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pronounced than in drbp nulls (5, /4). Function-
ally, drbp and bruchpilot phenotypes appear
similar: Both demonstrate decreased and desyn-
chronized evoked SV release with atypical short-
term facilitation. However, the deficits in evoked
SV release are much more severe in drbp nulls
than in bruchpilot nulls [i.e., release occurs at 5%
versus 30% (3) of the respective wild-type level].
DRBP levels were clearly reduced in bruchpilot
mutants (fig. S7), whereas gross Bruchpilot lev-
els were not altered in drbp mutants (Fig. 2B).
Given that even a partial loss of DRBP causes
marked reduction in SV release (Fig. 3A), deficits
in bruchpilot mutants might be explained, at least
in part, by a concomitant loss of DRBP, and
DRBP probably serves functions beyond the
structural and Ca®" channel—clustering roles of
Bruchpilot.

Taken together, we identified DRBP as a cen-
tral part of the AZ cytomatrix. How, in detail,
DRBP functionally integrates into this protein
network is subject to future analyses. Notably, the
short-term plasticity phenotype of drbp mutants
is reminiscent of mammalian munci3-1 KO and
caps-1 and caps-2 DKO mutants (25, 26), which
implicates functional links between priming fac-
tors and DRBP. Consistent with the functional
importance of the DRBP protein family suggested
by our study, human genetics recently identified

two rbp loci associated with autism with high
confidence (27, 28).
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Inhibitory Plasticity Balances
Excitation and Inhibition in Sensory
Pathways and Memory Networks

T. P. Vogels,"*t H. Sprekeler,™* F. Zenke,* C. Clopath,™? W. Gerstner®

Cortical neurons receive balanced excitatory and inhibitory synaptic currents. Such a balance could be
established and maintained in an experience-dependent manner by synaptic plasticity at inhibitory
synapses. We show that this mechanism provides an explanation for the sparse firing patterns observed
in response to natural stimuli and fits well with a recently observed interaction of excitatory and
inhibitory receptive field plasticity. The introduction of inhibitory plasticity in suitable recurrent
networks provides a homeostatic mechanism that leads to asynchronous irregular network states.
Further, it can accommodate synaptic memories with activity patterns that become indiscernible from
the background state but can be reactivated by external stimuli. Our results suggest an essential
role of inhibitory plasticity in the formation and maintenance of functional cortical circuitry.

membrane currents that a neuron experi-
ences during stimulated and ongoing ac-
tivity has been the topic of many studies (/—17).
This balance, first defined as equal average

The balance of excitatory and inhibitory
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amounts of de- and hyperpolarizing membrane
currents (from here on referred to as “global
balance”), is essential for maintaining stability
of cortical networks (/, 2). Balanced networks
display asynchronous irregular (Al) dynamics
that mimic activity patterns observed in corti-
cal neurons. Such asynchronous network states
facilitate rapid responses to small changes in
the input (2, 3, 12), providing an ideal substrate
for cortical signal processing (4, 13, 14).
Moreover, input currents to cortical neurons
are not merely globally balanced but also coupled
in time (3, 6, 15) and cotuned for different stim-

ulus features (7, &8). The tight coupling of ex-
citation and inhibition suggests a more precise,
detailed balance, in which each excitatory input
arrives at the cell together with an inhibitory
counterpart (Fig. 1A), permitting sensory inputs
to be transiently (9) or persistently turned on by
targeted disruptions of the balance (10, 11).

Although the excitatory-inhibitory balance
plays an important role for stability and information
processing in cortical networks, it is not under-
stood by which mechanisms this balance is
established and maintained during ongoing sen-
sory experiences. Inspired by recent experimen-
tal results (7), we investigated the hypothesis that
synaptic plasticity at inhibitory synapses plays
a central role in balancing the excitatory and
inhibitory inputs a cell receives.

We simulated a single postsynaptic integrate-
and-fire neuron receiving correlated excitatory
and inhibitory input signals. The cell received
input through 1000 synapses (Fig. 1B), which
were divided into eight independent groups of
100 excitatory and 25 inhibitory synapses. All
excitatory and inhibitory synapses within each
group followed the same temporally modulated
rate signal (time constant T ~ 50 ms) to mimic
ongoing sensory activity (/3, 16). Spikes were
generated from independent Poisson processes,
leading to 125 different spike trains per signal.
This architecture allowed each signal to reach
the cell simultaneously through both excitatory
and inhibitory synapses (Fig. 1B). To mimic glu-
tamatergic and y-aminobutyric acid (GABAergic)
transmission, the synapses were conductance-based
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inhibitory membrane currents (black and white symbols, respectively) evoked
by each signal channel, averaged over 4 s, before, during, and after inhibitory
synaptic plasticity (top, middle, and bottom, respectively). (F) Temporal evo-
lution of the postsynaptic firing rate (solid line) and the average synaptic
weights of the inhibitory synapses associated with three representative sig-

with reversal potentials ¥* =0 mV and V' =
—80 mV and time constants t° =5 ms, and 7' =
10 ms for excitation and inhibition, respective-
ly [see supporting online material (SOM)]. The
strength of the inhibitory synapses was initially
weak but could change according to a spike-
timing—dependent plasticity rule, in which near-
coincident pre- and postsynaptic spikes induce
potentiation of the synapse (/7-19). Additional-
ly, every presynaptic spike leads to synaptic
depression (17, 18) (Fig. 1C). This learning rule
can be summarized as

Aw = n\(pre X post — pg % pre) (1)

where Aw denotes the change in synaptic effi-
cacy, pre and post are the pre- and postsynaptic
activity, n is the learning rate, and p is a con-
stant that acts as a target rate for the postsynaptic
neuron (see SOM Sec. 2 for a mathematical
analysis).

Whereas inhibitory synapses were plastic, the
efficacies of the excitatory model synapses were
fixed at the beginning of a simulation and left
unchanged unless otherwise noted. Analogous to
frequency- or orientation-tuned sensory neurons,
excitatory synapses were tuned to have a pre-
ferred signal (Fig. 1E). Because all excitatory

16 DECEMBER 2011

synapses were set to nonzero strengths, the post-
synaptic neuron fired at high rates when the in-
hibitory synapses were weak at the beginning of
a simulation (Fig. 1, D and E, top, and F). The
resulting high number of pairs of pre- and post-
synaptic spikes led to relatively indiscriminate
strengthening of all inhibitory synapses (Fig. 1, D
and E, middle) until excitatory and inhibitory
membrane currents became approximately ba-
lanced and the postsynaptic firing rate was dra-
matically reduced (Fig. 1F). In this globally
balanced state, only unbalanced excitatory sig-
nals led to coincident pairs of pre- and postsynaptic
spikes, consequently strengthening underpowered
inhibitory synapses. Those inhibitory synapses that
were stronger than their excitatory counterparts
kept the postsynaptic side unresponsive and
were thus weakened (because of sole presynaptic
firing) until they allowed postsynaptic spiking
again. Over time, this led to a precise, detailed
balance of excitatory and inhibitory synaptic
weights for each channel (Fig. 1, D and E, bot-
tom). In agreement with the mathematical anal-
ysis, the postsynaptic firing rate was determined
mainly by the depression factor, po, but not by the
average input firing rate to the postsynaptic neu-
ron (Fig. 1G). The mechanism was robust to
plausible delays of several milliseconds. Howev-

nals (dotted lines). %, #, and ¢ indicate the times at which the top, middle,
and bottom graphs of (D) and (E) were recorded. (G) Average firing rate of the
postsynaptic neuron after learning, plotted for different values of target firing
rate po (left) and different input rates (right). The dashed lines in both graphs
show the analytical predictions.

er, because detailed balance requires a correlation
between excitatory and inhibitory synaptic in-
puts, the balance deteriorated when the delay be-
tween excitation and inhibition increased to values
larger than the autocorrelation time of the input
signals and the coincidence time of the Hebbian
learning rule, but global balance still persisted
(fig. S2).

To investigate how the state of the balance
affects the neuron’s response properties, we pres-
ented a fixed stimulus sequence to the neuron
(Fig. 2A) and compared the spiking response
over 50 trials to the input rates of each signal.
In the globally balanced state (Fig. 2B, top) in
which inhibitory synapses were distributed so
that excitation and inhibition were balanced only
on average across all channels, the peristimulus
time histogram (PSTH) faithfully reproduced the
firing rates of the preferred signals. The other, non-
preferred input signals evoked more inhibition
than excitation and thus had no impact on the cell’s
firing behavior. An additional steplike input rate
protocol, in which 100-ms-long pulses of various
step sizes (Fig. 2C) were presented to one channel
at a time, revealed that spiking responses are
largely insensitive to stimulus intensity and indeed
narrowly tuned to the preferred stimulus, giving
rise to an all-or-none response (Fig. 2, D and E).
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Fig. 2. Inhibitory synaptic plasticity sparsifies and democratizes receptive
fields. (A) A fixed sequence of eight stimuli of varying firing rates is fed
repetitively into a postsynaptic cell. Excitatory synapses are strength-tuned
by signal group (see conductance graph on the right) so that signal five
(marked also by dashed lines) is the preferred signal. (B) Postsynaptic spikes
over 50 trials with globally or detailed balanced inhibitory synapses (top and
bottom graphs, respectively) as indicated by the schematics on the left
(compare with Fig. 1E). The normalized and squared cross-correlation co-
efficients between each input signal and the PSTH are also shown (right).

BEFORE AFTER

(€) Schematic of a step stimulus delivered with large and small step sizes
(solid and dotted black lines respectively); Sample PSTHs for nonpreferred
(red) and preferred (blue) stimuli to both step sizes are shown for a globally
balanced cell. (D and E) Iso-response contour lines of the postsynaptic cell
in the globally balanced regime during the onset (phasic) (0 to 50 ms) (D)
and tonic (50 to 100 ms) (E) parts of the response. (F) Sample responses for
nonpreferred (red) and preferred (blue) stimuli to both step stimuli [as in
(O)]. (G and H) Iso-response contour lines [as in (D) and (E)] for a detailed
balanced cell.

with experimental results (5, 7, 8, 23, 24) and
confirm earlier theoretical studies arguing that
sharp tuning is not a necessary feature for a sparse
sensory representation (25, 26). The sparsity of the
response to each signal was a direct consequence
of the detailed balance of correlated excitatory and
inhibitory synapses as described above, not of the
specificity of the tuning curve.

The self-organizing dynamics of inhibitory
plasticity imply that the excitatory-inhibitory ba-
lance is maintained, even in the presence of on-

WO Experiment
—— Model

going excitatory plasticity (Fig. 3). Experiments
(7) in which a stimulus alters the frequency
tuning of excitatory input currents to pyramidal
neurons in rat primary auditory cortex point in
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Fig. 3. Temporal dynamics of inhibitory plasticity, experiment, and model. Frequency-tuned excitatory
and inhibitory membrane currents (black and white symbols, respectively) as recorded from pyramidal
cells in the primary auditory cortex of adult rat (7) (A) 30 min and (B) 180 min after a stimulus protocol
shifted the preferred frequency of the excitatory membrane currents from 16 to 4 kHz. Similarly stimulus-
tuned input currents in a simulation (C) 30 min and (D) 180 min after (manually) changing the excitatory
tuning curve. Solid and open arrowheads indicate the previous and the new preferred stimuli in all panels.
(E) Summary plot of the ratios of excitatory and inhibitory current amplitudes of previously preferred
stimuli and new preferred stimuli, as indicated in (A) to (D), in the experiment (open and solid symbols,
respectively) and simulations (blue and red lines, respectively). (F) Firing rate of the simulated neuron
over the time of the simulation in (E). Error bars indicate SEM. [(A), (B), and (E) adapted from (7) with

permission]

a similar direction: The disrupted cotuning of
excitatory and inhibitory input currents (Fig.
3A) prompts a compensatory response that sub-
sequently changes the amplitude of the inhibitory
input currents. After 180 min, the cell returns to a
cotuned state, albeit with a different preferred
frequency (Fig. 3B). When we disturbed the co-
tuning of a simulated neuron in a similar way
(Fig. 3C), inhibitory plasticity rebalanced the ex-
citatory input currents (Fig. 3, D and E) and
stabilized the output firing rates of the postsyn-
aptic neurons (Fig. 3F). Quantitative agreement
with the rebalancing dynamics observed in the
experiment (for both synaptic depression and
potentiation) was achieved by adjusting m, po,

60 120 180

Time [min]

In the detailed balanced state, the response of
the cell was sparse (Fig. 2B, bottom) and rem-
iniscent of experimental observations (16, 20-22)
across many sensory systems. Spikes were caused
primarily by transients in the input signals, during
which the faster dynamics of the excitatory syn-
apses momentarily overcame inhibition. Sustained
episodes of presynaptic firing, on the other hand,
caused steady membrane currents that canceled

www.sciencemag.org SCIENCE VOL 334

each other and thus failed to evoke a reliable
postsynaptic response. Seemingly indifferent to
the tuning of the excitatory synapses, each signal
contributed an equal part to the PSTH of the
output signal, but the effect of the excitatory syn-
aptic weights was uncovered by the steplike input
protocol (Fig. 2F). The broad, graded responses
(as opposed to all-or-none) to preferred and non-
preferred stimuli (Fig. 2, G and H) were in accord

and the average firing rate of the inhibitory input
neurons.

The learning rule for inhibitory synapses does
not rely on a feedforward structure to achieve low
firing rates. It simply matches excitatory and in-
hibitory synapses that show correlated activity.
We therefore tested whether inhibitory plasticity
was able to stabilize the dynamics of recurrent
networks. In simulations of such networks (/3)

16 DECEMBER 2011
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with plastic inhibitory synapses that were initially
weak (Fig. 4A), the resulting high firing rates
and subsequent increase in inhibitory synaptic
strengths caused by the plasticity rule indeed
produced globally balanced input currents that
led to a self-organized Al network state (Fig.
4B) with firing rates between 3 and 15 Hz.

We wondered whether it was possible to in-
troduce associative memories to the stabilized
network by strengthening specific excitatory
connections within dedicated groups of neurons.
First proposed by Hebb (27), such “cell assem-
blies” aim to provide a physiologically plausible
explanation of how groups of neurons form a
memory. Groups of highly connected neurons
have since been successfully embedded into
large spiking networks (28) and shown to self-
sustain their activity without disrupting the glob-
al dynamics of the host network (73, 29, 30),
but the parameter space that guarantees stable
performance is narrow and tuning is arduous.
The question has been raised how useful such

memory attractors can be for long-term memory
systems if only one of all stored memories can be
active at a time, and potentially remains active
for long periods of time, broadcasting the stored
information into the network (29).

Inhibitory plasticity can solve some of these
problems. After two arbitrarily chosen groups of
excitatory neurons were turned into Hebbian as-
semblies by strengthening the excitatory con-
nections within the groups fivefold, the assemblies
temporarily fired at high rates and raised the
background firing rate across the network (Fig.
4C). The resulting increase of coincident spike
pairs caused inhibitory plasticity to increase the
inhibitory synapses onto neurons in both assem-
blies until the global Al state was reestablished
(Fig. 4D). After the excitatory and inhibitory in-
puts onto these neurons had been rebalanced,
the firing rates of neurons in the cell assemblies
became indistinguishable from the rest of the
network, despite the imprinted memory traces
in the excitatory synapses. Electrophysiological

recordings of neuronal activity would thus not
reveal the presence of a synaptic memory trace
in this state.

Retrieval of previously quiescent memory
items could be achieved by momentarily dis-
rupting the balance within a cell assembly, for
example, through additional excitatory input. It
was sufficient to drive a small fraction of the
cells of one assembly to reactivate all cells of that
assembly. Notably, the recall was asynchronous
and irregular, as indicated by low correlations
between neurons and large variability of the in-
terspike intervals (Fig. 4E). Although we em-
bedded two overlapping assemblies into the
network, only one was activated. The rest of
the network remained nearly unperturbed in the
Al state. Unlike traditional attractor networks,
both assemblies could also be activated in un-
ison by driving cells of both memories simul-
taneously (figs. S4 and S5), and their activity
decayed to the background state after the stim-
ulus was turned off.
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Fig. 4. Inhibitory plasticity in recurrent networks. Five consecutive snapshots
of the momentary activity of a network of 10,000 integrate-and-fire cells with
inhibitory plasticity. (A) Synchronous regular network dynamics with high
firing rates at the beginning of the simulation with weak inhibitory synapses.
(B) Establishment of the Al (steady) state with low firing rates through up-
regulation of inhibitory synaptic weights by the synaptic plasticity rule. (C) The
introduction of two synaptic memory patterns (cell assemblies) by fivefold
increased excitatory synaptic weights between neurons outlined in red and
blue in (A) leads to high firing rates. (D) Recovery of the Al state at low firing
rates. (E) Memory retrieval through externally driving the lower left quarter of
the red cell assembly with an additional excitatory stimulus. Each snapshot (A)
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Spiking Correlation

Spiking Correlation
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Spiking Correlation

Spiking Correlation

to (E) shows (from top to bottom) the following: (i) The momentary (1-s) average
firing rate of all neurons on a grid of 100 cells and separated into excitatory
and inhibitory cells [left and right of the vertical line in (A), respectively]. Three
groups of neurons play the role of either a cell assembly (red and blue outlines)
or a control group (black outline). (i) A raster plot of 30 randomly drawn
neurons from one (red) cell assembly and the control group, indicated by a red
and a black square in the plot above. (iii) The distributions of coefficients of
variation of interspike intervals (ISI CVs) recorded from the neurons in the red
and black groups. (iv) The distributions of spiking correlations between spike
trains from neurons in the same designated groups. For methods and additional
statistics, please see SOM.
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Our results offer an explanation for how
long-term memories can be stably embedded into
networks as quiescent and overlapping Hebbian
assemblies. Unlike previous studies, our network
does not exhibit the behavior of an attractor
network, in which activated cell assemblies will
compete with each other and the winning pat-
tern often exhibits persistent elevated activity.
Instead, the network remains quiet unless the
balance of one or more assemblies is modulated
in favor of the excitation and returns to the
background state when the modulation is turned
off. We have shown this effect here by driving a
subset of cells with an external stimulus, but there
are several conceivable methods to modulate the
balance of excitation and inhibition (SOM). The
possibility to activate several patterns simulta-
neously allows the analog combination of patterns
into larger composite memories. The capacity of
storable and retrievable patterns is likely to depend
on complex interactions between dynamics, size,
and connectivity of the assemblies and the host
network, as well as several other parameters.

We show that a simple, Hebbian plasticity
rule on inhibitory synapses leads to robust and
self-organized balance of excitation and inhi-
bition that requires virtually no fine-tuning (figs.
S6 to S9) and captures an unexpected number
of recent experimental findings. The precision
of the learned balance depends on the degree of
correlation between the excitatory and the inhib-
itory inputs to the cell, ranging from a global ba-
lance in the absence of correlated inputs to a
detailed balance for strong correlations. The phe-
nomenon is robust to the shape of the learning
rule, as long as it obeys two fundamental re-
quirements: Postsynaptic activity must potentiate
activated inhibitory synapses, whereas in the ab-
sence of postsynaptic firing inhibitory synapses
must decay. Because the balance is self-organized,
inhibitory plasticity will most likely maintain
balance also in the presence of excitatory plas-
ticity, as long as excitation changes more slowly
than inhibition or when excitatory plasticity events
are rare.

The mammalian brain hosts a wide variety of
inhibitory cell types with different synaptic time
scales, response patterns, and morphological tar-
get regions. Presumably, these cell types serve
different functions, and consequently their syn-
apses may obey several different plasticity rules
(31). In our simplified model, the dynamics of
inhibitory plasticity powerfully contributes to the
functional state of cortical architectures and may
have a strong impact on cortical coding schemes.
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Chemotherapeutic Agents in Mice
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1.

Antineoplastic chemotherapies are particularly efficient when they elicit immunogenic cell death, thus
provoking an anticancer immune response. Here we demonstrate that autophagy, which is often disabled
in cancer, is dispensable for chemotherapy-induced cell death but required for its immunogenicity. In
response to chemotherapy, autophagy-competent, but not autophagy-deficient, cancers attracted
dendritic cells and T lymphocytes into the tumor bed. Suppression of autophagy inhibited the release
of adenosine triphosphate (ATP) from dying tumor cells. Conversely, inhibition of extracellular
ATP-degrading enzymes increased pericellular ATP in autophagy-deficient tumors, reestablished the
recruitment of immune cells, and restored chemotherapeutic responses but only in immunocompetent
hosts. Thus, autophagy is essential for the immunogenic release of ATP from dying cells, and increased
extracellular ATP concentrations improve the efficacy of antineoplastic chemotherapies when

autophagy is disabled.

respond to chemotherapy with anthracy-

clines or oxaliplatin much more efficiently
when they grow in syngenic immunocompetent
mice than in immunodeficient hosts (/, 2). Sim-
ilarly, clinical studies indicate that severe lym-
phopenia negatively affects the chemotherapeutic
response of solid cancers (3), and immune de-
fects are negative predictors of the response to
chemotherapy with anthracyclines or oxaliplatin
(2, 4, 5). Apparently, some successful chemo-

Transplantable or primary murine cancers

therapeutics can induce a type of tumor cell stress
and death that is immunogenic (6-8), implying
that the patient’s dying cancer cells serve as a
therapeutic vaccine that stimulates an antitumor
immune response, which in turn can control re-
sidual cancer cells (9, /0). Immunogenic cell death
is characterized by the preapoptotic exposure
of calreticulin (CRT) on the cell surface (17), post-
apoptotic release of the chromatin-binding pro-
tein high mobility group B1 (HMGB1) (2), and
secretion of adenosine triphosphate (ATP) (4).
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