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Summary. Protein–protein interactions (PPIs) play important roles in most fundamental cellular processes
including cell cycle, metabolism, and cell proliferation. Therefore, the development of effective statistical
approaches to predicting protein interactions based on recently available large-scale experimental data is
very important. Because protein domains are the functional units of proteins and PPIs are mostly achieved
through domain–domain interactions (DDIs), the modeling and analysis of protein interactions at the domain
level may be more informative and insightful. However, due to the large number of domains, the number
of parameters to be estimated is very large, yet the amount of information for statistical inference is quite
limited. In this article we propose a full Bayesian method and a semi-Bayesian method for simultaneously
estimating DDI probabilities, the false positive rate, and the false negative rate of high-throughput data
through integrating data from several organisms. We also propose a model to associate protein interaction
probabilities with domain interaction probabilities that reflects the number of domains in each protein. Our
Bayesian methods are compared with the likelihood-based approach (Deng et al., 2002, Genome Research
12, 1504–1508; Liu, Liu, and Zhao, 2005, Bioinformatics 21, 3279–3285) developed using the expectation
maximization algorithm. We show that the full Bayesian method has the smallest mean square error through
both simulations and theoretical justification under a special scenario. The large-scale PPI data obtained
from high-throughput yeast two-hybrid experiments are used to demonstrate the advantages of the Bayesian
approaches.

Key words: Bayesian method; Domain–domain interaction; Expectation maximization algorithm; Protein–
protein interaction.

1. Introduction
Because identifying protein–protein interactions (PPIs) is
critical for understanding cellular processes, various high-
throughput experimental approaches have been developed
and enormous amounts of data have been generated to iden-
tify interacting proteins. The protein interaction data used in
our study are generated by genome-wide yeast two-hybrid as-
says. In this method, one protein is fused to a DNA-binding
domain, and the other is fused to a transcription activation
domain. The interaction between the protein pair can be de-
tected by the formation of a transcription activator that ac-
tivates a reporter construct (Uetz et al., 2000). However, this
experimental approach suffers from high false negative and
false positive rates due to the limitations of these techniques
(Mrowka, Patzak, and Herzel, 2001; von Mering et al., 2002).
For example, a self-activating protein being tested in the ex-
periment can lead to a false positive result, and a protein
that cannot be targeted to the yeast nucleus may not yield
positive results though it may potentially interact with other

proteins, which leads to false negative results. It is reported
that the false negative rate of the yeast two-hybrid assay used
to construct S. cerevisiae interaction maps to be larger than
70% (Deng et al., 2002).

A number of computational approaches have been proposed
to predict PPIs (Enright et al., 1999; Tsoka and Ouzounis,
2000; Marcotte, Xenarios, and Eisenberg, 2001; Pazos and
Valencia, 2001; Goh and Cohen, 2002; Jansen et al., 2003; Lu
et al., 2003; Ramani and Marcotte, 2003; Aloy et al., 2004).
However, most methods do not consider the fact that domains
are the functional units of proteins and PPIs are achieved
mostly through domain–domain interactions (DDIs). Protein
domains are defined as the basic modules of the overall protein
structure and are conserved during evolution. Some proteins
consist of only a single domain, but many proteins contain
more than one domain to perform multiple functions. For ex-
ample, the protein DNA-directed RNA polymerase II subunit
9 is a multidomain protein that contains two domains, the
TFIIS domain for DNA binding and the RNA polymerase M
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domain for RNA synthesis. Protein domains serve as the units
for PPIs and the specificity of PPIs is achieved from the bind-
ing of a modular domain to another in proteins (Pawson and
Nash, 2003). Therefore, the modeling and analysis of protein
interactions at the domain level may be more informative and
insightful.

Several methods have been proposed for PPI predictions
based on protein domains (Gomez, Lo, and Rzhetsky, 2001;
Sprinzak and Margalit, 2001; Deng et al., 2002; Gomez, Noble,
and Rzhetsky, 2003). The likelihood-based approach (Deng
et al., 2002) has been compared with three other methods
(Gomez et al., 2001, 2003; Sprinzak and Margalit, 2001) and
was shown to be among the best performing methods (Liu,
Liu, and Zhao, 2005). Liu et al. (2005) further extended the
likelihood-based approach to improve the PPI predictions by
pooling information from three organisms: S. cerevisiae, C. el-
egans and D. melanogaster. In the likelihood-based approach,
all DDIs and PPIs are treated as missing data. For a given
specified set of false negative and false positive rates, DDI
probabilities are estimated using the expectation maximiza-
tion (EM) algorithm (Dempster, Laird, and Rubin, 1977) and
then the estimated DDI probabilities are used to infer PPI
probabilities.

However, in general, the false negative rate (fn) and the
false positive rate (fp) of PPI data are both unknown and
they may also depend on many factors, for example, data set
specific. Therefore, it is more appropriate to estimate the DDI
probabilities, the PPI probabilities, fn , and fp , simultaneously.
In addition, the number of domains in many proteins is more
than one. When we infer PPIs using DDIs, it is important to
take into account the varying number of domains across dif-
ferent proteins. Furthermore, because the number of param-
eters is very large, the amount of information for statistical
inference may be limited.

Hence our goals in this article are to develop statistical
methods to estimate DDI probabilities, PPI probabilities, fn ,
and fp simultaneously, and also propose a model (described in
Section 2) to relate PPI probabilities with DDI probabilities
that reflects the number of domains in each protein. Our first
approach is called “semi-Bayesian” because we use the EM al-
gorithm to estimate DDI and PPI probabilities, coupled with
a Bayesian method to estimate fn and fp . We specify a uni-
form prior distribution for fn and fp within a reasonable range
that can be established from prior biological knowledge. Our
second approach is called “full Bayesian” because we esti-
mate DDI probabilities, PPI probabilities, fn , and fp using a
Bayesian approach, exclusively. We note that the number of
parameters to be estimated is very large. For example, if there
are more than 2000 annotated domains within an organism,
the number of domain pairs is in the order of millions. In
this case, some prior information can be easily incorporated
in the analysis through a Bayesian method. The setup of our
full Bayesian method lends itself easily to information shar-
ing among all domain pairs. In our full Bayesian approach,
we consider both Beta and uniform distributions as priors for
DDI probabilities, and use uniform distributions for fn and
fp within a reasonable range that can be established from
biological knowledge. Because we consider the possibility of
different organisms having different false negative and false
positive rates, the ranges are varied based on the organisms
so that fn and fp can be organism specific.

The article is organized as follows. In Section 2, we de-
scribe the modeling of PPI using DDI information. We give a
detailed discussion of our model by explaining the difference
among Deng et al. (2002)’s model, Liu et al. (2005)’s model,
and our model. In Section 3, we discuss three methods for
PPI predictions: the likelihood-based approach using the EM
algorithm, our semi-Bayesian method, and our full Bayesian
method. Under a simplified scenario described in Web Ap-
pendix C, we show that the mean square error (MSE) of the
Bayes estimator is smaller than that of the maximum like-
lihood estimator (MLE). In Section 4, we report the results
of simulations comparing these methods. We calculate the
MSE of the likelihood-based approach based on the EM algo-
rithm in the ideal case when true fn and true fp are known.
We compare this MSE with our methods’ MSEs. Our sim-
ulations suggest that a full Bayesian method appears most
efficient in terms of MSE and a semi-Bayesian method is as
good as the likelihood-based approach in this ideal case. In
Section 5, we apply our methods to large-scale PPI data ob-
tained from high-throughput yeast two-hybrid experiments
analyzed by Liu et al. (2005). Section 6 contains concluding
remarks.

2. Model
This section describes our model to estimate DDI probabili-
ties and relate them with PPI probabilities. Before we explain
our model in detail, we define some notations and briefly de-
scribe the model studied by Deng et al. (2002) and Liu et al.
(2005). The model proposed by Deng et al. (2002) has two
assumptions: (A1) two proteins Pi and Pj interact if and only
if at least one domain pair from the two proteins interact;
(A2) DDIs are independent, that is, whether two domains in-
teract or not does not depends on the interactions of other
domain pairs. To pool information across different organisms,
Liu et al. (2005) made another assumption: (A3) the probabil-
ity that two domains interact is the same among all organisms
based on the fact that domains are evolutionally conserved
across different organisms. This assumption allows the inte-
gration of large-scale PPI data from different organisms to
estimate DDI probabilities. By considering each protein as a
collection of domains, we can then estimate PPI probabilities
in any organism based on the inferred DDI probabilities. More
specifically, let λmn represent the probability that domain Dm

interacts with domain Dn . Define D
(ij)
mn = 1 if Dm and Dn in-

teract in protein pair Pi and Pj and D
(ij)
mn = 0 otherwise. Let

(D
(ij)
mn ∈ Pijk ) denote all pairs of domains from protein pair Pi

and Pj in organism k, where k = 1, . . . ,K. Let Pijk represent
the interaction event between Pi and Pj in organism k, with
Pijk = 1 if they interact in organism k and Pijk = 0 otherwise.
Further let Oijk = 1 if Pi and Pj are observed to interact in
organism k, and Oijk = 0 otherwise. In our example, we focus
on K = 3 organisms, where k = 1, 2, 3 represents S. cerevisiae
(yeast), C. elegans (worm), and D. melanogaster (fruit fly),
respectively.

The definitions of false negative rate (fn) and false positive
rate (fp) of protein interaction data are

fp = Pr(Oijk = 1 |Pijk = 0),

fn = Pr(Oijk = 0 |Pijk = 1).
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We further define O = {Oijk = oijk ; ∀ i ≤ j}, Λ = {λmn ; D
(ij)
mn ∈

Pijk , ∀m ≤ n, ∀ i ≤ j}. With the above assumptions and
notations, we have

Pr(Pijk = 1) = 1 −
∏

(
D

(ij )
mn ∈Pijk

)(1 − λmn)

=def. h1
ij (Λ),

(1)

and

Pr(Oijk = 1) = Pr(Pijk = 1)(1 − fn) + {1 − Pr(Pijk = 1)}fp.

(2)

The likelihood for the observed PPI data across all K organ-
isms is then

L(fn, fp,Λ |O) =
∏
ijk

Pr(Oijk = 1)Oijk {1 − Pr(Oijk = 1)}1−Oijk ,

which is a function of (λmn , fn , fp). Deng et al. (2002) and Liu
et al. (2005) specified values for fn and fp , and then estimated
λmn using the EM algorithm by treating all DDIs and PPIs
as missing data.

In contrast to these previous methods, we assume that fn
and fp are unknown, and they are also organism dependent to
allow data from different organisms to have different fn and
fp . That is, we have organism specific rates fnk

and fpk
, k =

1, . . . ,K. In this case, equation (2) is replaced by

Pr(Oijk = 1) = Pr(Pijk = 1)(1 − fnk
)

+ {1 − Pr(Pijk = 1)}fpk
.

We also extend equation (1) to incorporate varying numbers
of domains across different proteins. This extension is moti-
vated from observing that the value of equation (1) increases
as the number of domains increases. For example, if all do-
main pairs have 1/2 chance to interact, the PPI probability
approaches 1 when the number of domain pairs associated
with the protein pair is large. Therefore, we formulate func-
tion hij (Λ), where hij (Λ) = Pr(Pijk = 1), which satisfies the
following 4 conditions:

C1: If λmn = 1 for at least one domain pair, hij (Λ) = 1;
C2: If λmn = 0 for all domain pairs, hij (Λ) = 0;
C3: If λmn = 1/2 for all domain pairs, hij (Λ) = 1/2;
C4: (Strictly increasing condition) If λmn < λm′n′ and all

other λs are the same, hij (Λ) < hij (Λ
′).

We note that h1
ij (Λ) in equation (1) does not satisfy C3. In

this article, we consider one possible function for hij (Λ) as the
following:

ha
ij (Λ) = 1 −

∏
(

D
(ij )
mn ∈Pijk

)
(
1 − λa

mn

)
,

where a can be derived from condition C3 as,

a =
log

{
1 − (1/2)

1
Mij

}
log(1/2)

and Mij represents the total number of domain pairs between
Pi and Pj . If Mij = 1, a = 1. Therefore, ha

ij (Λ) is the same as
h1

ij(Λ) in this special case.

3. Methods
3.1 Introduction
This section describes three methods for PPI predictions.
Section 3.2 reviews the likelihood-based approach realized
through the EM algorithm. Section 3.3 describes our semi-
Bayesian approach, while Section 3.4 develops the full
Bayesian approach.

3.2 Likelihood-Based Approach
In this approach, PPIs and DDIs are treated as random vari-
ables. The DDI probability can be estimated using Liu et al.
(2005)’s approach, which is an extension of the likelihood-
based approach proposed by Deng et al. (2002), so that it can
incorporate information from all K organisms.

Let Am be the set of proteins containing domain Dm and
Nmn be the total number of protein pairs between Am and
An across all K organisms. The observed data are the experi-
mentally observed interactions O = {Oijk = oijk ; i ≤ j}. The
complete data include all DDIs for each protein pair. Define
the complete data as (O, D), in which O is given above and

D = {D(ij)
mn ; Pi ∈ Am , Pj ∈ An , ∀m, n}.

If we specify the values for fn and fp , the likelihood function
is a function of θ = (λmn) only. The λmn can be estimated

using the EM algorithm as follows. For a given θ(t−1) = λ
(t−1)
mn

obtained from the (t − 1)th EM iteration, the next E-step can
be computed as

E
(
D(ij )

mn |Ol1l2k = ol1l2k, ∀l1, l2, θ(t−1)
)

=
λ(t−1)

mn (1 − fn)Oijk f
1−Oijk
n

Pr
(
Oijk = oijk | θ(t−1)

) = τ (ij )
mn (θ(t−1)),

where the denominator can be calculated using equation (2).

Because the MLE of λmn is the fraction of {D(ij)
mn ; Pi ∈ Am ,

Pj ∈ An , ∀k} such that D
(ij)
mn = 1, we thus obtain a recursive

formula for the M-step:

λ
(t)
mn =

∑
i∈Am,j∈Am,∀k

τ (ij )
mn (θ(t−1))

Nmn

=
λ

(t−1)
mn

Nmn

∑
i∈Am,j∈Am,∀k

(1 − fn)oijk f
1−oijk
n

Pr
(
Oijk = oijk | θ(t−1)

) , (3)

where Nmn was defined above and the summation is over all
these protein pairs.

We update the parameter estimates of the λmn by iterating
between the E-step and the M-step until the value of the
likelihood function and the MLEs of the λmn for all the domain
pairs converge. The estimated values of the λmn allow us to
compute Pr(Pijk = 1) and Pr(Oijk = 1) by equations (1) and
(2), respectively.

3.3 Semi-Bayesian Approach
Unlike the likelihood-based approach reviewed above, in
our semi-Bayesian approach, we treat fn and fp as un-
known but within a reasonable range that can be estab-
lished from biological knowledge. We estimate λmn , fn , and
fp , simultaneously.

For a given θ(t−1) = (λ
(t−1)
mn , f

(t−1)
n , f

(t−1)
p ) obtained from

the (t − 1)th EM iteration, we calculate λ
(t)
mn by replacing
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f
(t−1)
n and f

(t−1)
p in equation (3) and then compute hij (Λ

(t)). We
obtain the expectation of the log likelihood for complete data
and define it as Q(θ(t)), which is given in Web Appendix A.
Finally, we find solutions, fn and fp , that satisfy the following
equations:

∂Q(θ(t))

∂fn

=
∑
ijk

[
−Oijkhij (Λ

(t))

hij (Λ(t))(1 − fn) +
{
1 − hij (Λ(t))

}
fp

+
(1 −Oijk )hij (Λ

(t))

1 − hij (Λ(t))(1 − fn) −
{
1 − hij (Λ(t))

}
fp

]
= 0;

∂Q(θ(t))

∂fp

=
∑[

Oijk

(
1 − hij (Λ

(t))
)

hij (Λ(t))(1 − fn) +
(
1 − hij (Λ(t))

)
fp

+
−(1 −Oijk )

{
1 − hij (Λ

(t))
}

1 − hij (Λ(t))(1 − fn) −
{
1 − hij (Λ(t))

}
fp

]
= 0.

Because these are nonlinear equations of fn and fp , we can
use the Newton–Raphson method which requires the inverse
of the second derivatives of Q(θ(t)) with respect to fn and
fp . However, if λmn goes to 0 or 1 for all m, n, the second
derivatives are zero (see Web Appendix A). Hence, the inverse
of second derivative does not exist.

To avoid this problem, we use a Bayesian approach and as-
sume that fnk

∼ Unif[unk
, vnk

] and fpk
∼ Unif[upk

, vpk
]. De-

fine (Pk
ij ) to be all pairs of proteins in organism k, where k =

1, . . . ,K. The posterior distributions of fnk
and fpk

are pro-
portional to

[fnk
| rest ] ∝ L(O | fnk

, fpk
,Λ)f(fnk

|Λ, fpk
)f(fpk

|Λ)

∝
∏
(P k

ij )

[
hij (Λ)(1 − fnk

) + (1 − hij (Λ))fpk

]oijk

×
[
1 −

{
hij (Λ)(1 − fnk

) + (1 − hij (Λ))fpk

}]1−oijk

×f(fnk
|Λ, fpk

); (4)

[fpk
| rest ] ∝ L(O | fnk

, fpk
,Λ)f

(
fpk

|Λ(ij ), fnk

)
f(fnk

|Λ)

∝
∏
(P k

ij )

[
hij (Λ)(1 − fnk

) + (1 − hij (Λ))fpk

]oijk

×
[
1 −

{
hij (Λ)(1 − fnk

) + (1 − hij (Λ))fpk

}]1−oijk

×f(fpk
|Λ, fnk

). (5)

The posterior distributions of fnk
and fpk

are log-concave
functions regardless of the choice of the prior distribution. The
proof is given in Web Appendix B. We sample [fnk

|λ(t−1)
mn , fpk

]

and [fpk
|λ(t−1)

mn , fnk
] using the adaptive rejection method

(Gilks and Wild, 1992). We note that fnk
and fpk

are esti-
mated iteratively through the Gibbs sampling instead of using
the iterative formula from the Newton–Raphson method for
the M-step in the EM algorithm.

To summarize, the semi-Bayesian approach works as fol-
lows: (1) Choose initial values for λmn , fnk

, and fpk
; (2) For

given fnk
and fpk

, estimate λmn using the EM algorithm and
repeat until the value of the likelihood function converges;
(3) For given λmn , sample fnk

and fpk
from their poste-

rior distributions, respectively and then estimate fnk
and fpk

using the posterior means; and (4) Repeat steps 2–3 until
the values of the likelihood function, fnk

, and fpk
converge,

simultaneously.

3.4 Full Bayesian Approach
In this subsection, we describe our full Bayesian approach.
As for the semi-Bayesian method, we also treat fnk

and fpk

as unknown but are within a reasonable range that can be
inferred using prior biological knowledge. We assume uniform
distributions of fnk

and fpk
: fnk

∼ Unif[unk
, vnk

] and fpk
∼

unif[upk
, vpk

]. Unlike the semi-Bayesian method, however, we
also assume that λmn has a Beta prior distribution: λmn ∼
Beta(α, β). The prior parameters are chosen to be proper
but vague. We have varied (α, β) in our analysis without
appreciable change in results. Recall that (Pk

ij ) represents all
protein pairs in organism k, where k = 1, . . . ,K.

The posterior distribution of λmn is proportional to

[Λ | rest ] ∝ L(O | fnk
, fpk

,Λ)f(Λ | fnk
, fpk

)

∝
∏
ijk

[
hij (Λ)(1 − fnk

) +
{
1 − hij (Λ)

}
fpk

]oijk

×
[
1 −

{
hij (Λ)(1 − fnk

) + {1 − hij (Λ)}fpk

}]1−oijk

×f(Λ | fnk
, fpk

).

The posterior distributions of fnk
and fpk

are proportional to
equations (4) and (5), respectively. The posterior distributions
of λmn , fnk

, and fpk
have the following properties:

(P.1) Under h1
ij(Λ), the posterior distribution of λmn is a

log-concave function;
(P.2) Under ha

ij (Λ), the posterior distribution of λmn is not
a log-concave function but the behavior of the mean
and tails is the same as that of h1

ij(Λ);
(P.3) Under both h1

ij(Λ) and ha
ij (Λ), the posterior distri-

butions of fnk
and fpk

are log-concave functions.

The proofs of these properties are given in Web Appendix B.
In order to generate the posterior samples, we use the adaptive
rejection sampling method (Gilks and Wild, 1992) and the
adaptive rejection Metropolis sampling method (Gilks, Best,
and Tan, 1995).

4. Comparisons of the Likelihood-Based Approach
and the Bayesian Approach

Compared to the likelihood-based approach, we can prove
that, for a wide range of interacting probability, DDI prob-
ability estimates from the Bayesian approach have smaller
MSEs under the following special scenario: (S.1) fn and fp are
zeros; and (S.2) for the domain pair of interest, say, Dm and
Dn , a protein either has one copy of domain Dm , or one copy
of domain Dn , or neither. Under (S.1)–(S.2), DDI probability
between two domains can be estimated directly both for the
likelihood-based approach and the Bayesian approach. The
proof is given in Web Appendix C. In other cases when each
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protein pair have a different set of domain pairs and are not
independent of other protein pairs, the MLE and the Bayes
estimates of PPI probabilities depend on other domain pairs.
There is in general no closed form expression for these esti-
mators. In addition, there is also no closed form expression
using nonzero constant values of fn and fp .

In the more general case, we have conducted a simulation
study to empirically compare the performance of the following
different approaches:

� EM: a likelihood-based approach using (1) true fn , fp ,
and (2) h1

ij(Λ) for protein interaction;
� SemiBay: a semi-Bayesian approach using (1) the esti-

mated f̂n, f̂p, and (2) h1
ij(Λ) for protein interaction;

� Bay: a full Bayesian approach using (1) the estimated
f̂n, f̂p, and (2) h1

ij(Λ) for protein interaction;
� BayHa: a full Bayesian approach using (1) the estimated
f̂n, f̂p, and (2) ha

ij (Λ) for protein interaction.

In this simulation study, we considered only one organism,
that is, K = 1, as we expect similar results for multiple organ-
isms. As for the number of domains, we considered two cases:
one with 50 domains and the other with 100 domains. For
each case, we considered PPIs involving 200 or 400 proteins.
Because each protein has at least one domain, the number of
domains in each protein was assumed to be [1, 2, . . . , 10] with
probabilities (π1, π2, . . . ,π9, π10) = (0.585, 0.276, 0.069, 0.046,
0.009, 0.009, 0.004, 0.001, 0.0003, 0.0005). These probabilities
are based on the distribution of the number of domains in pro-
teins in S. cerevisiae. We let the true fn to be 0.8 and the true
fp to be 0.0003. The true DDI probabilities (λmn) were gen-
erated from two distributions: (a) r1Beta(2, 2 × 107) + (1
− r1)Beta(6, 2) with r1 = 0.9 and (b) Beta(6, 2), which has
mean 0.75. We note that Beta(2, 2 × 107) has mean 10−6.
The true PPI probabilities were generated from the model
h1

ij (Λ) = 1 −
∏

D
(ij )
mn ∈Pij

(1 − λmn).

Table 1
The average MSE values of DDI and PPI probabilities for each method. In this simulation, the true DDI probability (λmn) was

generated from 0.9Beta(2, 2 × 107) + 0.1Beta(6, 2). The true PPI probabilities were generated from the model
h1

ij (Λ) = 1 −
∏

D
(ij )
mn ∈Pij

(1 − λmn). EM = the likelihood-based approach using true fn , fp , and h1
ij for PPIs; SemiBay = the

semi-Bayesian approach using the estimated f̂n, f̂p, and h1
ij for PPIs; Bay = the full Bayesian approach using the estimated

f̂n, f̂p, and h1
ij for PPIs; BayHa = the full Bayesian approach using the estimated f̂n, f̂p, and ha

ij for PPIs.

Number of Number of Domain Level Protein Level
domains proteins EM Semi-Bay Bay BayHa EM Semi-Bay Bay BayHa

50 200 MSE 0.022 0.024 0.014 0.015 0.113 0.118 0.081 0.082
Var 0.010 0.010 0.007 0.007 0.095 0.100 0.069 0.067
Bias2 0.012 0.014 0.007 0.008 0.018 0.018 0.013 0.015

400 MSE 0.004 0.004 0.003 0.003 0.084 0.085 0.053 0.053
Var 0.002 0.001 0.001 0.001 0.078 0.079 0.049 0.048
Bias2 0.002 0.003 0.002 0.002 0.006 0.006 0.004 0.005

100 200 MSE 0.072 0.069 0.041 0.042 0.165 0.164 0.132 0.133
Var 0.029 0.027 0.015 0.015 0.143 0.143 0.114 0.114
Bias2 0.043 0.042 0.026 0.027 0.022 0.021 0.018 0.019

400 MSE 0.023 0.024 0.014 0.015 0.113 0.118 0.081 0.082
Var 0.010 0.010 0.007 0.007 0.095 0.099 0.068 0.067
Bias2 0.013 0.014 0.007 0.008 0.018 0.019 0.013 0.015

Under this setup, for each of the four combinations of the
number of domains and the number of proteins, we simulated
the observed interacting protein pair set O = {Oij = oij ; i ≤ j}
using a Bernoulli(π) distribution, where π = hij (Λ)(1 − fn) +
{1 − hij (Λ)}fp , fn = 0.8, and fp = 0.0003. We simulated 100
sets of observed interacting protein pairs.

In the likelihood-based approach, we assumed that the true
fn and fp were known in the estimation of DDI probabilities.
In our semi-Bayesian method and full Bayesian method, a
burn-in time of 1000 iterations was followed by 100 iterations
from the posterior distribution.

We computed the MSE of λmn for each domain pair and
then calculated the average MSE. We also computed the MSE
of hij (Λ) at the protein level. The values of the average MSE
are given in Tables 1–2 and Web Tables 1–3. For all cases,
the full Bayesian method had the best performance. We also
note that although we generated true PPI probabilities using
h1

ij (Λ), not ha
ij (Λ), the full Bayesian approach with ha

ij (Λ) was
as efficient as that based on the h1

ij(Λ). This may be because
about 80% of the proteins had one or two domains and we
only considered at most 400 proteins. Hence a is close to 1 in
many cases. Therefore, h1

ij(Λ) is close to ha
ij (Λ) in this case.

From Table 2 and Web Table 2, we observe that the es-
timated values of fn and fp obtained from the semi-Bayesian
method and the full Bayesian method are quite accurate. We
also note from Web Table 3 that the full Bayesian method
became more efficient than the other methods as the mixture
proportion (r1) approached to 0.5.

Furthermore, we calculated receiver operating characteris-
tic (ROC) curves for the simulated data sets and then com-
puted the average ROC curve. We treat the two proteins
as interacting if the interaction probability is greater than
0.6, which is within 1 standard deviation of the mean of the
Beta(6, 2) distribution. The average ROC curves based on
two distributions of λmn with 50 domains and 400 proteins
are given in Figure 1 and Web Figure 1. The results were
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Table 2
The average MSE values of fn and fp for each method. In this simulation, the true DDI probability (λmn) was

generated from 0.9Beta(2, 2 × 107) + 0.1Beta(6, 2), respectively. The true PPI probabilities were generated from
the model h1

ij (Λ) = 1 −
∏

D
(ij )
mn ∈Pij

(1 − λmn). SemiBay = the semi-Bayesian approach using the estimated f̂n, f̂p,

and h1
ij for PPIs; Bay = the full Bayesian approach using the estimated f̂n, f̂p, and h1

ij for PPIs; BayHa = the
full Bayesian approach using the estimated f̂n, f̂p, and ha

ij for PPIs.

Number of Number of SemiBay Bay BayHa
domains proteins fn fp fn fp fn fp

50 200 Mean 0.756 0.00056 0.766 0.00055 0.768 0.00054
MSE 2.00e-3 6.76e-8 1.27e-3 6.51e-8 1.13e-3 6.32e-8
Var 1.36e-4 2.10e-9 1.16e-4 3.86e-9 1.12e-4 3.54e-9
Bias2 1.87e-3 6.55e-8 1.15e-3 6.12e-8 1.02e-3 5.97e-8

50 400 Mean 0.786 0.00035 0.793 0.00036 0.801 0.00035
MSE 2.96e-4 2.53e-9 2.67e-4 2.91e-9 2.66e-4 2.54e-9
Var 2.78e-4 2.99e-10 2.48e-4 2.80e-10 2.48e-4 2.21e-10
Bias2 1.85e-5 2.23e-9 1.83e-5 2.63e-9 1.80e-5 2.32e-9

similar for the other cases. In Figure 1 and Web Figure 1, the
average ROC curves obtained from the full Bayesian method
are higher than others. The average ROC curve of the semi-
Bayesian method was similar to that of the EM approach
when true fn and fp values were used. However, true fn and
fp are unknown in practice. Therefore, the semi-Bayesian ap-
proach is likely to be more useful than the likelihood-based
approach.
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Figure 1. The average ROC curves for the likelihood based approach, the Semi-Bayesian method, and the full Bayesian
methods. The number of domains is 50 and the number of proteins is 400. The distribution of DDI probability is λmn ∼
0.9Beta(2, 2 × 107) + 0.1Beta(6, 2). The true PPI probabilities were generated from the model h1

ij (Λ) = 1 −
∏

D
(ij )
mn ∈Pij

(1 − λmn).

EM = the likelihood based approach using true fn, fp, and h1
ij for PPIs; SemiBay = the semi-Bayesian approach using the

estimated f̂n, f̂p, and h1
ij for PPIs; Bay = the full Bayesian approach using the estimated f̂n, f̂p, and h1

ij for PPIs; BayHa =

the full Bayesian approach using the estimated f̂n, f̂p, and ha
ij for PPIs.

In addition, we conducted further simulation with true
PPI probabilities defined by ha

ij (Λ) = 1 −
∏

D
(ij )
mn ∈Pij

(1 − λa
mn),

where a = log{1 − (1/2)1/Mij }/log(1/2). When the number of
domains was 50, the number of proteins was 400, and the true
DDI probabilities (λmn) were generated from (a) r1Beta(2, 2 ×
107) + (1 − r1)Beta(6, 2) with r1 = 0.9, the MSEs of EM,
semi-Bayesian, full Bayesian methods with h1

ij(Λ), and full
Bayesian method with ha

ij (Λ) were about 0.009, 0.009, 0.006,
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and 0.003 at the domain level, respectively. The MSEs of EM,
semi-Bayesian, and full Bayesian with h1

ij(Λ) were about 2.25
times worse than those when the true PPIs were generated
using h1

ij(Λ). The MSE of the full Bayesian approach with
h1

ij(Λ) was smaller than EM and semi-Bayesian methods but
it was about two times worse than that of the full Bayesian
approach with ha

ij (Λ). However, the MSE of the full Bayesian
approach with ha

ij (Λ) was similar to the case when true PPIs
were generated using h1

ij(Λ). When the true DDI probabili-
ties (λmn) were generated from (b) Beta(6, 2), the results were
similar. The simulation results for both (a) and (b) are given
in Web Tables 4–5.

5. Example
We use large-scale PPI data from three organisms, S. cere-
visiae, C. elegans, and D. melanogaster, obtained from high-
throughput yeast two-hybrid experiments, to infer DDI prob-
abilities. For S. cerevisiae, we used 5295 interactions which
came from two independent studies (Ito et al., 2000; Uetz
et al., 2000). For C. elegans and D. melanogaster, 4714 and
20,349 interactions were used from yeast two-hybrid exper-
iments (Giot et al., 2003; Li et al., 2004), respectively. The
protein-domain relationships for each protein in S. cerevisiae,
C. elegans, and D. melanogaster were obtained from Pfam
(Bateman et al., 2004) and SMART (Letunic et al., 2004).

5.1 Estimation Procedure
Using these data sets, we first estimated DDI probabilities.
For the likelihood-based approach, we used fn = 0.8 and fp =
0.0003 that were used by Deng et al. (2002) and Liu et al.
(2005) based on prior biological knowledge. The estimated
DDI probabilities were then used to infer PPI probabilities in
S. cerevisiae. For the full Bayesian method, we considered the
following four cases of prior and model specification:

� Case 1: hij (Λ) = h1
ij(Λ), with prior distributions fn ∼

Unif(0, 1), fp ∼ Unif(0, 1), and λmn ∼ Unif(0, 1);
� Case 2: The same setting as case 1 except λmn ∼ Beta(2,

2);
� Case 3: hij (Λ) = h1

ij(Λ), with prior distributions fnk
∼

Unif(uk, 1), fpk
∼ Unif(0, vk), λmn ∼ Beta(2, 2), uk ∼

Unif(0, 0.3), and vk ∼ Unif(0.5, 1);
� Case 4: The same setting as case 3 except hij (Λ) = ha

ij (Λ).

The estimated false negative rate and false positive rate
from the semi-Bayesian method are 0.898 and 0.000026, re-
spectively. The estimated values from Bayesian method with
case 1(2) are 0.920 (0.920) and 0.000025 (0.000024), respec-
tively. We also estimated these rates from Bayesian method
with case 3(4). The estimated false negative and false posi-
tive rates of the data set for S. cerevisiae are 0.912(0.901) and
0.000026(0.000027), respectively. These values for C. elegans
are 0.950(0.946) and 0.000018(0.000020), respectively. The
estimated rates for D. melanogaster are 0.931(0.929) and
0.000031(0.000033), respectively. These values are different
from the fixed values of Deng et al. (2002) and Liu et al.
(2005).

In our semi-Bayesian method, we first chose the initial pa-
rameter values as those from the likelihood-based approach.
For our full Bayesian method, we chose the initial parame-
ter values as those from the semi-Bayesian method. We used
the adaptive rejection sampling and adaptive metropolis re-

jection sampling by Gilks and Wild (1992) and Gilks et al.
(1995) in order to generate samples from the posterior distri-
butions. A burn-in time of 1000 iterations was followed by 100
iterations from the posterior distributions. The Markov chain
Monte Carlo trace plots of the sampled false negative rates
and false positive rates of three organisms, and the Markov
chain Monte Carlo trace plots of samples of six randomly cho-
sen DDI probabilities in full Bayesian method with case 4 are
given in Web Figure 3.

The likelihood-based approach, the semi-Bayesian method,
and the full Bayesian method took about 1 day, 2 days, and
7 days to run, respectively, using one node in a Linux cluster.
Each node has 2 CPUs, 3.2 GHz Xenon, and 2 GB memory.
Our code is written in C++ and is available upon request from
the authors.

5.2 Comparison with MIPS Protein Interaction Database
We selected top 1000 predicted interacting protein pairs from
the likelihood-based approach and top 1000 pairs from the
full Bayesian methods and then compared them with 3543 ex-
perimentally verified physical interactions in S. cerevisiae at
the Munich Information Center for Protein Sequences (MIPS;
http://mips.gsf.de/genre/proj/yeast/). The Venn dia-
grams on the overlap patterns among three protein pair sets
(MIPS, the likelihood-based approach, and the full Bayesian
methods) are shown in Web Figure 2. We can observe that
the number of common protein pairs between MIPS and the
full Bayesian approaches is larger than that between MIPS
and the likelihood-based approach. Furthermore, the number
of common protein pairs between MIPS and the full Bayesian
approach with case 4 is the largest among those from MIPS
and the full Bayesian approach with other cases.

We also compared the ROC curves among the likelihood-
based approach, the semi-Bayesian method and the full
Bayesian methods. For the ROC curves, we considered the
3543 yeast physical interaction pairs in MIPS as positive pairs
and the other possible protein pairs, 6,895,215 pairs, as neg-
ative pairs. We calculated the true positive rate and the false
positive rate for different thresholds. The true positive rate
was calculated as the number of predicted protein pairs that
were included in the positive pairs divided by 3543, the total
number of positives, and the false positive rate was calculated
as the number of predicted protein pairs that were included
in the negative pairs divided by 6,895,215, the total number
of negatives. The ROC curves are shown in Figure 2. We note
that the interacting protein pairs we use as the gold standard
are incomplete because the number of protein interactions
verified by experiments is very limited. As the number of an-
notated interactions increases, the values of the false positive
rate and false negative rate will certainly change.

Based on a thorough comparison of true positive rate and
false negative rate, we conclude that the semi-Bayesian and
full Bayesian approaches may be more effective for this data
set in borrowing information from multiple organisms than
the likelihood-based approach by Liu et al. (2005). We also
note that the full Bayesian approach based on cases 3 and 4
can further improve PPI predictions. This is likely achieved
by allowing different organisms having different false negative
and false positive rates and using our model ha

ij (Λ) to relate
PPI probabilities with DDI probabilities.
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Figure 2. ROC curves for the likelihood based approach, the semi-Bayesian method, and the full Bayesian methods. We
use MIPS protein interactions as the gold standard. EM = the likelihood based approach using fn = 0.8 and fp = 0.0003;
Semi-Bayesian = the semi-Bayesian method using the estimated fn and fp; Bayesian = the full Bayesian method with the

estimated organism specific f̂nk
and f̂pk

.

5.3 Comparison with iPfam Domain Interaction Database
To verify DDI predictions from the likelihood-based ap-
proach, the semi-Bayesian method, and the full Bayesian
methods, we compare our predictions with iPfam directly.
(http://www.sanger.ac.uk/Software/Pfam/iPfam/). We
only use a single data source, yeast two-hybrid data. There
are 2450 experimentally verified physical domain interactions
in S. cerevisiae at iPfam. We considered the 2450 yeast physi-
cal domain interaction pairs in iPfam as positive pairs and
the other possible domain pairs, 3,877,055 pairs, as nega-
tive pairs. We compared ROC curves among the likelihood-
based approach, the semi-Bayesian method, and the full
Bayesian methods (see Web Figure 4). Based on a thor-
ough comparison of true positive rate and false negative rate,
the semi-Bayesian and full Bayesian approaches are more
effective than the likelihood-based approach for this data
set.

6. Discussion
In this article, we have developed a semi-Bayesian method and
a full Bayesian method for simultaneously estimating DDI
probabilities, the false positive rate, and the false negative
rate, from high-throughput yeast two-hybrid data. We have
also proposed a model to relate protein interaction probabil-
ities with domain interaction probabilities that more appro-
priately models the number of domains in each protein. We
use this model to infer PPI probabilities using the estimated
DDI probabilities. Compared to previous methods by Deng
et al. (2002) and Liu et al. (2005), our methods may be more
efficient in dealing with a large number of parameters using

some prior information, more effective to allow for different
false positive and false negative rates across different data
sets, and more appropriate when the proportion of proteins
having more than three domains increases.

Our simulation study suggests that the semi-Bayesian
method is as good as the likelihood-based approach in the
best case for the latter approach, that is, when fn and fp are
assumed to be known, and our full Bayesian method performs
better than the likelihood-based approach even in this case.
We also have showed this result through theoretical justifica-
tion under a simplified scenario.

We note that our model ha
ij (Λ) is only one possible func-

tion to relate protein interaction probabilities with domain
interaction probabilities that reflects the number of domains
in each protein. This function seems to be working out well
in our study. However, other functions may be even more ef-
fective and they may be estimated either parametrically or
nonparametrically. Future research on identifying other mod-
els is warranted.

Our methods are based on the case when the experimen-
tally observed interactions O = {Oijk = oijk ; i ≤ j} are binary
data. We can extend our methods to the continuous case, for
example, a confidence score for each protein pair, similar in
spirit to Bader et al. (2004). In this case, it is important to es-
timate appropriate distributions either parametrically or non-
parametrically, which are related to the distribution of con-
fidence scores. One possible distribution for the score values
is a mixture of two distributions, with one distribution repre-
senting interacting protein pairs and the other corresponding
to the other protein pairs.
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In our study, we have assumed that the domains are in-
dependent of each other. However, domains may be classi-
fied into different super families based on structural or func-
tional evidence for a common evolutionary ancestor (Gough
and Chothis, 2002). Domains within the same super family
would have similar interaction profiles due to the similarity
of their structures. We can further develop our Bayesian ap-
proach to handle this dependence structure.

In our example considered in this article, we only used
yeast two-hybrid data to make predictions. We may further
improve our predictions by integrating multiple data sources,
for example, gene expression data and gene ontology informa-
tion (Lee et al., 2004, 2006).

Last but not the least, although many of the predicted pairs
are included in the MIPS database in our example, some of
them with high interaction probabilities are not in the MIPS
database. These predictions need to be validated experimen-
tally as the ultimate test of our proposal methods.

7. Supplementary Materials
Web Appendices, tables, and figures referenced in Sec-
tions 3.3–3.4, Section 4, Section 5.2, Section 5.3, and Section
6 are available under the Paper Information link at the Bio-
metrics website http://www.tibs.org/biometrics.
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