 

gametocyte stage-specific genes and the results are summarized in Table 3. 

Because there are 15 proteins having more than 5 interacting partners, we evaluate the 

statistical significance of the observed number of interacting pairs through simulations 

after removing these so-called “hub” proteins.  More specifically, we randomly select the 

same number of proteins from the ortholog list (e.g. 62) and record the number of 

interactions among these randomly selected proteins.  This procedure is repeated 10,000 

times and the statistical significance of the observed number of interacting pairs can be 

estimated based on the 10,000 simulated results.  As shown in Table 2, there is marginal 

evidence suggesting that the proteins in the list are more likely to interact with each other 

than expected by chance.  

Only a small number of genes with orthologs in S. cerevisiae are found to be 

sporozoite/gametocyte stage-specific, resulting in the identification of only a few protein-
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protein interactions at these two stages. Of the 5 interacting protein pairs found in 

gametocytes or sporozoites, 4 were found to be common at both gametocyte and 

sporozoite stages (MAL7P1.50 and PF07_0139, PF00_0002 and MAL7P1.145, 

PF10_0258 and PF11_0481, PF10_0258 and PF14_0030).  Among them, both 

PF00_0002 and MAL7P1.145 play a role in DNA mismatch repair, an important process 

for P. falciparum reproduction at the gametocyte stages and perhaps required in 

sporozoites in preparation for extensive DNA replication and schizogony, which occurs 

following the invasion of hepatocytes.   

 

4. CONCLUSIONS AND DISCUSSION 

The identification of stage-specific genes provides a starting point to identify key 

regulatory elements essential for the malaria parasite to complete its life cycle.  In this 

article, we have developed statistical methods to combine information from two datasets 

generated under distinct microarray platforms to identify genes either uniquely expressed 

or differentially expressed at the sporozoite/gametocyte stages compared to the asexual 

stages.  Our identified genes show significant enrichment for certain Gene Ontology 

categories related to the functions and processes involved in the sporozoite/gametocyte 

stages.  Although the genes identified in our study have a high degree of overlap with 

those from the Winzeler study, we did not observe any functional enrichment for those 

genes identified in the Winzeler study but not in our analysis, suggesting that our 

methods have a higher degree of specificity.  By combining information for two different 

sources, we were able to take advantage the higher resolution of the DeRisi data (as 

compared to the Winzeler data) to study gene expression patterns at the two stages that 
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were only collected in the latter study.  This combined analysis allowed us to identify a 

larger number of genes that are up-regulated at the gametocyte and sporozoite stages than 

that based on one data source where the time resolution is low.  It is conceivable that 

even more information can be extracted from other data sources, if they become 

available, to better understand the mechanisms responsible for the transmission of this 

protozoan malaria.  

Only a small number of genes with orthologs in S. cerevisiae were found to have 

different expression patterns in gametocytes and sporozoites, resulting in the 

identifications of only a small number of protein-protein interactions.  Our simulation 

results indicated marginal evidence of increased likelihood of interactions among stage 

specific proteins.  These interacting proteins may serve as effective targets for blocking 

transmission by antimalaria drug or vaccine development, as they are likely to be 

involved in both sexual stage development as well as invasion of the human host.   
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7. FIGURES and TABLES 

 

Figure 1. Density plot of the intensities in red and green channels of the “EMPTY” 

spots.  The intensities of the 281 “EMPTY” spots have been transformed to a common 

distribution with mean 0 and variance 1 and summarized across all the 46 time points. 
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Figure 2. The nonparametric regression curve for the log intensities of all the 

“invariant” genes at the blood stages obtained from the DeRisi data and the 

Winzeler data. The smoothing parameter h used for control the degrees of smoothing is 

1. The log intensities of “invariant” genes obtained from the Winzeler data are based on 

one synchronization method that uses a 5% D-sorbitol treatment.  
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(a) 

 

 

 (b) 
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(c) 

   

Figure 3. Gene Ontology classifications of P.falciparum sporozoite and gametocyte 

stage-specific genes according to the “molecular function” (a), “biological process” 

(b) and “cellular component” (c) ontologies of the GO system.  The percentages of the 

proteins encoded by the stage-specific genes in each of the high-level GO categories are 

compared with that of all the P. falciprum genes.  
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Figure 4. Comparisons between the genes identified as gametocyte specific in the 

Winzeler results but not included in our identified gene set and all genes according 

to the “molecular function” and “biological process” ontologies of the GO system.  
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Table 1. The Number of sporozoite and gametocyte stage-specific genes.  In the 

category of “Constituively expressed”, the genes upregulated at the 

sporozoites/gametocyte stages are listed.  In the category of “Not expressed”, the genes 

uniquely expressed at the sporozoite/gametocyte stages are listed. 

Expression pattern at the 

asexual blood stage 
Sporozoite Gametocyte 

 Sync1 Sync2 Overlap Sync1 Sync2 Overlap

Constitutively expressed 120 139 118 124 140 124 

Not expressed 418 411 408 346 339 335 

Total 538 550 526 470 479 459 

 

 

 

Table 2. The list of GO terms overrepresented by sporozoite and gametocyte stage-

specific genes. The p-values are calculated from hypergeometric distributions and 

corrected for multiple testing using Bonferroni correction. The GO terms associated with 

a corrected p-value less than 0.05 along with the corresponding gene set are listed. The 

full list of GO terms associated with their p-values is available online. 

GO Term Gene Set Corrected 

p-values 

Sporozoite Expressed 1.24E-11 Defense/immunity protein 

Gametocyte Expressed 1.40E-9 

Molecular Function 

Cell adhesion Sporozoite Expressed 5.91E-12 

 22



  Gametocyte Expressed 5.75E-10 

Sporozoite Expressed 2.60E-13 Cell communication 

Gametocyte Expressed 5.05E-7 

Sporozoite Expressed 5.91E-12 

Biological Process 

Cell adhesion 

Gametocyte Expressed 5.75E-10 

Cellular Component Extracellular Sporozoite Expressed 9.46E-13 

 

 

 

Table 3. Interacting protein pairs in sporozoites and gametocytes.  The empirical 

statistical significance is calculated as the fraction of the 10,000 permutations having a 

larger number of protein pairs than that based on the observed data. 

 
Number of proteins 

having yeast 
orthologs 

Number of protein 
pairs within the 

gene set 

Empirical statistical 
significance 

Sporozoites 62 5 0.0405 

Gametocytes 54 5 0.0396 

Whole Proteome 935 646  
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