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ABSTRACT
Motivation: Identifying protein–protein interactions is critical for
understanding cellular processes. Because protein domains repres-
ent binding modules and are responsible for the interactions between
proteins, computational approaches have been proposed to predict
protein interactions at the domain level. The fact that protein domains
are likely evolutionarily conserved allows us to pool information from
data across multiple organisms for the inference of domain–domain
and protein–protein interaction probabilities.
Results: We use a likelihood approach to estimating domain–
domain interaction probabilities by integrating large-scale protein
interaction data from three organisms, Saccharomyces cerevisiae,
Caenorhabditis elegans and Drosophila melanogaster. The estim-
ated domain–domain interaction probabilities are then used to predict
protein–protein interactions in S.cerevisiae. Based on a thorough com-
parison of sensitivity and specificity, Gene Ontology term enrichment
and gene expression profiles, we have demonstrated that it may be far
more informative to predict protein–protein interactions from diverse
organisms than from a single organism.
Availability: The program for computing the protein–protein inter-
action probabilities and supplementary material are available at
http://bioinformatics.med.yale.edu/interaction
Contact: hongyu.zhao@yale.edu

INTRODUCTION
Protein–protein interactions play critical roles in the control of most
cellular processes. Many proteins involved in signal transduction,
gene regulation, cell–cell contact and cell cycle control require inter-
action with other proteins or cofactors to activate those processes
(Papinet al., 2004; Tuckeret al., 2001; Wang, 2002). Recently,
systematic identifications of protein interactions inSaccharomyces
cerevisiae have been conducted using high-throughput techniques
such as yeast two-hybrid screening methods (Itoet al., 2001; Uetz
et al., 2000) or affinity purification coupled with mass spectroscopy
(Gavin et al., 2002; Hoet al., 2002). Although these experimental
approaches have generated enormous amounts of data and valuable
resources for studying protein interactions, these methods suffer from
high false positive and false negative rates owing to their limitations
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(Mrowka et al., 2001; von Meringet al., 2002). For example, the
false negative rate of the yeast two-hybrid assay used to construct
S.cerevisiae interaction maps has been estimated to be>70% (Deng
et al., 2002). Therefore, there is a great need to develop comple-
mentary computational methods capable of accurately predicting
interactions between proteins through integrated analysis of data
from multiple sources.

A number of computational approaches have been proposed
to predict protein–protein interactions, including those based on
genomic information (Enrightet al., 1999; Tsokaet al., 2000), three-
dimensional structural information (Luet al., 2003; Aloy et al.,
2004), integration of multiple genomic datasets (Jansenet al., 2003;
Lin et al., 2004; Iossifovet al., 2004) and literature mining (Marcotte
et al., 2001). Protein–protein interactions can also be predicted on
the basis of evolutionary relationship. It has been shown that inter-
acting proteins often exhibit coordinated evolution, so that proteins
with similar phylogenetic trees are more likely to interact with each
other (Pazoset al., 2001; Gohet al., 2002; Ramaniet al., 2003).
In addition, the concept of ‘interologs’ has been proposed based on
the idea that a pair of interacting proteins are coevolving so that
their respective orthologs in other organisms tend to interact as well
(Walhoutet al., 2000).

Several methods have been proposed to predict protein interac-
tions in S.cerevisisae on the basis of another important principle,
namely, domain–domain interactions. The protein domain as a unit
of structure, function and evolution also serves as a unit for protein–
protein interactions. Therefore, it is important to take into account
domain–domain interactions when we infer plausible interacting pro-
tein pairs. In these methods, proteins are characterized by one or more
domains and each domain is responsible for a specific interaction
with another domain. Sprinzak and Margalit (2001) identified the
domain pairs that are highly correlated with interacting protein pairs
using protein–protein interaction data fromS.cerevisiae as training
data. The information was further used to predict interacting protein
pairs that contain an interacting domain pair. Similarly, Gomezet al.
(2001, 2003) and Denget al. (2002) estimated the probabilities of
domain–domain interactions using protein–protein interaction data
from S.cerevisiae as training data; the estimated domain–domain
interaction probabilities can be used to infer protein–protein inter-
action probabilities. These methods depend highly on the accuracy
of the training data and have been mostly applied to protein–protein
interaction data from a single organism only, which may be inferior
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to methods that can incorporate more information in estimating
domain–domain interaction probabilities.

Because domains are likely evolutionarily conserved, information
from multiple organisms may be integrated together to improve the
estimation of domain–domain interaction probabilities. In our study,
we incorporate information from three organisms,S.cerevisiae,
Caenorhabditis elegans and Drosophila melanogaster, to effect-
ively utilize the domain information as the evolutionary connection
among these model organisms. The protein–domain relationship can
be extracted from relevant databases such as PFAM and SMART
(Batemanet al., 2004; Letunicet al., 2004). By integrating large-
scale protein–protein interaction data from these three organisms,
we have extended a likelihood approach proposed by Denget al.
(2002) to estimate the probabilities of domain–domain interactions
based on information from all three organisms. Considering each
protein as a collection of domains, we can then estimate the prob-
abilities of protein–protein interactions inS.cerevisiae based on the
inferred domain–domain interaction probabilities. The protein pairs
with interaction probabilities above a certain threshold can then be
predicted to interact with each other. In order to assess the perform-
ance of our method, we first apply it to the interaction data from
S.cerevisiae only and compare its performance with that of three
other methods that predict protein interactions based on the domain
composition of proteins in the cross-validation measurement, and
we demonstrate that our method provides comparable performance
to the others. Then, we compare our prediction results based on all
three organisms with those based onS.cerevisiae alone. We find that
the integrated analysis provides more reliable inference of protein–
protein interactions than the analysis from a single organism based
on the analysis of sensitivity and specificity, Gene Ontology term
enrichment and gene expression profiles.

METHODS

Data sources
In our study, the high-throughput yeast two-hybrid data from three organisms,
S.cerevisiae, C.elegans and D.melanogaster, are used to infer domain–
domain interaction probabilities. ForS.cerevisiae, we use a combined dataset
from two independent studies (Itoet al., 2000; Uetzet al., 2000), which
includes a total of 5295 interactions. ForC.elegans, 4714 interactions
were reported from yeast two-hybrid experiments (Liet al., 2004). For
D.melanogaster, results from two-hybrid experiments yielded a total of
20 349 interaction pairs (Giotet al., 2003). The protein–domain relationships
for each protein inS.cerevisiae, C.elegans andD.melanogaster are extracted
from PFAM (Batemanet al., 2004) and SMART (Letunicet al., 2004).

Maximum likelihood estimation of domain–domain
and protein–protein interaction probabilities
We estimate the probabilities of domain–domain interactions through the
extension of a likelihood approach proposed by Denget al. (2002) so that it
can incorporate information from all three organisms. In this model, we make
the following assumptions: (1) domain–domain interactions are independent,
so whether two domains interact or not does not depend on the interactions
among other domains; (2) the probability that two domainsmandn interact
is the same among all the three organisms; (3) Two proteinsi andj interact
if and only if at least one pair of domains from the two proteins interact.

With these assumptions, we have Pr(Pijk = 1) = 1−∏
(Dmn∈Pijk )(1−λmn),

wherePijk represents the protein pairi andj in speciesk; Pijk = 1 if pro-
tein i and proteinj in speciesk interact with each other, andPijk = 0
otherwise. Here,k = 1, 2, 3 represents speciesS.cerevisiae, C.elegans and
D.melanogaster, respectively,λmn represents the probability that domainm

interacts with domainn and the notation (Dmn ∈ Pijk) denotes all pairs of
domains from protein pairi and j in speciesk. The probability that pro-
teinsi andj in speciesk are observed to be interacting in the experiments
is Pr(Oijk = 1) = Pr(Pijk = 1)(1 − fn) + [1 − Pr(Pijk = 1)]fp, where
Oijk = 1 if interaction between proteini andj is observed in speciesk, and
Oijk = 0 otherwise. Here,fn andfp represent the false negative rate and false
positive rate of the protein interaction data. It has been estimated that the
total number of interactions between all yeast proteins is∼20 000–30 000
(Baderet al., 2004). Therefore, forS.cerevisiae, we have

fn = Pr(Oijk = 0|Pijk = 1) = 1.0− Pr(Oijk = 1,Pijk = 1)

Pr(Pijk = 1)

≥ 1.0− Pr(Oijk = 1)

Pr(Pijk = 1)
= 1.0− Number of observed interacting pairs

Number of real interacting pairs

≥ 1.0− 5295

20 000
≥ 0.74.

We obtained a total of 5717 proteins from SWISS-PROT and TrEMBL;
therefore,

fp = Pr(Oijk = 1|Pijk = 0) = Pr(Oijk = 1,Pijk = 0)

Pr(Pijk = 0)

≤Pr(Oijk = 1)

Pr(Pijk = 1)
= Number of observed interacting pairs

Total protein pairs− Number of real interacting pairs

≤ 5295

5717∗(5717+ 1)/2 − 30 000
≤ 3.3× 10−4.

Similarly, forC.elegans, fn is ∼0.90 by mapping the observed interactions to
a benchmark data set (Liet al., 2004) and we estimatefp to be<3 × 10−5.
For D.melanogaster, fn is ∼0.80 (Giotet al., 2003) and we estimatefp to be
<3.6× 10−4.

The likelihood function that characterizes the probability of the observed
protein interaction data across all three organisms is:L = ∏

Pr(Oijk =
1)Oijk[1 − Pr(Oijk = 1)]1−Oijk . We can see that the likelihood functionL
is a function of parameterλmn if we specify fixed values forfn and fp. To
obtain the maximum likelihood estimates (MLEs) of the parameters, we pro-
pose to use the EM algorithm (Dempsteret al., 1977), which consists of the
expectation (E) step and the maximization (M) step. In the E-step, we need
to calculate the expectations of the complete data given the observed data.
Here, the complete data include all the domain–domain interactions for each
protein–protein pairi andj of each of the three organisms, denoted byD

(ij)
mn .

We have

E(D(ij)
mn |Oijk = oijk ,λmn) = λ

(t−1)
mn (1 − fn)oijk fn1−oijk

Pr(Oijk = oijk |λ(t−1)
mn )

.

With the expectations of the complete data, in the M-step, we update
theλmn by

λ(t)
mn = λ

(t−1)
mn

Nmn

∑ (1 − fn)oijk fn1−oijk

Pr(Oijk = oijk |λ(t−1)
mn )

,

whereNmn is the total number of protein pairs containing domain (m,n)
across the three organisms, and the summation is over all these protein pairs.

We update the parameter estimates of theλmn by iterating between the
E-step and the M-step until convergence to obtain the MLEs of theλmn for
all the domain pairs. The estimated values of theλmn allow us to compute
the protein interaction probabilities so that two proteins with an interaction
probability greater than a certain threshold can be predicted to be interacting
partners.

Cross-validated comparison and receiving operator
characteristic analysis
To compare our likelihood approach with other similar methods that predict
protein interactions based on protein domain information, we measure the
performance of each prediction using a 5-fold cross-validation. As all the
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other methods predicting protein interaction pairs are applied to the inter-
action data fromS.cerevisiae only, we define the training interaction data
for the cross-validation as follows: we considered the 3543 yeast physical
interaction pairs in MIPS as positive examples (Meweset al., 2004) and the
other possible protein pairs, totally 6 895 215 pairs, as negative examples. At
each iteration of the cross-validation experiments we reserve one-fifth of both
positives and negatives for testing and use the remaining data for training.
The training–test procedure is repeated five times.

The prediction accuracy is measured using the receiving operator charac-
teristic (ROC) curve, which demonstrates the trade-offs between sensitivity
and specificity. It is a plot of the true positive rate (sensitivity) against the false
positive rate (1− specificity) for different thresholds. Here, the true positive
rate, denoted as TPF, is calculated as the number of predicted protein pairs
that are included in the positive examples divided by 3543, the total number of
positives; the false positive rate, denoted as FPF, is calculated as the number
of predicted protein pairs that are included in the negative examples divided
by 6 895 215, the total number of negatives. The ROC score, calculated as
the area under the ROC curve is a measurement of prediction accuracy. The
closer the ROC score is to 1.0, the better the prediction. In our study, we
repeat the entire cross-validation procedure three times in order to estimate
the variance of the ROC score.

Gene Ontology analysis
We determine whether the two genes encoding the predicted interacting
protein pair have any GO annotation enriched in the biological pro-
cess ontology by using theSaccharomyces Genome Database (SGD) GO
TermFinder (http://search.cpan.org/dist/GO-TermFinder/). The probability
that two genes share the same biological process by chance is calculated
through the hypergeometric distribution. TheP -value is calculated using the
following equation:

P -value=
n∑
x

(
M

x

) (
N − M

n − x

)
(

N

n

) ,

whereN andM represent the total number of genes in the population and the
number of genes that have a particular biological process category annotation,
respectively, andn andx represent the number of genes in the set and the
number of genes in the set annotated with the particular biological process,
respectively. Because each gene set we investigate is a pair of genes, both
n andx are equal to 2. TheP -value is corrected for multiple testing using
Bonferroni correction and a protein pair is considered as GO term enriched
if the correctedP -value is<0.05.

To assess the overall statistical significance of the observed GO term
enrichment, we generate randomized protein–domain associations by ran-
domly permuting the domain labels of all proteins while leaving the number
of domains associated with each protein untouched. We then run the same
prediction procedure on the permuted domain information. This process is
repeated 100 times and the number of predicted protein pairs having GO term
enrichment is recorded for each permutation. The empiricalP -value for the
observed GO term enrichment is calculated as the fraction of the permutations
having a larger number of GO term enriched protein pairs than that based on
the observed data.

RESULTS
The protein–domain relationships are extracted from PFAM and
SMART, and there are a total of 3317 domains associated with
the proteins of the three organisms (S.cerevisiae, C.elegans and
D.melanogaster). The distribution of these domains across the three
organisms is shown in a Venn diagram in Figure 1.

Sensitivity and specificity
In this study, we have extended a likelihood approach by Deng
et al. (2002) to integrate information from diverse organisms to

S. cerevisiae

C. elegans

   234

284
797

83 98

276

D. melanogaster

1545

Fig. 1. The distribution of the domains inS.cerevisiae, C.elegans and
D.melanogaster.

Fig. 2. ROC score summary. Error bars indicate the standard deviation over
three cross-validation experiments.

infer protein–protein interaction probabilities. We compare the per-
formance of the likelihood approach with three other methods that
have also been used for protein interaction prediction: the sequence-
signature method proposed by Sprinzak and Margalit (2001), the
attraction-only model (Gomezet al., 2001) and the attraction–
repulsion model (Gomezet al., 2003). All four methods explore
the experimental protein interaction data to assign the probability
or score for each protein pair, and make predictions of interacting
protein pairs based on a selected decision threshold. To compare the
performance of each prediction method, we apply these methods to
the same training interaction data obtained from a single organism—
S.cerevisiae only—and measure the performance of each method
using 5-fold cross-validation. For different thresholds, the sensitiv-
ity and specificity of each prediction method are calculated and the
ROC scores that measure the accuracy of prediction for each method
are obtained (see Methods). The results in Figure 2 clearly demon-
strate that, with only the information from a single organism, the
prediction performance of the likelihood approach, with a ROC score
of 0.628± 0.005, is comparable to that of the attraction–repulsion
model, and is significantly better than those of the attraction-only
model and the sequence-signature method.

The advantage of our extended likelihood approach is that it allows
us to incorporate the large-scale protein–protein interaction data from
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Fig. 3. ROC curves of the prediction results based on different information
sources.

diverse organisms. In order to assess the benefit of simultaneous ana-
lysis of multiple organisms, we investigate the information gain from
the joint analysis of all three organisms compared with the analysis
based solely onS.cerevisiae. Because information fromC.elegans
andD.melanogaster can affect (and hopefully improve) the estim-
ated domain–domain interaction probabilities inS.cerevisiae, the
predicted protein–protein interactions differ between the two meth-
ods. Taking the 3543 protein–protein physical interactions recorded
in MIPS as true positives, we estimate the sensitivity and specificity
for each threshold of the two methods either based on information
from all three organisms or based on information fromS.cerevisiae
alone. The results are summarized in the ROC curves in Figure 3.
The improvement based on the joint analysis of three organisms can
be easily seen from this figure.

Evaluation of GO term enrichment
In order to evaluate the quality of our predicted protein interactions,
we investigate whether two genes encoding a predicted interacting
protein pair are functionally related. Because genes more likely share
the same biological process if they are functionally related (Vazquez
et al., 2003), we determine whether these two genes have any GO
annotation enrichment in the biological process ontology compared
with what would be expected by chance from a random pair of genes.
We observe that, out of the top 1000 predicted interacting protein
pairs based on the information from all three organisms, 203 pairs
have at least one GO term enriched, whereas only 91 pairs out of
the top 1000 predicted pairs based on the information from yeast
alone have a GO term enriched. To assess the statistical significance
of these results, we compare these predictions with those based on
randomized protein–domain associations (see Methods). We find that
the 203 observed GO term enriched pairs based on the information
from all three species are statistically significant (empiricalP -value
is 0), whereas the observed 91 GO term enriched pairs based on
S.cerevisiae alone are not statistically significant (empiricalP -value
is 0.06).

Gene expression profiles
Interacting proteins are more likely to be coexpressed than a random
pair of genes and this fact has been used for experimental valida-
tion of the predicted protein–protein interactions (Geet al., 2001;
Kemmerenet al., 2002). In our study, we test whether there is stat-
istical evidence suggesting that gene expression profiles are more
similar between the predicted protein pairs, where the similarity
is defined by the Pearson correlation coefficient between the gene
expression profiles of these two genes. For gene expression profiles,
we use publicly available gene expression data, including a time-
course study during the yeast cell cycle (Spellmanet al., 1998) and
the Rosetta ‘compendium’ set, which is composed of 300 diverse
mutations and chemical treatments (Hugheset al., 2000).

To test whether the correlation coefficients of gene expressions
for the predicted interacting protein pairs are significantly higher
than those for random gene pairs, we compare the distribution of
the correlation coefficients between the predicted interacting protein
pairs with a probability threshold of 0.1, the physical interaction
protein pairs from MIPS, the predicted interacting pairs excluding
those pairs from MIPS, and random pairs. We find that the distri-
bution of the correlation coefficients of the predicted protein pairs
is similar to that of the annotated interacting protein pairs in MIPS,
which are verified interacting proteins. Compared with random pro-
tein pairs, the predicted protein pairs have a higher mean correlation
coefficient (Supplementary Data). In addition, we compare the mean
expression correlation coefficient for the predicted interacting pro-
tein pairs based on information from all three organisms and that
based on information fromS.cerevisiae alone. For this comparison,
we first identify the topN predicted interacting pairs based on either
method, whereN takes values of 100, 500, 1000, 2000, 5000 and
10 000. We then calculate the average correlation coefficient for the
predicted interacting pairs in the set for each method. As shown in
Table 1, asN increases, the mean correlation coefficient decreases
owing to the inclusion of a larger proportion of false positives in the
data set. More importantly, for any givenN , the mean correlation
coefficient for the predicted interacting protein pairs based on the
information from all three organisms is significantly higher than that
for protein pairs predicted using the information fromS.cerevisiae
alone. In addition, the distributions of the correlation coefficients for
the top 1000 predicted protein pairs based on two different sources
are shown in Figure 4. As can be seen from this figure, there is
a general shift of the distribution to higher correlation coefficient
values for protein pairs predicted based on the information from all
three organisms compared with those predicted based onS.cerevisiae
alone, indicating that the prediction based on the information from
all three organisms more probably yields more reliable predicted
interacting protein pairs.

Biological significance of the predictions
In this section, we discuss the biological relevance of the predicted
interacting protein pairs. Although many of the predicted pairs are
in the MIPS database, some of the top ones are not. Table 2 sum-
marizes the top 10 predictions that are not in the MIPS database, and
all these predictions have estimated interaction probabilities equal
to 1. Table 2 also provides the functional annotation of these genes.
Some of our predicted protein pairs include subunits of the same
protein complex; for example, MCD1 and IRR1 are subunits of the
yeast cohesin complex. Some other predictions involve interactions
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Table 1. Comparison of the mean correlation coefficient for the selected predicted protein pairs based on two different information sources

Pairs Cell cycle Rosetta
Mean (sdc) Mean (S.cerevisiae) EmpiricalP -value Mean (sdc) Mean (S.cerevisiae) EmpiricalP -value

100 0.28 0.10 0 0.20 0.05 0
500 0.21 0.09 0 0.17 0.04 0

1 000 0.15 0.09 0 0.13 0.03 0.0001
2 000 0.12 0.08 0.0055 0.08 0.03 0.0129
5 000 0.10 0.08 0.0255 0.06 0.02 0.0250

10 000 0.09 0.07 0.0264 0.05 0.01 0.0258

sdc, prediction based on the information from three organisms,S.cerevisiae, D.melanogaster andC.elegans.

Fig. 4. Comparisons of the distributions of the Pearson correlation coeffi-
cients for the top 1000 predicted interacting protein pairs based on different
information sources. sdc, prediction based on the information from three
organismsS.cerevisiae, D.melanogaster andC.elegans.

between proteins belonging to the same family, such as OCA1 and
SNZ1, or between members of two different families, such as the
VAC and ECM families. The interactions between VAC8, a phos-
phorylated vacuole membrane protein that is required for protein
targeting from cytoplasm to vacuole (Scottet al., 2000), and the mem-
bers of the ECM family, such as ECM15, may indicate that the ECM
proteins are required for vacuole formation in three-dimensional
extracellular matrices.

Table 2. The top 10 predicted interacting protein pairs that are not included
in the MIPS physical interaction dataset

Protein I Function Protein II Function

MCD1 Mitotic chromosome
determinant

IRR1 Nuclear cohesin
protein

ECM31 Involved in cell wall
biogenesis and
architecture

VPS9 Required for Golgi to
vacuole trafficking

CUP2 Copper-dependent
transcription factor

THI4 Involved in thiamine
biosynthesis and
DNA repair

BUL2 Ubiquitin-mediated
protein degradation

SRP1 Karyopherin-alpha or
importin

DCS1 Scavenger mRNA
decapping enzyme

NTH2 Neutral trehalase

SNZ1 Member of the
stationary
phase-induced gene
family, involved in
response to cell
stress

SNZ1 Member of the
stationary
phase-induced gene
family, involved in
response to cell
stress

YMR009W Unknown function
localized to
cytoplasm and
nucleus

FUN34 Integral membrane
protein, involved in
ammonia production

OCA1 Putative protein
tyrosine phosphatase

OCA1 Putative protein
tyrosine phosphatase

ECM15 Involved in cell wall
biogenesis and
architecture

VAC8 Required for vacuole
inheritance and
protein targeting
from the cytoplasm
to vacuole

SPC2 Signal peptidase
18 KD subunit

URA3 Orotidine-5′-phosphate
decarboxylase

All these pairs have estimated interaction probability equal to 1. Each row represents
an interacting protein pair with their corresponding annotated functions. The protein
function annotations are obtained from CYGD (the Comprehensive Yeast Genome
Database).

Some of our predictions may be biologically important. For
example, it has been shown that the lack of Srp1 export might impair
cNLS-dependent nuclear protein import in yeast (Stadeet al., 2002).
Because the ubiquitin-like modification of some proteins, such as
RanGAP1, is required for protein nucleocytoplasmic trafficking
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(Matuniset al., 1998), the ubiquitin ligase may be involved in the
nuclear protein import. Therefore, it may be reasonable to consider
that Srp1 and BUL2, a component of the ubiquitin ligase complex,
interact with each other and play a role in the nuclear protein import
process together. The interaction between CUP2 and THI4 may
indicate that genes activated by the transcription factor CUP2 are
involved in the process of thiamine biosynthesis, in which THI4 plays
an important role. Another example is the protein pair DCS1–NTH2.
NTH2 is a neutral trehalase, and it has been proposed that the phos-
phorylation of DCS1 by CaM kinase II would lead to its dissociation
from the neutral trehalase, and thus that the activity of the neutral tre-
halase would be upregulated (Souzaet al., 2002). Therefore, the lack
of CaM kinase II would downregulate the neutral trehalase activity as
a result of the interaction between DCS1 and NIH2. In addition, we
may predict the functions of some unknown proteins based on their
interacting partners. For example, YMR009W is predicted to interact
with FUN34, a transmembrane protein that is involved in ammonia
production; therefore, we can predict that YMR009W may also be
involved in this process.

DISCUSSION AND CONCLUSIONS
In this article, we propose estimating the probabilities of inter-
actions between domain pairs by pooling information from three
organisms—S.cerevisiae, C.elegans andD.melanogaster—based on
large-scale protein interaction data. Using the estimated domain–
domain interaction probabilities, we can then estimate the probabil-
ities of interactions between each protein pair in a given organism.
We focus our attention on predicting the protein interactions in
S.cerevisiae, and we have found that, even based on the inform-
ation fromS.cerevisiae only, the likelihood approach is among the
best-performing methods considered in our comparisons. Because of
the experimental errors of large-scale two-hybrid assays, the domain
interactions inferred from one organism may not be reliable, and
the incorporation of data from other organisms can indeed improve
the estimated domain–domain and protein–protein interactions. The
extension of the likelihood approach allows the incorporation of
the information from all three organisms, and the prediction results
were found to be better than those obtained based on the information
from S.cerevisiae alone through the examinations of ROC curves,
GO term enrichments and expression profiles. Therefore, we con-
clude that the approach proposed in this study outperforms those used
for comparison, providing more informative inference of protein
interactions.

The results from our approach can be further improved when the
domain information is further and more reliably annotated in the
future. Currently, only about two-thirds of theS.cerevisiae proteins
have a defined domain composition, and we have considered pos-
sible interactions only between those proteins with annotated domain
information. As a result, the predictions based on domain–domain
interactions will be able to capture only a portion of all interac-
tions, the number of which is estimated to be∼20 000–30 000 in
S.cerevisiae. Our predicted interacting pairs depend on the threshold
value used for the estimated interaction probabilities, and the num-
ber of predicted pairs increases as we reduce the threshold. Owing to
the unknown number of truly interacting protein pairs as well as the
incompleteness of the annotated domain information, it is difficult
to set a threshold value to match the expected number of interact-
ing pairs. When we set the threshold at 0.1, 20 088 protein pairs are

predicted to interact with each other. At this level, using MIPS phys-
ical interaction data as the gold standard, we estimate the sensitivity
and specificity to be 38.6 and 99.7%, respectively. (The list of all the
predicted interactions is provided as supplementary information.) As
the interacting protein pairs included in MIPS are far from complete,
these values calculated based on the MIPS data could be different
from the actual values.

It is well known that two-hybrid assays contain many errors, and
the exact error rates are hard to assess because the actual protein–
protein interactions are not yet known. Based on the number of
interactions in our training data, we have estimated the ranges of the
false positive and false negative rates (see Methods). The estimated
value offn agrees with the literature in which the dataset is published,
and the estimated value offp differs from those established in the lit-
erature by an order of magnitude because a different definition of
false positive is used (the number of incorrect interactions observed
in experiments divided by the total number of observed interactions).
We fix thefn andfp rates in our analysis as this approach has been
shown to be robust with respect to a range of experimental error
rates (Supplementary Data). In our study, we set the error rates to
be fp = 3 × 10−4 and fn = 0.85 for the interaction data for all
three organisms to ease the computation; the yielded predictions are
used for the GO term enrichments and gene expression analysis. In
addition, we have applied our approach to a core interaction dataset
including 1374 interactions fromS.cerevisiae (Ito et al., 2000; Uetz
et al., 2000), 2135 interactions fromC.elegans (Li et al., 2004) and
4625 interactions fromD.melanogaster (Giot et al., 2003). We set
the error rates to befp = 0 andfn = 0.95 because the dataset con-
tains only high-confidence interactions. However, the analysis yields
a smaller number of predicted interactions, and measured by sens-
itivity and specificity, the overall performance of the core dataset is
not comparable to that of the dataset including all the interactions
(Supplementary Data). Given that the core dataset contains only
∼8000 interactions for all three organisms, which is much smaller
than the number of expected interactions, the information included in
the core dataset may be further from being complete than the com-
plete dataset, eventhough it has a smaller false positive rate, thus
limiting the prediction power of our approach.

We predict protein–protein interactions through the annotated pro-
tein domains, which are responsible for protein interactions through
direct physical interactions. Therefore, our goal, precisely defined,
is to predict whether two proteins have direct physical interactions,
not whether proteins are in the same complex. In this study, we have
focused on the integration of two-hybrid data from different organ-
isms. The prediction reveals potential protein physical interactions,
but some of these may not be biologically relevant in a physiolo-
gical condition. In principle, other types of data can be integrated
into the approach; for example, the integration of data from high-
throughput mass spectrometry protein complex purification along
with the correlated mRNA expression profiles are expected to extend
our prediction, yielding functionally related protein pairs.

The basic principle of our approach is the fact that domain–domain
interactions are likely conserved across different organisms, there-
fore allowing us to borrow information from diverse organisms to
improve the predictions of protein–protein interactions in a given
organism. Although our current approach has indeed led to improved
predictions, it can be further refined to generate more accurate
predictions. For example, we may first improve the predictions
of protein–protein interactions within the same organism through

3284



Protein–protein Interaction

integrating diverse data sources from that organism (e.g. Jansen
et al., 2003; Lin et al., 2004) and then perform joint analysis
across different organisms based on the results from these integrated
analyses. The current approach estimates the domain–domain inter-
action probabilities for each domain–domain pair separately, and
these estimated probabilities may be more accurately estimated by
pooling information from domains with similar structures or func-
tions. Finally, a Bayesian approach may be adopted here both to
incorporate prior information on domain–domain interactions and to
better infer domain–domain interaction probabilities.
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