
Sodium pumps adapt spike bursting to stimulus
statistics
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Pump activity is a homeostatic mechanism that maintains ionic gradients. Here we examined whether the slow reduction in

excitability induced by sodium-pump activity that has been seen in many neuronal types is also involved in neuronal coding.

We took intracellular recordings from a spike-bursting sensory neuron in the leech Hirudo medicinalis in response to naturalistic

tactile stimuli with different statistical distributions. We show that regulation of excitability by sodium pumps is necessary

for the neuron to make different responses depending on the statistical context of the stimuli. In particular, sodium-pump

activity allowed spike-burst sizes and rates to code not for stimulus values per se, but for their ratio with the standard deviation

of the stimulus distribution. Modeling further showed that sodium pumps can be a general mechanism of adaptation to

statistics on the time scale of 1 min. These results implicate the ubiquitous pump activity in the adaptation of neural

codes to statistics.

Adaptation to static stimuli is a well-known phenomenon in nervous
systems. To understand the functions and mechanisms that are
responsible for the flexibility of neuronal systems under real-world
conditions, it is necessary to study adaptation to stimuli in their
statistical context. Adaptation to the stimulus mean, the simplest
parameter of a distribution, is a basic processing strategy in all sensory
modalities that allows for sensitivity to fluctuations around the
mean1,2. A more sophisticated strategy is the adaptation to the variance
of the stimulus distribution3–9 and perhaps to higher-order
moments10. Stimulus variance also changes in time in natural condi-
tions, and adapting to it allows the matching of output range to input
range and a higher information transfer7,8,11.

Despite the importance of adaptation to stimulus variance for the
correct functioning of many systems, the underlying mechanisms of
this adaptation remain largely unknown. Theoretical analysis and
experimental evidence argue in favor of the existence of multiple
mechanisms, which probably span several time scales and work
under different constraints12–20. At the single-neuron level, current
injection experiments have implicated slow sodium inactivation in
bipolar cells18,21 and sodium-dependent potassium conductances in
cortex20 as potential mechanisms.

The sodium-potassium ATPase, or sodium pump, is ubiquitous
in neurons. During firing, Na+ ions accumulate inside the axon,
driving the sodium pump, which continues its activity even when
the spike trains have ceased. The sodium pump exchanges three
internal Na+ ions for two external K+ ions, and the resulting
imbalance causes the membrane to recover from depolari-
zation and can even hyperpolarize the membrane. The membrane
hyperpolarization reduces membrane excitability, for example, in

dopaminergic neurons22, spinal networks23, hippocampus24,25,
C-fibers in bullfrog sciatic nerve26, insect mechanoreceptors27 and
human skin receptors28.

We reasoned that the ability of the sodium pump to control
excitability could, in principle, be a single-neuron mechanism for
adaptation to stimulus variance. Although the faster dynamics of ion
channels allow neurons to respond to particular stimulus features, the
slow hyperpolarizing dynamics of sodium pumps effectively integrate
past firing activity and affect future firing. Sodium-pump activity may
then allow neurons to respond to stimulus features that are relative to
the stimulus statistics. To test this hypothesis in a functionally relevant
setting, we examined spiking receptors, which allow for naturalistic
stimulation and minimize the interference from synaptic and network
effects. For our experimental system, we used the skin deformation–
receptor neuron in the leech, which is known as the T (tactile) neuron.
The spike-receptor T neuron used to test this hypothesis responds to
simple step stimuli on the skin with spike bursts. The advantage of this
receptor neuron is that sodium pumps are known to control its
excitability on the scale of 1 min29–36, allowing for a clean test of our
hypothesis that sodium-pump activity can adapt neuronal codes to
stimulus statistics. In response to a train of action potentials, sodium-
pump activity induces a hyperpolarization in this neuron of up to
B30 mV that lasts 1 min. Another hyperpolarizing current acting in
this neuron is the calcium-dependent potassium current, which has a
lower amplitude of up to 5 mV30,37.

To study adaptation to stimulus variance, we first needed to deter-
mine the neuronal code. This is particularly notable in our case, as the
neuron responds in bursts of spikes, which are thought to be a distinct
mode of communication in sensory systems38. Bursts facilitate synaptic
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transmission, can improve the signal-to-noise ratio of responses and
detect certain signals better than isolated spikes38,39. Another question
about burst coding is which burst parameters are relevant for informa-
tion transmission. Several proposals have been made, including spike
frequency40, burst duration41,42 and latency of the first spike43.

In this study, we have sought to determine what role, if any, the
sodium pump has as a mechanism for adaptation to stimulus variance
and its relevance for a burst code. First, we found that the sodium
pump caused a greater hyperpolarization of the membrane for higher
stimulus velocity variance. This hyperpolarization had the effect of
decreasing excitability with increasing stimulus velocity variance.
Second, we found that the neuron codes stimulus velocity into burst
sizes and burst rates. Third, we determined that the hyperpolarization
induced by sodium-pump activity had a notable impact on the neural
code. The neuron does not code the stimulus velocity in bursts sizes
and burst rates per se, but rather the velocity scaled by the standard
deviation of the stimulus velocity distribution. This adaptive scaling
was substantially disrupted in the presence of the sodium-pump
blocker strophantidin. On the other hand, blocking the calcium-
dependent potassium current with apamin did not significantly affect
adaptational scaling (P 4 0.07). A model of the receptor neuron
further showed that sodium pumps alone can explain the observed
adaptation to stimulus variance on the scale of 1 min.

RESULTS

Reduction in membrane excitability with stimulus variance

The sodium pump is responsible for adaptation on a slow time scale in
the receptor neuron (Fig. 1a). We first examined the effect of
the sodium pump in adaptation using a simple protocol for skin
stimulation. Skin was subjected to a series of small (40-mm) mechanical
steps at a frequency of 1.5 Hz both before and after 20 s of skin
displacement that consisted of 400-mm amplitude sinusoidal patterns
at 10 Hz (Fig. 1a, bottom). During the sinusoidal stimulation, the
membrane hyperpolarized by 10 mV and did not respond to the
following step stimuli for 20 s (Fig. 1a, top), except when we
bathed the preparation with strophantidin (Fig. 1a, middle), a
well-known blocker of the sodium pump30,31. The hyperpolarization
that is induced by the pump activity after firing thus increases the
voltage-to-spike threshold.

We next asked how the hyperpolarization and reduction in firing
depended on the stimulus variance (Fig. 1b–f). It is illustrative to
consider the raw spikes that are produced when the neuron is already
adapted. The skin was stimulated with one of two Gaussian white-
noise distributions of displacements with different standard deviation,
s, of 0.0425 mm (in velocity, svel ¼ 0.75 mm s–1) or 0.1275 mm
(2.25 mm s–1) (Fig. 1b, red and blue lines, respectively). The neuron
preferentially responded with spike bursts to slope in stimulus position
(stimulus velocity), as occurred in the case of simple displacement step
stimuli to which it responded only at stimulus onset and offset
(Supplementary Fig. 1 online). Notably, the firing characteristics for
the two stimulus distributions were similar, despite their large
difference in variance. This is possible because the neuron was more
hyperpolarized for larger input velocity variance (23 mVand 27 mV for
svel ¼ 0.75 and 2.25 mm s–1, respectively), and therefore was in a state
of reduced excitability. For the same value of input velocity, there was
less response when the input distribution had larger velocity variance.

We then quantified the dependence of hyperpolarization and reduc-
tion of excitability on stimulus variance, (Fig. 1c–f). The hyperpolar-
ization,DV, increased with increasing stimulus velocity s.d., svel, up to a
value of 28 mVat svel of 3.25 mm s–1 (Fig. 1c). Reduction of excitability
with increasing svel was also apparent in the spiking rate that we
obtained in the following manner. We calculated the initial average
firing rate, rav, for the first second of stimulation as a function of the svel

(Fig. 1d). The initial rate was higher with increasing svel until a value of
around 40 spikes per s at svel of 3.25 mm s–1 (Fig. 1d, black points). We
then calculated the average firing rate when the neuron was adapted
after 10 min of stimulation. This rate was smaller and depended less on
svel, reaching a value of 13 spikes per s for svel 4 2.25 mm s–1 (Fig. 1d,
white squares). The reduction of excitability could then be calculated as
the difference between the initial spike rate and the spike rate when the
neuron was adapted, rav(t ¼ 1 s) – rav(t ¼ 10 min), which increased
with svel and varied between 0 and 27 spikes per s. Neither hyperpolar-
ization values nor reduction in excitability were found to depend
substantially on the value of the cutoff frequencies used in the stimulus
(5, 10 and 20 Hz in Fig. 1); instead they depended only on svel. The
dynamics of adaptation were on the order of 1 min for the range of the
stimulus cutoff frequencies considered here, 5–20 Hz (Fig. 1e,f). At the
start of stimulation, rav was higher for larger svel, as illustrated here for

Figure 1 Reduction in membrane excitability

with stimulus variance. (a) Top, response of the

receptor neuron (T cell) to a protocol consisting of

a 10-s train of 40-mm mechanical steps at 1.5 Hz

on the skin of the leech, followed by 20 s of

several 400-mm-amplitude sine-wave patterns

at 10 Hz, and then repeating the initial train

(bottom). Middle, response of same receptor
neuron to same mechanical stimulation, but

adding strophantidin to the bath solution.

(b) Voltage response of mechanoreceptor (top)

when the skin was stimulated with Gaussian white

noise distributions of displacements with a cutoff

frequency of 5 Hz and two different s (bottom)

(red line, svel ¼ 0.75 mm s–1; blue line,

svel ¼ 2.25 mm s–1). (c) Decrease in membrane

potential after 200 s of Gaussian white-noise

stimulation as a function of svel. (d) Average spike

rate as a function of svel (full circles represent

average spike rate in the first second; empty squares represent the average firing rate after 10 min of stimulation). Solid lines are fits to exponential curves

y ¼ a(1 – e–bx). (e,f) Dynamics of membrane voltage and average spike rate adaptation for the stimulus ensembles in b (red circles, svel ¼ 0.75 mm s–1;

blue squares, svel ¼ 2.25 mm s–1). Solid lines are fits to a combination of exponential and power-law growth/decay, y ¼ a(1 – e–bx) + cxd and y ¼ ae–bx + cxd,

respectively. Error bars are s.d.
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two Gaussian distributions with a cutoff frequency of 5 Hz and svel of
0.75 mm s–1 (red) or 2.25 mm s–1 (blue) (Fig. 1f). Spiking activity in
turn activated the sodium pump, and the membrane hyperpolarized by
values DV that were larger for the higher spike rates, that is, for larger
stimulus velocity variance (Fig. 1e). Hyperpolarization then reduced
excitability, as seen by the decay of spike rates over time (Fig. 1f). For
the first 10 s there was an abrupt decay in the average spike rate,
followed by a slower decay for approximately 1 min until stationary
firing was reached.

Burst size and rate code for mechanical velocity

To determine how the sodium pump–induced hyperpolarization
affects the coding properties of the neuron, we first sought to determine
which code the neuron uses. In response to simple mechanical steps,
the neuron responded to stimulus onset and offset, that is, to
displacement changes or velocity (Supplementary Fig. 1). Using
Gaussian white-noise stimuli, we found that stimulus velocity was
encoded in spike-burst duration. Bursts were identified in the record-
ings using the distribution of interspike intervals (Supplementary
Fig. 1, Supplementary Note and Supplementary Table 1 online).
We found that bursts were separated by at least 50 ms, a value that is
very different from that of the intraburst time intervals, which have
10 ms as their most probable value. The distribution of velocity values
before a burst of spikes peaked at a positive (entering the skin) velocity
value and had a lower probability at negative (exiting the skin) velocity
values (Fig. 2a). Compare this with the distribution before silences
(intervals of velocity preceded or followed by at least 100 ms with no
firing), which was similar to that of the original Gaussian stimulus
centered at approximately zero velocity (Fig. 2b). There was an
approximate symmetry in the velocity values that produced bursts
when the skin was entering or exiting (Fig. 2a), and we thus, for
simplicity, considered the absolute value of the velocity as the relevant
coded variable. We carried out the same analysis for stimulus ampli-
tudes and found no clear stimulus features that were responsible for
bursting (Supplementary Fig. 2 online). Longer bursts coded for
higher velocities, as was seen in the velocity distribution before a
burst of given size (Fig. 2c). The neuron responded to increasing
stimulus velocity with bursts of increasing size, thus covering the tail of
the stimulus velocity distribution (Fig. 2c, dashed line). Distributions
(Fig. 2c) were calculated for illustrative purposes using the stimulus in
the time interval of 5–25 ms before the first spike in the burst, but any
fixed time or time intervals in the coding region of 5–40 ms before
spiking gave similar results (Supplementary Note and Supplementary

Fig. 3 online). To study the ability of bursts to discriminate between
values of stimulus velocity that were different from those correspond-
ing to periods of no spiking, we carried out an analysis using an ideal-
observer procedure (Supplementary Note and Supplementary Fig. 4
online). We found that isolated spikes were poor at this discrimination
task, whereas bursts of increasing size performed excellently. A similar
burst-duration code has been predicted using biophysical models of
cortical bursting neurons44. Although velocity was the more relevant
variable coded for by bursts, using principal-component analysis we
also found a small acceleration component (around 20% of total
contribution to bursting versus 70% for the velocity component) to
which the neuron was also sensitive (Supplementary Note and
Supplementary Fig. 5 online).

Once the relevant coded variables were determined, we quantified
the response of the neuron in terms of these variables. We examined the
neural gain, or nonlinear output, as a function of stimulus velocity (see
Methods). Because we had found that burst duration was important for
coding velocities, we first obtained the input-output relation for
average burst size. The average burst size typically increased with
stimulus velocity up to a saturation value (Fig. 2d). Burst size provided
a good characterization of the response for the relevant range of input
velocities, but we also checked whether other codes, such as the spike
rate, were able to describe the neural gain as a function of velocity.
Indeed, the spike rate was also found to be a relevant code. Bursts made
two contributions to spike rate, one corresponding to the spike rate
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stimulus velocity rescaled by the s of the distributions.

–20

–10

0

10

20

–100 –50 0

–20

–10

0

10

20

Time to spike (ms)

V
el

oc
ity

 (
m

m
 s

–1
)

V
el

oc
ity

 (
m

m
 s

–1
)

0

0.1

0.2

P
 (

v|
b)

b = 1
b = 2
b = 3
b = 4

100 20
|Velocity| (mm s–1)

0

20

40
r 

(s
pi

ke
s 

pe
r 

s)

0

5

<
B

ur
st

 s
iz

e>

e

a

b

c

d

Figure 2 Burst size and rate code for mechanical velocity. (a) Velocity

distribution before spike bursts in response to Gaussian white-noise stimulus

(svel ¼ 3 mm s–1 and cutoff frequency of 5 Hz). (b) Velocity distribution

before silences (intervals between bursts with at least 100 ms after/before

spikes). (c) Velocity distributions calculated at the interval 5–25 ms before

bursts of different sizes (black, single spikes; red, two-spike bursts; green,

three-spike bursts; blue, bursts containing four or more spikes). Dashed line

is the distribution of velocities in the stimulus ensemble. (d) Average burst
size as a function of the stimulus velocity. (e) Burst rate as a function of the

stimulus velocity.

NATURE NEUROSCIENCE VOLUME 10 [ NUMBER 11 [ NOVEMBER 2007 1469

ART ICLES
©

20
07

 N
at

ur
e 

P
ub

lis
hi

ng
 G

ro
up

  
ht

tp
://

w
w

w
.n

at
ur

e.
co

m
/n

at
ur

en
eu

ro
sc

ie
nc

e



within bursts and the other to the spike rate between bursts. The
stimuli considered were very slow compared with intraburst times, so
the spike rate within bursts cannot code for anything substantially
different from burst duration. This leaves burst rate as the most relevant
coding contribution to spike rate (Fig. 2e).

Burst size and burst rate adapt to stimulus variance

We have shown that stimulus velocity is coded for in burst size and
burst rate, and that the effect of sodium pumps is to decrease
excitability in proportion to stimulus velocity variance. How does
this change in excitability affect coding? To answer this question, we
next examined how the distribution of velocities before different burst
sizes was affected by the decrease of excitability with increasing
stimulus variance. Bursts of two spikes, for example, were produced
in response to different velocity intervals depending on the variance

of the stimulus distribution (Fig. 3a). The relevant scaling para-
meter was found to be the s of the distribution of skin velocities.
To examine this, we again plotted the probabilities (Fig. 3a), but
this time for the ratio of the stimulus velocity to the s of the total
velocity distribution (Fig. 3b). The scaled probabilities were found to
be independent of the stimulus variance. Bursts of a given size were
then produced in response not to stimulus velocity, but to the ratio
of velocity and the s of the velocity distribution. Similar adaptive
scaling was found for other burst sizes and even for isolated spikes
(Supplementary Fig. 6 online).

The same scaling was also found in the input-output functions. The
average burst sizes in response to stimulus velocities were different
depending on the stimulus variance (Fig. 3c). The same burst sizes,
normalized by the mean burst duration, were instead produced in
response to the ratio of velocity and s of the stimulus velocity
distribution (Fig. 3d). Burst rates showed the same scaling relationship
(Fig. 4). Similarly to the case of normalized burst sizes (Fig. 3c,d),
normalized burst rates for different input variances were elicited
proportionally not to absolute velocity values (Fig. 4a) but to velocities
that were relative to the s of the input velocity distribution (Fig. 4b).
Velocity is the most relevant variable that is coded, but is not the only
one, and so we also tested whether there was adaptational scaling for
other relevant stimulus features. To do this, we calculated the neural
gain as a function of the two main stimulus filters obtained by
principal-component analysis (Supplementary Note). These two filters
corresponded to stimulus velocity and acceleration, and both showed a
similar adaptation to variance (Supplementary Fig. 5).

Blocking sodium pumps disrupts adaptive scaling

Adaptation to statistics implies that a burst of given size is first
produced in response to low velocities, but after 1 min of stimulation
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it is produced in response to higher velocities.
This implies that there is a shift of the
response to higher velocities, higher the larger
the stimulus variance. For a burst of three
spikes, for example, the distribution of pre-
ceding velocities showed this shift to higher
velocities (Supplementary Fig. 7 online).
After sodium pumps were blocked with stro-
phantidin30, there was at most 6–9 min of
healthy firing response (see Methods), enough
time to observe neither hyperpolarization nor
a shift to higher velocities (Supplementary
Fig. 7). Notably, there was a substantial dis-
ruption of adaptive scaling in the presence of
the sodium-pump blocker strophantidin,
shown for svel of 1.5 (black) and 2.25 mm
s–1 (red) (Fig. 5). This disruption of adaptive
scaling was significant for all quantities impli-
cated in the coding, including the distribution
of velocities before bursts of two spikes
(Fig. 5a, P ¼ 0.03), bursts of three or more
spikes (Fig. 5b, P ¼ 0.045) and all bursts
(Fig. 5c, P ¼ 0.011), as well as the rate
(Fig. 5d, P ¼ 0.012) and average burst dura-
tion (Fig. 5e, P ¼ 0.012). We tested that this
disruption of adaptive scaling by strophan-
tidin was not a result of additional nons-
tationary effects of the drug by checking
that the input-output relationships were inde-
pendent of the order of presentation of the stimulus distributions
(Supplementary Fig. 8 online).

Activity-induced hyperpolarization in this neuron is mainly due
to the sodium pump, but to a lesser extent is also the result of a
calcium-dependent potassium conductance with values up to 5 mV30.
We therefore tested whether this potassium conductance has influences
on adaptational scaling using the specific blocker apamin, which is
known to inhibit the calcium-dependent potassium conductance in the
T neuron45 (see Methods). We found that in the presence of apamin
the membrane hyperpolarized 4–5 mV less than it did in controls
(Supplementary Fig. 9 online), but with no significant effect on
adaptive scaling (Supplementary Fig. 10 online, P 4 0.05).

Modeling sodium pumps as mechanism for adaptive scaling

We further investigated the role of sodium pumps in adaptational
scaling using a two-compartment model. The model includes all
known conductances for the T neuron (Fig. 6a, Methods and Supple-
mentary Note; ref. 46). The responses of the model neuron to simple
protocols that hyperpolarize the membrane were similar to those
observed in experiments (Fig. 6b; compare with experiment in
Fig. 1a). The small gap that we observed (Fig. 6b) is a result of the
recovery time of the after-hyperpolarization conductance gK,Ca, which
has a faster time scale than that of the sodium pump30,46. The sodium
pump has effects in both coding and adaptational scaling. Without the
sodium pump, the neuron saturated earlier and thus did not code high
velocities (Fig. 6c with pump, Fig. 6d without pump). Adaptational
scaling took place in the complete model until velocities were twice the
s of the stimulus (Fig. 6c,e), which is similar to the experimental results
(Fig. 4). The same model without sodium-pump dynamics showed no
adaptive scaling in the normalized rate (Fig. 6d,f), which is similar to
the experimental results (Fig. 5d). Similarly, we determined that in
burst coding there was no adaptive scaling without sodium pumps, for

example, in the distribution of stimulus velocities before bursts of two
spikes (Supplementary Fig. 11 online).

Eliminating the other hyperpolarizing conductance, the calcium-
dependent potassium current, but retaining the sodium pump did not
eliminate the adaptational scaling (Supplementary Fig. 12 online),
again reflecting the experimental results (Supplementary Fig. 10).
Sodium pumps are therefore the only elements responsible for adapta-
tional scaling in the model. We also used the model to test the
generality of the effect and found that the hyperpolarization induced
by sodium-pump activity might be larger for smaller neurons (Sup-
plementary Note and Supplementary Fig. 13 online).

DISCUSSION

We have shown both experimentally and using numerical simulations
that sodium-pump dynamics are a mechanism for adaptation to
stimulus variance on the time scale of 1 min. Our results consist of
four parts. First, we dissected the coding properties of the bursting
neuron and found that standard measures such as burst rates can be
used as simple coding quantities. To further investigate the neural
coding, we then showed that the neuron uses a burst code. Bursting has
been found to be important in information transmission, as it
improves synaptic reliability41, the signal-to-noise ratio of neuronal
responses47 and the detection of behaviorally important features of the
stimuli39. It is possible that bursts could act as unitary events or,
alternatively, that their structures might convey extra information.
Consistent with the second theory, it has been proposed that burst
parameters are responsible for coding. Spike frequency during bursts
might determine which postsynaptic neurons become excited40. Also,
modeling studies of a general class of bursting neurons have shown that
burst-duration codes for stimulus slope44. Experimental evidence that
duration correlates with stimulus optimality in visual cortex42 supports
such a burst-duration code. Our experimental results are consistent
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Figure 6 Sodium pumps responsible for adaptive rescaling in a neuron model. (a) Electrical circuit for

each of the two compartments (soma and dendrite) of a leech T cell neuron model. Ionic conductances

included leakage conductance (gL), fast Na+ conductance (gNa), delayed rectifier K+ conductance (gK),

high-threshold non-inactivating Ca2+ conductance (gCa), Ca2+-activated K+ conductance (gK,Ca) and

Na+-activated pump current Ipump. (b) Black trace, neuron model response to a square wave stimulation
(current step amplitude of 8 nA, period of 1.2 s) triggering 1 spike per period, followed by a sine wave

with an amplitude of 40 nA and a frequency of 2 Hz producing higher activity. Red trace, response of the

neuron model without the sodium pump. (c) Normalized burst rate for the model neuron in response to

Gaussian white-noise current stimulation ensembles of different s (black, 4.5 nA; red, 9 nA; blue, 18;

cutoff frequency of 8 Hz). (d) Normalized burst rate as in c, but without the sodium pump.

(e,f) Normalized spike rates in c and d with the input velocity rescaled by the s of the input
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with the theoretical prediction of burst-duration coding slope, in our
case the slope of skin displacements, with a larger slope in skin
displacement corresponding with a longer burst. Second, our results
show that the rate and burst codes show adaptive scaling. This further
supports the relevance of burst size coding, as it shows the flexibility
that is needed for changing real-world stimuli. In this manner the
system can detect the velocity of approaching objects, with adaptive
scaling allowing for the detection of high velocities relative to common
stimuli such as water displacements. Third, we showed that blocking
sodium pumps had a strong and significant disruptive effect on
adaptive scaling. We also tested whether blocking the calcium-
dependent potassium current had an effect on adaptive rescaling. No
single statistical test showed a significant role for this current, but we
found some evidence for it having a very weak effect on rescaling, close
to statistical significance for bursts of two spikes. Finally, we modeled
the neuron to further show that sodium pumps can be a general
mechanism for adaptive scaling.

We expect sodium pumps to be important for adaptive scaling in
other systems when tested with similar stimulations. Favorable pre-
parations would be those in which hyperpolarization has already been
shown to be induced by sodium-pump activity22–28. Both insect
mechanoreceptors27 and human skin receptors28 are experimental
systems similar to the one that we employed, and protocols very
similar to ours could be directly adapted to these systems. In hippo-
campal pyramidal neurons there is a brief hyperpolarization of 1 s as a
result of calcium-dependent potassium current and a hyperpolariza-
tion of 20 mV lasting 1 min that is due mainly to the sodium pump in
normal conditions24, similar to what occurs in the leech T neuron. In
terms of functional relevance, this hyperpolarization in hippocampus
may be seen as a way to avoid overexcitation25, but more generally, it
might scale neuronal responses to input statistics. When sodium-pump
activity is reduced in hippocampal neurons, there is still hyperpolar-
ization as a result of a sodium-sensitive potassium conductance24. The
situation seems to be reversed in visual cortex, where there is hyper-
polarization as a result of activity affecting a time scale of 30 s that is
mostly due to a sodium-dependent potassium current, and in which
sodium pumps might be of secondary importance19. Generally, sodium
pumps and some potassium conductances might hyperpolarize the
membrane on overlapping time scales in many neurons, with differ-
ences in their relative importance, as is the case in the T neuron, in
hippocampus24,25, in C-fibers in the bullfrog sciatic nerve26, insect
mechanoreceptors27 and probably in visual cortex19,20. Adaptational
scaling in bipolar cells in the retina has been shown to be due to slow
sodium inactivation18,21. This is an effect that might be quite general on
the time scale of 1 s, and that is, in principle, compatible with
adaptational scaling on the scale of 1 min as a result of sodium-
pump activity. Generally, adaptational scaling may have several single-
neuron mechanisms acting on different time scales to cope with the
complex dynamics of stimuli, as well as acting on the same time scale,
probably to cope with different constraints such as allowing modula-
tion by different molecular mechanisms.

METHODS
Experimental procedures. Adult leeches, Hirudo medicinalis, were bought

from Zaug. We used semi-intact leech preparations that typically consisted of

three or four ganglia (G7–G9/10) with intact connections from the central

ganglia to their corresponding skin flaps. We recorded from a central ganglion

and used the skin of the outer segments to pin the skin flaps to a Petri dish

filled with Sylgard (Dow Corning). The extracellular solution contained

115 mM NaCl, 4 mM KCl, 1.8 mM CaCl2�2H20, 1.5 mM MgCl2�2H20,

10 mM glucose, 4.6 mM Tris maleate, 5.4 mM Tris base, and NaOH to a pH

of 7.4 at room temperature (24–26 1C). To block sodium pumps, we bath

applied 0.15 mM strophantidin in extracellular solution with 1% ethanol to

better dissolve the drug30. The solution with the drug was first applied quickly

using a pipette, and then afterwards applied at a constant flow of 1 ml min–1.

We tested that the drug was effective after 15 min using a protocol similar to

the one in Figure 1a. Experiments with strophantidin used 3 min of white-

noise stimulation for each variance and typically found 6–9 min of healthy

firing. Before the addition of strophantidin, we carried out a control experi-

ment in 1% ethanol using the same stimulation protocol. For these short

recordings we used svel of 1.5 and 2.25 mm s–1, as larger variances are more

likely to deteriorate the electrophysiology as a result of vibrations, and lower

variances show more variability. To block the calcium-dependent potassium

conductance, we used 1 nM apamin, which is known to block this conductance

in the T neuron45. We observed its effect as a reduction of 5 mV in

hyperpolarization (Supplementary Fig. 9). We obtained 10-min-long record-

ings for two stimulus variances in the presence of apamin. For a fair

comparison between apamin and strophantidin conditions, statistical analysis

was always carried out in the range of 0–2 scaled velocities, above which there

are fewer data for analysis in short recordings. Microelectrodes were laser pulled

using a P-2000 (Sutter Instruments) with inner and outer diameters of 0.5 and

1 mm, respectively, and backfilled with 4 M potassium acetate (Kach) to a final

resistance of 40–70 MO. Amplification was achieved using an Axoclamp 1A

amplifier and data was collected using a National Instrument card and custom-

made data-acquisition software, created in MatLab, provided by M. Juusola

(Univ. Sheffield). Mechanical stimulation of the skin was carried out using a

closed-loop mechanical stimulator48 (see ref. 49 for displacement and fre-

quency distributions of the manipulator). Computer-aided stimulation was

performed from above and approximately perpendicular to the skin using a

2.5-mm plastic ball that was held in contact with the skin. The ball was first

pushed against the elastic skin so that the random displacements did not detach

the ball from the skin and spikes were always produced in response to stimuli.

We tested the skin’s ability to follow the movement of the ball by increasing the

stimulus velocity and keeping the amplitude constant, as more spikes would be

elicited by following the different patterns in the stimulus. The stimulus range

had a maximum of 1 mm with 0.1-mm resolution and a frequency range of

0–100 Hz. Pseudorandom stimuli with Gaussian distributions of displacements

and a maximum frequency of 20 Hz were used.

Data analysis. Custom MatLab software was written for analysis. We separated

bursts in the recording by the interspike-interval distribution (Supplementary

Note and Supplementary Fig. 1). The stimulus-dependent bursting probabi-

lity, P(b|s), and bursting rate, r(s), were obtained from Bayes’ theorem,

PðbjsÞ=PðbÞ ¼ PðsjbÞ=PðsÞ

where P(s|b) was obtained from the recording by taking stimulus values before

bursts. For long recordings, we took stimulus intervals by either using 20 ms

(centered at t ¼ –15 ms) before the onset of bursting or 20 ms around the

maximum response, both of which corresponded to where the coding was

more significant (Supplementary Fig. 3). Short recordings showed less

variability using the second method, and were chosen for the statistical analysis

in strophantidin and apamin conditions and their controls. P(s) is the total

stimulus distribution and P(b) the average burst rate, typically written as rav.

The input-output relation for the average burst size (shown in Fig. 2d and

Fig. 3c,d) was obtained as

hbðsÞi ¼
X

n

Pðb ¼ njsÞn

where P(b ¼ n|s)is the stimulus-dependent probability for bursts of n spikes

computed from Bayes’ theorem. To further quantify the neuron’s selectivity and

coding properties, we used principal-component analysis and signal detection

theory, respectively (Supplementary Figs. 4 and 5).

Computational models of T and bursting neurons. We modified a multi-

compartment model of the leech T neuron46. Our model contains two

compartments, a soma and a dendrite (Fig. 6a). They consist of a membrane

capacitance, C, of 1 mF cm–2 in parallel with two inward currents (a fast sodium

current, INa, and a high-threshold Ca2+ current, ICa), an outward-persistent
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potassium current, IK, a leak current, IL, and two currents that are solely

regulated by intracellular Na+ and Ca2+ pools, a Ca2+-activated potassium

current, IK,Ca, and the sodium pump, Ipump. These last two currents are slow

outward currents that are modulated by activity and are therefore responsible

for different adaptation processes. IK,Ca is fast46,50, and the slower Ipump is

responsible for the long refractory times after sustained activity46 (Fig. 6b). The

differential equations for the time dependence of the membrane voltage in

soma and dendrite are

� C
dVs

dt
¼ Is

L + Is
Na + Is

K + Is
Ca + Is

K;Ca + Is
pump + gcðVs � VdÞ=p

� C
dVd

dt
¼ Id

L + Id
Na + Id

K + Id
Ca + Id

K;Ca + Id
pump + gcðVd � VsÞ=ð1 � pÞ � Istim

where the indices s and d stand for soma and dendrite, respectively, gc is the

electrotonic coupling and p is the ratio of soma to total membrane area. Istim is

the stimulation according to Gaussian white noise with a given frequency cutoff

and variance. Details can be found in the Supplementary Note.

Note: Supplementary information is available on the Nature Neuroscience website.
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