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ABSTRACT

Motivation: Identifying protein—protein interactions is critical for
understanding cellular processes. Because protein domains repres-
ent binding modules and are responsible for the interactions between
proteins, computational approaches have been proposed to predict
protein interactions at the domain level. The fact that protein domains
are likely evolutionarily conserved allows us to pool information from
data across multiple organisms for the inference of domain—domain
and protein—protein interaction probabilities.

Results: We use a likelihood approach to estimating domain—
domain interaction probabilities by integrating large-scale protein
interaction data from three organisms, Saccharomyces cerevisiae,
Caenorhabditis elegans and Drosophila melanogaster. The estim-
ated domain—domain interaction probabilities are then used to predict
protein—protein interactions in S.cerevisiae. Based on a thorough com-
parison of sensitivity and specificity, Gene Ontology term enrichment
and gene expression profiles, we have demonstrated that it may be far
more informative to predict protein—protein interactions from diverse
organisms than from a single organism.

Availability: The program for computing the protein—protein inter-
action probabilities and supplementary material are available at
http://bioinformatics.med.yale.edu/interaction

Contact: hongyu.zhao@yale.edu

INTRODUCTION

Protein—protein interactions play critical roles in the control of most

(Mrowka et al., 2001; von Meringet al., 2002). For example, the
false negative rate of the yeast two-hybrid assay used to construct
Scerevisiaeinteraction maps has been estimated to-i@% (Deng

et al., 2002). Therefore, there is a great need to develop comple-
mentary computational methods capable of accurately predicting
interactions between proteins through integrated analysis of data
from multiple sources.

A number of computational approaches have been proposed
to predict protein—protein interactions, including those based on
genomic information (Enright al., 1999; Tsokat al., 2000), three-
dimensional structural information (Let al., 2003; Aloy et al.,
2004), integration of multiple genomic datasets (Jamsah, 2003;

Lin etal., 2004; lossifowt al., 2004) and literature mining (Marcotte

et al., 2001). Protein—protein interactions can also be predicted on
the basis of evolutionary relationship. It has been shown that inter-
acting proteins often exhibit coordinated evolution, so that proteins
with similar phylogenetic trees are more likely to interact with each
other (Pazost al., 2001; Gohet al., 2002; Ramanét al., 2003).

In addition, the concept of ‘interologs’ has been proposed based on
the idea that a pair of interacting proteins are coevolving so that
their respective orthologs in other organisms tend to interact as well
(Walhoutet al., 2000).

Several methods have been proposed to predict protein interac-
tions in Scerevisisae on the basis of another important principle,
namely, domain—domain interactions. The protein domain as a unit
of structure, function and evolution also serves as a unit for protein—
protein interactions. Therefore, it is important to take into account
domain—domain interactions when we infer plausible interacting pro-

cellular processes. Many proteins involved in signal transduction, . . . .

) - tein pairs. Inthese methods, proteins are characterized by one or more
gene regulation, cell-cell contact and cell cycle control reqwrelnter-dormjlins and each domain is responsible for a specific interaction
action with other proteins or cofactors to activate those processes P P

(Papinet al., 2004; Tuckeret al., 2001; Wang, 2002). Recently with another domain. Sprinzak and Margalit (2001) identified the
systematic .i;jentifiéations of prc.;tein int,eractioﬁﬂcchéromyces ' domain pairs that are highly correlated with interacting protein pairs

oo e been condicied using gt tecicuef 1 PO e e s fneersae s e
such as yeast two-hybrid screening methodsdital., 2001; Uetz ' P 9p

- - . airs that contain an interacting domain pair. Similarly, Goetet.

et al., 2000) or affinity purification coupled with mass spectroscopyp . -
(Gavinet al., 2002; Hoet al., 2002). Although these experimental (2001.’ 2003) "’?”‘?‘ Deng _al. (20(.)2) estlmgted the_pr_obablllt!es of
approaches have generated enormous amounts of data and valu ?ema'”‘dom".*'” |ntera§tlpns using protem—protem |nter.act|0n dgta
resources for studying protein interactions, these methods suffer fro i:lct)g:ait(i:gne\g?oieasﬁi Jg nclgg g:ts’s;gioef;;ga;?gtgﬁmparg;?:mz?
high fal iti fal i i heir limitati i . B -

'gh false positive and false negative rates owing to their |m|tat|onsactlon probabilities. These methods depend highly on the accuracy
of the training data and have been mostly applied to protein—protein

interaction data from a single organism only, which may be inferior

*To whom correspondence should be addressed.
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to methods that can incorporate more information in estimatingnteracts with domaim and the notationf,,, € Pijk) denotes all pairs of
domain—domain interaction probabilities. domains from protein pair and j in speciesk. The probability that pro-

Because domains are likely evolutionarily conserved, informatiorfeinsi and j in speciest are observed to be interacting in the experiments
from multiple organisms may be integrated together to improve thdS P(Qix = 1) = Pr(Pj = D(1 — fn) + [1 - Pr(Auc = Dlfp, where
estimation of domain—-domain interaction probabilities. In our study, ik = 1 if interaction between proteinand  is observed in specids and

. . . . . . Ojjk = 0 otherwise. Herefn andfp represent the false negative rate and false

we incorporate information from three organisnScerevisiae, ” O . !
C habditis ¢ dD hila mel aster. to effect positive rate of the protein interaction data. It has been estimated that the
. aenor__ s egan_s &_m ros_"p Ia anog - er, 1o enect- . total number of interactions between all yeast proteins 2 000—30 000
ively utilize the domain |nf9rmat|on as the_ evolutlonary cc_)nnec_tlon(Baderet al., 2004). Therefore, foBcerevisiae, we have
among these model organisms. The protein—domain relationship can

be extracted from relevant databases such as PFAM and SMARTn = Pr(Ojjx = 0|Pjx = 1) = 1.0— Pr(Oije = 1, Pje = 1)

(Batemanet al., 2004; Letunicet al., 2004). By integrating large- Pr(Pik =1

scale protein—protein interaction data from these three organisms, _ 4 q_ PriOik=1 _ o Number of observed interacting pairs
we have extended a likelihood approach proposed by e - Pr(Pjx = 1) Number of real interacting pairs
(2002) to estimate the probabilities of domain—domain interactions 5295

based on information from all three organisms. Considering each ="~ 20000~ 0.74.

protein as a collection of domains, we can then estimate the prolye gntained a total of 5717 proteins from SWISS-PROT and TrEMBL;
abilities of protein—protein interactions Hicerevisiae based on the  therefore,

inferred domain—domain interaction probabilities. The protein pairs

o . X Pr(Oik = 1, Pjx =0
with interaction probabilities above a certain threshold can then befp = Pr(Ojk = 1| Pjk = 0) = PO =1, A = 0)

. . . Pr(Pijx =0
predicted to interact with each other. In order to assess the perform- (i =0) ‘ ‘ _
ance of our method, we first apply it to the interaction data from _PfQik=1 _ Number of observed interacting pairs
Scerevisiae only and compare its performance with that of three ~ PT(Pijk =1  Total protein pairs- Number of real interacting pairs
other methods that predict protein interactions based on the domain 5295 <33x 104
O X .

composition of proteins in the cross-validation measurement, and55717*(5717+ 1)/2—-30000 —

we demonstrate that our method provides comparable pe"forman(iu"?miIarIy, for C.elegans, fnis ~0.90 by mapping the observed interactions to
to the others. Then, we compare our prediction results based on &lpenchmark data set (Ef al., 2004) and we estimafe to be <3 x 10°5.
three organisms with those basedSxerevisiae alone. We find that  For D.melanogaster, fn is ~0.80 (Giotet al., 2003) and we estimatp to be

the integrated analysis provides more reliable inference of protein<3.6 x 1074.

protein interactions than the analysis from a single organism based The likelihood function that characterizes the probability of the observed
on the analysis of sensitivity and specificity, Gene Ontology termprotein interaction data across all three organismsLis= []Pr(Ojx =
enrichment and gene expression profiles. 1)Ok[1 — Pr(Ojx = 1)1*~Ck, We can see that the likelihood functidn

is a function of parameter,,, if we specify fixed values fofn andfp. To
obtain the maximum likelihood estimates (MLESs) of the parameters, we pro-
METHODS pose to use the EM algorithm (Dempsétal., 1977), which consists of the
Data sources expectation (E) step and the maximization (M) step. In the E-step, we need

) . . to calculate the expectations of the complete data given the observed data.
In our study, the high-throughput yeast two-hybrid data from three organismMSyere, the complete data include all the domain—domain interactions for each

Scerevisige, C.elegans and D.melanogaster, are used to infer domain- rotein—protein pair and j of each of the three organisms denotedlﬁ&,")
domain interaction probabilities. F8icerevisiae, we use a combined dataset \F;\le havep P J 9 ’ '

from two independent studies (I& al., 2000; Uetzet al., 2000), which
includes a total of 5295 interactions. F@relegans, 4714 interactions
were reported from yeast two-hybrid experiments étial., 2004). For
D.melanogaster, results from two-hybrid experiments yielded a total of ) .
20349 interaction pairs (Giet al., 2003). The protein—domain relationships With the expectations of the complete data, in the M-step, we update
for each protein irB.cerevisiae, C.elegans andD.melanogaster are extracted the ., by

S (L — ) fnt e
,1 :
Pr(Ojjk = 0ijk|)tz(1§n )

(i) A
E(D,;;|Oiik = Oijks Amn) =

from PFAM (Batemaret al., 2004) and SMART (Letuniet al., 2004). 40 Af,i;l) 1- i) “iik fnl =ik

Maximum likelihood estimation of domain—domain " Nun  PH(Oij = ol )

and protein—protein interaction probabilities where N,,,, is the total number of protein pairs containing domain )

We estimate the probabilities of domain-domain interactions through thécross the three organisms, and the summation is over all these protein pairs.
extension of a likelihood approach proposed by Deirg). (2002) so that it We update the parameter estimates of zhg by iterating between the

canincorporate information from all three organisms. In this model, we make=-step and the M-step until convergence to obtain the MLEs of.shefor
the following assumptions: (1) domain-domain interactions are independeng@ll the domain pairs. The estimated values of g allow us to compute
so whether two domains interact or not does not depend on the interactioﬁbe protein interaction probabilities so that two proteins with an interaction
among other domains; (2) the probability that two domairsidn interact probability greater than a certain threshold can be predicted to be interacting
is the same among all the three organisms; (3) Two profeamsl j interact partners.
if anq only if at least one pair of domains from the two proteins interact. Cross-validated comparison and receiving operator

With these assumptions, we havé P = 1) = 1-[| oy (A=Amn), o .

L . D €Pip) characteristic analysis

where Pijk represents the protein paiand j in speciesk; Pijkx = 1 if pro-
tein i and proteinj in speciesk interact with each other, anfljx = 0 To compare our likelihood approach with other similar methods that predict
otherwise. Herek = 1, 2, 3 represents speci€serevisiae, C.elegans and protein interactions based on protein domain information, we measure the
D.melanogaster, respectivelya,,, represents the probability that domain performance of each prediction using a 5-fold cross-validation. As all the
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other methods predicting protein interaction pairs are applied to the inter- D. melanogaster C. elegans
action data fronScerevisiae only, we define the training interaction data
for the cross-validation as follows: we considered the 3543 yeast physical \

interaction pairs in MIPS as positive examples (Mewteal ., 2004) and the
other possible protein pairs, totally 6 895 215 pairs, as negative examples. At
each iteration of the cross-validation experiments we reserve one-fifth of both @
positives and negatives for testing and use the remaining data for training. &ﬁ
The training—test procedure is repeated five times.

The prediction accuracy is measured using the receiving operator charac-
teristic (ROC) curve, which demonstrates the trade-offs between sensitivity
and specificity. Itis a plot of the true positive rate (sensitivity) against the false
positive rate ( specificity) for different thresholds. Here, the true positive
rate, denoted as TPF, is calculated as the number of predicted protein paiF$g. 1. The distribution of the domains is.cerevisiae, C.elegans and
that are included in the positive examples divided by 3543, the total number ob.melanogaster.
positives; the false positive rate, denoted as FPF, is calculated as the number
of predicted protein pairs that are included in the negative examples divided
by 6895215, the total number of negatives. The ROC score, calculated a:
the area under the ROC curve is a measurement of prediction accuracy. Th
closer the ROC score is to 1.0, the better the prediction. In our study, we
repeat the entire cross-validation procedure three times in order to estimate ~ 0.65 7

S cerevisiae

Bl Sequence O Attraction-Repulsion O Attraction O Likelihood

the variance of the ROC score. 064 -

Gene Ontology analysis 063 - I
We determine whether the two genes encoding the predicted interacting 0.62 A

protein pair have any GO annotation enriched in the biological pro- i 061 4 T

cess ontology by using th&accharomyces Genome Database (SGD) GO t}"} ) 1
TermFinder (http://search.cpan.org/dist/GO-TermFinder/). The probabilityu 056 1

that two genes share the same biological process by chance is calculatey [ 59
through the hypergeometric distribution. TRevalue is calculated using the 058 -

following equation:
M\ /N —M 0.57 A
"\ x n—x 0.56 1

P-value= B —
; (N> 055 -
n

whereN andM represent the total number of genes in the population and therig. 2. ROC score summary. Error bars indicate the standard deviation over

number of genes that have a particular biological process category annotatiofhree cross-validation experiments.

respectively, and andx represent the number of genes in the set and the

number of genes in the set annotated with the particular biological process,

respectively. Because each gene set we investigate is a pair of genes, both

n andx are equal to 2. The-value is corrected for multiple testing using infer protein—protein interaction probabilities. We compare the per-

Bonferroni correction and a protein pair is considered as GO term enricheformance of the likelihood approach with three other methods that

if the correctedP-value is<0.05. have also been used for protein interaction prediction: the sequence-
To assess the overall statistical significance of the observed GO tergjgnature method proposed by Sprinzak and Margalit (2001), the

enrichment, we generate randomized protein-domain associations by raamaction_omy model (Gomeet al., 2001) and the attraction—

domly pe_:rmutlng t!’le dom_aln labels of a_II proteins while leaving the numberrepulsion model (Gomeet al., 2003). All four methods explore

of domains associated with each protein untouched. We then run the sam . o . . -

{he experimental protein interaction data to assign the probability

prediction procedure on the permuted domain information. This process is f h . . d k dicti fi .
repeated 100 times and the number of predicted protein pairs having GO terfif Score for eac protein pair, and make predictions of interacting

enrichment is recorded for each permutation. The empifteaalue for the protein pairs based on a selected decision threshold. To compare the

observed GO term enrichment is calculated as the fraction of the permutatiotﬁerformance. Qf eé}Ch pre(jiction methqd, we apply Fhese methpds to
having a larger number of GO term enriched protein pairs than that based difie same training interaction data obtained from a single organism—

the observed data. Scerevisiae only—and measure the performance of each method
using 5-fold cross-validation. For different thresholds, the sensitiv-
RESULTS ity and specificity of each prediction method are calculated and the

The protein-domain relationships are extracted from PFAM andROC scores that measure the accuracy of prediction for each method
SMART, and there are a total of 3317 domains associated witiare obtained (see Methods). The results in Figure 2 clearly demon-
the proteins of the three organism@cgrevisiae, C.elegans and  strate that, with only the information from a single organism, the
D.melanogaster). The distribution of these domains across the threeprediction performance of the likelihood approach, with a ROC score

organisms is shown in a Venn diagram in Figure 1. of 0.628+ 0.005, is comparable to that of the attraction—repulsion
o . model, and is significantly better than those of the attraction-only
Sensitivity and specificity model and the sequence-signature method.

In this study, we have extended a likelihood approach by Deng The advantage of our extended likelihood approach is that it allows
et al. (2002) to integrate information from diverse organisms toustoincorporate the large-scale protein—proteininteraction datafrom
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Gene expression profiles

Interacting proteins are more likely to be coexpressed than a random
pair of genes and this fact has been used for experimental valida-
tion of the predicted protein—protein interactions (&el., 2001;
Kemmereret al., 2002). In our study, we test whether there is stat-
istical evidence suggesting that gene expression profiles are more
similar between the predicted protein pairs, where the similarity
is defined by the Pearson correlation coefficient between the gene
expression profiles of these two genes. For gene expression profiles,
we use publicly available gene expression data, including a time-
course study during the yeast cell cycle (Spellrsgal., 1998) and
the Rosetta ‘compendium’ set, which is composed of 300 diverse
mutations and chemical treatments (Huglied ., 2000).
To test whether the correlation coefficients of gene expressions
’ for the predicted interacting protein pairs are significantly higher
o - than those for random gene pairs, we compare the distribution of
' ' ' ' T ' ' the correlation coefficients between the predicted interacting protein
0o eos D 045 020 025 030 pairs with a probability threshold of 0.1, the physical interaction
1-specificity (%) protein pairs from MIPS, the predicted interacting pairs excluding
those pairs from MIPS, and random pairs. We find that the distri-
Fig. 3. ROC curves of the prediction results based on different informationPution of the correlation coefficients of the predicted protein pairs
sources. is similar to that of the annotated interacting protein pairs in MIPS,
which are verified interacting proteins. Compared with random pro-

. . i ) tein pairs, the predicted protein pairs have a higher mean correlation
diverse organisms. In order to assess the benefit of simultaneous angjaficient (Supplementary Data). In addition, we compare the mean
lysis of multiple organisms, we investigate the information gain fromg, yression correlation coefficient for the predicted interacting pro-
the joint analysis of all three organisms compared with the analysigsin pairs based on information from all three organisms and that
based solely oibcerevisiae. Because information frort.elegans  pased on information frorB.cerevisiae alone. For this comparison,
andD.melanogaster can affect (and hopefully improve) the estim- \q first identify the topv predicted interacting pairs based on either
ated domain—domain interaction probabilitiesSwerevisiae, the method, whereV takes values of 100, 500, 1000, 2000, 5000 and
predicted protein—protein interactions differ between the two meth 4 500, we then calculate the average correlation coefficient for the
ods. Taking the 3543 protein—protein physical interactions recordeﬂredicted interacting pairs in the set for each method. As shown in
in MIPS as true positives, we estimate the sensitivity and specificityrapie 1, asv increases, the mean correlation coefficient decreases
for each threshold of the two methods either based on informatiog,ying to the inclusion of a larger proportion of false positives in the
from all three organisms or based on information fréicerevisae 414 set. More importantly, for any givew, the mean correlation
alone. The results are summarized in the ROC curves in Figure 3qefficient for the predicted interacting protein pairs based on the
The improvement based on the joint analysis of three organisms caftormation from all three organisms is significantly higher than that
be easily seen from this figure. for protein pairs predicted using the information fr@uerevisiae
Evaluation of GO term enrichment alone. In addition, _the distribu_tions_ of the correlation goeﬁicients for

the top 1000 predicted protein pairs based on two different sources
In order to evaluate the quality of our predicted protein interactionsgre shown in Figure 4. As can be seen from this figure, there is
we investigate whether two genes encoding a predicted interacting general shift of the distribution to higher correlation coefficient
protein pair are functionally related. Because genes more likely sharg,|es for protein pairs predicted based on the information from all
the same biological process if they are functionally related (Vazquegn ee organisms compared with those predicted bas&denvisiae
et al., 2003), we determine whether these two genes have any GQione, indicating that the prediction based on the information from

annotation enrichment in the biological process ontology comparegy| three organisms more probably yields more reliable predicted
with what would be expected by chance from a random pair of genesperacting protein pairs.

We observe that, out of the top 1000 predicted interacting protein

pairs based on the information from all three organisms, 203 pairs . . L o

have at least one GO term enriched, whereas only 91 pairs out d#lological significance of the predictions

the top 1000 predicted pairs based on the information from yeadn this section, we discuss the biological relevance of the predicted
alone have a GO term enriched. To assess the statistical significang®@eracting protein pairs. Although many of the predicted pairs are
of these results, we compare these predictions with those based @amthe MIPS database, some of the top ones are not. Table 2 sum-
randomized protein—domain associations (see Methods). We find thatarizes the top 10 predictions that are not in the MIPS database, and
the 203 observed GO term enriched pairs based on the informatioall these predictions have estimated interaction probabilities equal
from all three species are statistically significant (empirealalue  to 1. Table 2 also provides the functional annotation of these genes.
is 0), whereas the observed 91 GO term enriched pairs based @ome of our predicted protein pairs include subunits of the same
Scerevisiae alone are not statistically significant (empiricaivalue protein complex; for example, MCD1 and IRR1 are subunits of the
is 0.06). yeast cohesin complex. Some other predictions involve interactions

30
1

sensitivity (%)

10
1

’ === Three Organisms|
’ = = S.cerevisiae
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Table 1. Comparison of the mean correlation coefficient for the selected predicted protein pairs based on two different information sources

Pairs

Cell cycle Rosetta
Mean (sdc) Meangcerevisiae) Empirical P-value Mean (sdc) MearS(cerevisiae) Empirical P-value
100 0.28 0.10 0 0.20 0.05 0
500 0.21 0.09 0 0.17 0.04 0
1000 0.15 0.09 0 0.13 0.03 0.0001
2000 0.12 0.08 0.0055 0.08 0.03 0.0129
5000 0.10 0.08 0.0255 0.06 0.02 0.0250
10000 0.09 0.07 0.0264 0.05 0.01 0.0258

sdc, prediction based on the information from three organiSroerevisiae, D.melanogaster andC.elegans.

Distribution of Pearson correlation coefficients of gene

Table 2. The top 10 predicted interacting protein pairs that are not included
expression (Cell Cycle)

in the MIPS physical interaction dataset

45.0% 1
40.0% + Protein | Function Protein Il Function
35.0% 4
& 30.0% A
@ 250% A MCD1 Mitotic chromosome  IRR1 Nuclear cohesin
£ 20.0% A determinant protein
& 15.0% 1 ECM31 Involved in cellwall ~ VPS9 Required for Golgi to
123: biogenesis and vacuole trafficking
0.0% 4 architecture
41 08 06 04 02 0O 02 04 06 08 " CUP2 Copper-dependent THI4 Involved in thiamine
il Caraladion Coalicusas transcription factor blosynthe_5|s and
DNA repair
BUL2 Ubiquitin-mediated SRP1 Karyopherin-alpha or
protein degradation importin
DCS1 Scavenger mRNA NTH2 Neutral trehalase
Distribution of Pearson correlation coefficients of gene decapping enzyme
expression (Rosetta) SNZ1 Member of the SNZ1 Member of the
15.0% - stationary stationary
40.0% A phase-induced gene phase-induced gene
35.0% family, involved in family, involved in
&' 30.0% - response to cell response to cell
g A0k stress stress
= fggﬁi YMROO9W  Unknown function FUN34 Integral membrane
10.0% A localized to protein, involved in
5.0% 4 cytoplasm and ammonia production
0.0% T T T —— nucleus
-4 08 06 04 02 0 02 04 06 08 1 OCAl Putative protein OCAl Putative protein
Expression Correlation Coefficients tyrosine phosphatase tyrosine phosphatase
ECM15 Involved in cell wall VACS8 Required for vacuole
biogenesis and inheritance and
architecture protein targeting
Fig. 4. Comparisons of the distributions of the Pearson correlation coeffi- I;o\rg(t::il(;ytoplasm
f:lents fo.r the top 1000 predlcteq mteractmg protein palrs baged on oIn‘fereruSPCZ Signal peptidase URA3 Orotidine-5-phosphate
information sources. sdc, prediction based on the information from three 18 KD subunit decarboxyl
. e ylase
organismsScerevisiae, D.melanogaster andC.elegans.

All these pairs have estimated interaction probability equal to 1. Each row represents

. . . an interacting protein pair with their corresponding annotated functions. The protein
between proteins belonging to the same family, such as OCAL an@inction annotations are obtained from CYGD (the Comprehensive Yeast Genome

SNZ1, or between members of two different families, such as thepatabase).

VAC and ECM families. The interactions between VACS8, a phos-

phorylated vacuole membrane protein that is required for protein Some of our predictions may be biologically important. For
targeting from cytoplasmto vacuole (Sceitél ., 2000), andthe mem-  example, it has been shown that the lack of Srp1 export might impair
bers of the ECM family, such as ECM15, may indicate that the ECMcNLS-dependent nuclear protein import in yeast (Stidé, 2002).
proteins are required for vacuole formation in three-dimensionaBecause the ubiquitin-like modification of some proteins, such as
extracellular matrices. RanGAP1, is required for protein nucleocytoplasmic trafficking
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(Matuniset al., 1998), the ubiquitin ligase may be involved in the predicted to interact with each other. At this level, using MIPS phys-
nuclear protein import. Therefore, it may be reasonable to considdcal interaction data as the gold standard, we estimate the sensitivity
that Srpl and BUL2, a component of the ubiquitin ligase complexand specificity to be 38.6 and 99.7%, respectively. (The list of all the
interact with each other and play a role in the nuclear protein imporpredicted interactions is provided as supplementary information.) As
process together. The interaction between CUP2 and THI4 mathe interacting protein pairs included in MIPS are far from complete,
indicate that genes activated by the transcription factor CUP2 artéhese values calculated based on the MIPS data could be different
involved in the process of thiamine biosynthesis, in which THI4 playsfrom the actual values.
animportant role. Another example is the protein pair DCS1-NTH2. It is well known that two-hybrid assays contain many errors, and
NTH2 is a neutral trehalase, and it has been proposed that the phatie exact error rates are hard to assess because the actual protein—
phorylation of DCS1 by CaM kinase Il would lead to its dissociation protein interactions are not yet known. Based on the number of
from the neutral trehalase, and thus that the activity of the neutral treinteractions in our training data, we have estimated the ranges of the
halase would be upregulated (Soetal., 2002). Therefore, the lack false positive and false negative rates (see Methods). The estimated
of CaM kinase Il would downregulate the neutral trehalase activity avalue offn agrees with the literature in which the dataset is published,
a result of the interaction between DCS1 and NIH2. In addition, weand the estimated value fif differs from those established in the lit-
may predict the functions of some unknown proteins based on theierature by an order of magnitude because a different definition of
interacting partners. For example, YMRO09W is predicted to interacfalse positive is used (the number of incorrect interactions observed
with FUN34, a transmembrane protein that is involved in ammonian experiments divided by the total number of observed interactions).
production; therefore, we can predict that YMRO09W may also beéWe fix thefn andfp rates in our analysis as this approach has been
involved in this process. shown to be robust with respect to a range of experimental error
rates (Supplementary Data). In our study, we set the error rates to
befp = 3 x 10* andfn = 0.85 for the interaction data for all
DISCUSSION AND CONCLUSIONS three organisms to ease the computation; the yielded predictions are
In this article, we propose estimating the probabilities of inter-used for the GO term enrichments and gene expression analysis. In
actions between domain pairs by pooling information from threeaddition, we have applied our approach to a core interaction dataset
organisms—S.cerevisiae, C.elegansandD.melanogaster—based on  including 1374 interactions frorcerevisiae (Ito et al., 2000; Uetz
large-scale protein interaction data. Using the estimated domainet al., 2000), 2135 interactions fro@.elegans (Li et al., 2004) and
domain interaction probabilities, we can then estimate the probabil4625 interactions fronD.melanogaster (Giot et al., 2003). We set
ities of interactions between each protein pair in a given organismthe error rates to bfp = 0 andfn = 0.95 because the dataset con-
We focus our attention on predicting the protein interactions intains only high-confidence interactions. However, the analysis yields
Scerevisiae, and we have found that, even based on the inform-a smaller number of predicted interactions, and measured by sens-
ation fromS.cerevisiae only, the likelihood approach is among the itivity and specificity, the overall performance of the core dataset is
best-performing methods considered in our comparisons. Because nbt comparable to that of the dataset including all the interactions
the experimental errors of large-scale two-hybrid assays, the domaifBupplementary Data). Given that the core dataset contains only
interactions inferred from one organism may not be reliable, and~8000 interactions for all three organisms, which is much smaller
the incorporation of data from other organisms can indeed improvéhan the number of expected interactions, the information included in
the estimated domain—domain and protein—protein interactions. Thime core dataset may be further from being complete than the com-
extension of the likelihood approach allows the incorporation ofplete dataset, eventhough it has a smaller false positive rate, thus
the information from all three organisms, and the prediction resultdimiting the prediction power of our approach.
were found to be better than those obtained based on the information We predict protein—protein interactions through the annotated pro-
from Scerevisiae alone through the examinations of ROC curves, tein domains, which are responsible for protein interactions through
GO term enrichments and expression profiles. Therefore, we cordirect physical interactions. Therefore, our goal, precisely defined,
clude thatthe approach proposed in this study outperforms those uséito predict whether two proteins have direct physical interactions,
for comparison, providing more informative inference of protein not whether proteins are in the same complex. In this study, we have
interactions. focused on the integration of two-hybrid data from different organ-
The results from our approach can be further improved when thésms. The prediction reveals potential protein physical interactions,
domain information is further and more reliably annotated in thebut some of these may not be biologically relevant in a physiolo-
future. Currently, only about two-thirds of ti&cerevisiae proteins  gical condition. In principle, other types of data can be integrated
have a defined domain composition, and we have considered posito the approach; for example, the integration of data from high-
sible interactions only between those proteins with annotated domaitihroughput mass spectrometry protein complex purification along
information. As a result, the predictions based on domain—domaimvith the correlated mMRNA expression profiles are expected to extend
interactions will be able to capture only a portion of all interac- our prediction, yielding functionally related protein pairs.
tions, the number of which is estimated to §20 000-30 000 in The basic principle of our approach is the fact that domain—domain
Scerevisiae. Our predicted interacting pairs depend on the thresholdnteractions are likely conserved across different organisms, there-
value used for the estimated interaction probabilities, and the numfore allowing us to borrow information from diverse organisms to
ber of predicted pairs increases as we reduce the threshold. Owing improve the predictions of protein—protein interactions in a given
the unknown number of truly interacting protein pairs as well as theorganism. Although our current approach has indeed led to improved
incompleteness of the annotated domain information, it is difficultpredictions, it can be further refined to generate more accurate
to set a threshold value to match the expected number of interacpredictions. For example, we may first improve the predictions
ing pairs. When we set the threshold at 0.1, 20 088 protein pairs aref protein—protein interactions within the same organism through
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integrating diverse data sources from that organism (e.g. Janseansen,Ret al. (2003) A Bayesian networks approach for predicting protein-protein

et al., 2003; Linet al., 2004) and then perform joint analysis  interactions from genomic dat&cience, 302 449-453. . _

across different organisms based on the results from these integratéa”nmeren,et al. (2092) Protein interaction verification and functional annotation by
| h h . he d in—d LS integrated analysis of genome-scale ditel. Cell., 9, 1133-1143.

an&} yses. T e_(_:l_”rent approac eSt_lmates t _e o_maln— omain 'nt(?_ﬁ'tunic,l.et al. (2004) SMART 4.0: towards genomic data integratiNocleic Acids

action probabilities for each domain—domain pair separately, and Res, 32, D142-D144.

these estimated probabilities may be more accurately estimated ByS. etal. (2004) Amap of the interactome network of the metazDafegans. Science,

pooling information from domains with similar structures or func- 303 540-543.

. . . in,N. et al. (2004) Information assessment on predicting protein-protein interactions.
tions. Finally, a Bayesian approach may be adopted here both to /- Bioinformatics, 5, 154.

incorporate prior information on domain—domain interactions and tq | . et al. (2003) Multimeric threading-based prediction of protein-protein interactions

better infer domain—domain interaction probabilities. on a genomic scale: application to the Saccharomyces cerevisiae proGemee
Res., 13, 1146-1154.
ACKNOWLEDGEMENTS Marcotte,E.M. et al. (2001) Mining literature for protein-protein interactions.

. . . . . Bioinformatics, 17, 359-363.
This research was supported in part by National Science Foundatiaowatunis,M.J.et al. (1998) SUMO-1 modification and its role in targeting the Ran

grant DMS-0241160 and Y.L. was supported by the NIH Institutional ~GTPase-activating protein, RanGAP1, to the nuclear pore compéBiol., 140,

Training Grants for Informatics Research. 499-509. _ _ _
Mewes,H.W.et al. (2004) MIPS: analysis and annotation of proteins from whole
Conflict of Interest: none declared. genomesNucleic Acids Res., 32, D41-D44.
Mrowka,R. et al. (2001) Is there a bias in proteome resear¢bghome Res,, 11,
1971-1973.
REFERENCES Papin,J. and Subramaniam,S. (2004) Bioinformatics and cellular sign@ling.Opin
Aloy,P. et al. (2004) Structure-based assembly of protein complexes in yé&satce, Biotechnoal., 15, 78-81.
303 2026-2029. Pazos,F. and Valencia,A. (2001) Similarity of phylogenetic trees as indicator of protein-
Bader,J.Set al. (2004) Gaining confidence in high-throughput protein interaction  protein interactionProtein Eng., 14, 609-614.
networks.Nat. Biotechnol., 22, 78-85. Ramani,A.K. and Marcotte,E.M. (2003) Exploiting the co-evolution of interacting
Bateman,Aet al. (2004) The Pfam protein families databailecleic Acids Res., 32, proteins to discover interaction specificifyMol. Biol., 327, 273-284.
D138-D141. Scott,S.V.et al. (2000) Apgl3p and Vac8p are part of a complex of phosphopro-
Dempster,A.Pet al. (1977) Maximum likelihood from incomplete data via the EM teins that are required for cytoplasm to vacuole targetihggiol. Chem.,, 275
algorithm.J.R. Statist. Soc. B, 39, 1C38. 25840-25849.
Deng,M. et al. (2002) Inferring domain-domain interactions from protein-protein Souza,A.Cetal. (2002) Evidence for a modulation of neutral trehalase activity bytCa2
interactionsGenome Res., 12, 1540-1548. and cAMP signaling pathways Baccharomyces cerevisiae. Braz. J. Med. Biol. Res.,
Enright,A.J.et al. (1999) Protein interaction maps for complete genomes based on gene 35, 11-16.
fusion eventsNature, 402 86-90. Spellman,P.Tet al. (1998) Comprehensive identification of cell cycle-regulated genes
Gavin,A.C.et al. (2002) Functional organization of the yeast proteome by systematic  of the yeast Saccharomyces cerevisiae by microarray hybridizdianBiol. Cell.,
analysis of protein complexelature, 415 141-147. 9, 3273-3297.
Ge,H.et al. (2001) Correlation between transcriptome and interactome mapping dat&prinzak,E. and Margalit,H. (2001) Correlated sequence-signatures as markers of
from Saccharomyces cerevisiae. Nat. Genet., 29, 482-486. protein-protein interactiorld. Mol. Biol., 311, 681-692.
Giot,L. et al. (2003) A protein interaction map drosophila melanogaster. Science, Stade,K.et al. (2002) A lack of SUMO conjugation affects cNLS-dependent nuclear
302 1727-1736. protein import in yeastl. Biol. Chem., 277, 49554—-49561.
Goh,C.S. and Cohen,F.E. (2002) Co-evolutionary analysis reveals insights into proteinFsoka,S. and Ouzounis,C.A. (2000) Prediction of protein interactions: metabolic
protein interactions). Mol. Biol., 324, 177-192. enzymes are frequently involved in gene fusiNiat. Genet., 26, 141-142.
Gomez,S.Met al. (2001) Probabilistic prediction of unknown metabolic and signal- Tucker,C.Letal. (2001) Towards an understanding of complex protein netwadrksds
transduction networksSenetics, 159, 1291-1298. Cell Bial., 11, 102-106.
Gomez,S.Met al. (2003) Learning to predict protein-protein interactions from protein Uetz,P. et al. (2000) A comprehensive analysis of protein-protein interactions in
sequencedBioinformatics, 19, 1875-1881. Saccharomyces cerevisiae. Nature, 403 623-627.
Ho,Y. et al. (2002) Systematic identification of protein complexesSaccharomyces Vazquez,A.et al. (2003) Global protein function prediction from protein-protein
cerevisiae by mass spectrometriature, 415 180-183. interaction networks\at. Biotechnol., 21, 697—-700.
Hughes,T.Ret al. (2000) Functional discovery via a compendium of expression profiles. von Mering,C et al. (2002) Comparative assessment of large-scale data sets of protein-
Cell, 102, 109-126. protein interactionsNature, 417, 399—-403.
lossifov,l. et al. (2004) Probabilistic inference of molecular networks from noisy data Walhout,A.J.et al. (2000) Protein interaction mapping D.elegans using proteins
sourcesBioinformatics, 20, 1205-1213. involved in vulval developmengcience, 287, 116-122.
Ito, T. et al. (2001) A comprehensive two-hybrid analysis to explore the yeast proteinWang,J. (2002) Protein recognition by cell surface receptors: physiological receptors
interactomeProc. Natl Acad. Sci. USA, 98, 4569-4574. versus virus interaction3rends Biochem. Sci., 27, 122-126.

3285



