A reanalysis of McGurk data suggests that audiovisual fusion in speech perception is subject-dependent

Jean-Luc Schwartz

Department of Speech and Cognition/Institut de la Communication Parlée, GIPSA-Lab, UMR 5216, CNRS, Grenoble University, 38402 Saint Martin d’Hères Cedex, France

(Received 21 November 2008; revised 21 December 2009; accepted 22 December 2009)

Audiovisual perception of conflicting stimuli displays a large level of intersubject variability, generally larger than pure auditory or visual data. However, it is not clear whether this actually reflects differences in integration per se or just the consequence of slight differences in unisensory perception. It is argued that the debate has been blurred by methodological problems in the analysis of experimental data, particularly when using the fuzzy-logical model of perception (FLMP) [Massaro, D. W. (1987). Speech Perception by Ear and Eye: A Paradigm for Psychological Inquiry (Laurence Erlbaum Associates, London)] shown to display overfitting abilities with McGurk stimuli [Schwartz, J. L. (2006). J. Acoust. Soc. Am. 120, 1795–1798]. A large corpus of McGurk data is reanalyzed, using a methodology based on (1) comparison of FLMP and a variant with subject-dependent weights of the auditory and visual inputs in the fusion process, weighted FLMP (WFLMP); (2) use of a Bayesian selection model criterion instead of a root mean square error fit in model assessment; and (3) systematic exploration of the number of useful parameters in the models to compare, attempting to discard poorly explicative parameters. It is shown that WFLMP performs significantly better than FLMP, suggesting that audiovisual fusion is indeed subject-dependent, some subjects being more “auditory,” and others more “visual.” Intersubject variability has important consequences for theoretical understanding of the fusion process, and re-education of hearing-impaired people. © 2010 Acoustical Society of America. [DOI: 10.1121/1.3293001]

PACS number(s): 43.71.An, 43.71.Rt [KWG]

I. INTRODUCTION

When a public demonstration of the McGurk effect (McGurk and MacDonald, 1976) is presented to visitors or students, there appears a large variability in the subjects’ audiovisual (AV) responses, some seeming focused on the auditory (A) input, others more sensitive to the visual (V) component and to the McGurk illusion. The existence of possible differences in fusion would have important consequences in both theoretical and practical terms. However, it stays hotly debated, considering that subjects could actually differ in pure auditory and visual performance rather than in fusion per se. In the following, the major elements of discussion and disagreement will be reviewed. Then it will be suggested that the debate has been largely blurred by methodological problems. A way out of these problems will be proposed, which will constitute the core of the present paper. The objective is actually twofold: present a methodological framework for analysis of audiovisual speech perception data and show that this framework confirms that there are indeed interindividual differences in the fusion process.

A. Interindividual differences in audiovisual fusion in the speech perception literature

The possibility that subjects could put more or less “weight” on the auditory or visual inputs is certainly not new. It was, for example, the focus of a paper by Seewald et al. (1985), suggesting that there was a “primary modality for speech perception,” either auditory or visual. This hypothesis has received less attention since the work by Massaro and colleagues in the framework of the development of the “fuzzy-logical model of perception” (FLMP). Indeed, a central assumption of the model is that, apart from possible differences in auditory or visual perception, the fusion mechanism per se is exactly the same for all subjects (Massaro, 1987, 1998). The mechanism, actually a multiplicative process applied to fuzzy-logical levels of confidence provided by audition and vision on all possible answers, is considered as being an optimal process, in the sense that “all sources contribute to a decision but more ambiguous sources are given less of a say in the decision” (Massaro, 1998, p. 115).

A repeated claim by Massaro and colleagues is hence that all subjects are “optimal integrators” and combine auditory and visual evidence for available categories all exactly in the same multiplicative way. Any difference in the output of the audiovisual speech perception process would be only due to differences in auditory and visual processing and unisensory category tuning between subjects.

The hypothesis of a universal and optimal fusion mechanism remains controversial, and was the object of a series of experimental and modeling work by Grant and Seitz (1998), who claimed that, even when unimodal skill levels are taken into account, large differences in individuals’ AV recognition scores persist which “might be attributable to differing efficiency in the operation of a perceptual process that integrates auditory and visual speech information” (p. 2438). The debate further continued between Massaro and Cohen (2000) and Grant (2002). Actually, the question of possible intersubject differences in AV integration, apart from being theoreti-
cally challenging, has important potential practical applications. Indeed, if some subjects integrate the audio and visual information less efficiently than others, the focus in a rehabilitation process (in case of hearing impairment for example) should be put on the training of integration, rather than just the training of auditory or visual abilities (Grant and Seitz, 1998). Incidentally, Rouger et al. (2007) claim to have found that cochlear implanted subjects are better at integrating the sound and face of a speaker’s utterances than normal hearing subjects.

In the last 15 years, a number of studies have shown substantial individual variability in AV speech recognition. Sekiyama and Tokhura (1991) showed that McGurk fusion illusions were reduced in Japanese compared with English participants. Since then, several studies have investigated comparative language effects for audiovisual speech integration: English vs Japanese (Sekiyama and Tokhura, 1993; Kuhl et al., 1994), English vs Japanese vs Spanish (Massaro et al., 1993), Spanish vs German (Fuster-Duran, 1995), or German vs Hungarian (Grassegger, 1995). A number of differences have been reported. Some of them come from the nature of the stimuli, differing from language to language. However, there remain differences between linguistic groups perceiving the same stimuli. Sekiyama and Tokhura (1993) claimed that they reflect variations in the weight different linguistic communities would attribute to the visual input in the integration process. They suggested that the Japanese community could make less use of the visual input because of a cultural difference, namely, that “it may be regarded as impolite in Japan to look at someone’s face” (p. 442). On the other hand, Massaro et al. (1993) and Kuhl et al. (1994) interpreted these differences as coming from variations in the inventory of linguistic prototypes rather than from social or cultural variations in the tuning of the audiovisual process. Indeed, Massaro et al. (1993) showed that their own data displaying different audiovisual perception of conflicting AV stimuli by English, Spanish, and Japanese subjects, could be perfectly fitted by FLMP. In the FLMP fit, the differences between English, Spanish, and Japanese subjects cannot be due to differences in fusion: they are totally due to differences in the unimodal categorization responses.

More recently, Sekiyama et al. (2003) showed that the very early ability to fuse auditory and visual inputs, displayed by a McGurk effect appearing as soon as 4 months in infants’ speech perception (Burnham and Dodd, 1996, 2004; Rosenblum et al., 1997), was followed by a developmental evolution of AV fusion after 6 years, and largely between 6 and 8 (Sekiyama and Burnham, 2004) for English children. This increase could be the result of a learning process, and it seems to be blocked in Japanese children, hence resulting in the smaller role of the visual input in AV perception previously described. Once again, however, it could be argued that this developmental pattern is just indicative of a development of unimodal auditory and visual categories rather than of integration per se. Basically, children (and particularly English ones) would be progressively more and more accurate in their perception of visual categories, hence the increase in AV performance. In this reasoning, fusion would stay perfectly stable whatever the age, i.e., multiplicative and optimal, in Massaro’s sense.

Finally, gender differences in audiovisual fusion have been suggested in various papers, female subjects presenting a higher level of audiovisual performance and a greater level of visual influence on auditory speech (Irwin et al., 2006; Sterlinikov et al., 2009), possibly linked to differences in the cortical networks involved, with less left lateralization in females compared with males (Pugh et al., 1996; Jaeger et al., 1998).

B. A methodological caveat: the 0/0 problem in FLMP testing

In a recent paper, Schwartz (2006) displayed a severe technical problem in the comparison of FLMP with other models when using corpora containing McGurk data. Indeed, in the case of conflicting inputs, the audio and visual stimuli provide at least one quasinull probability in each possible category, and the multiplicative process implied by the FLMP leads to AV predictions equal to 0/0, which is indeterminate. Therefore, any audiovisual response can be fitted by the FLMP. The consequence is double. First, since FLMP may predict any pattern of response in the McGurk case, fitting McGurk data with FLMP cannot help determine if variation in AV perception is actually due to differences in unimodal behavior or in AV fusion. Second, the overfitting ability of the FLMP with discrepant A and V stimuli might well contaminate the global root mean squared error (RMSE) criterion systematically used when FLMP is compared with other models. For these reasons, it seems more appropriate to use a Bayesian model selection (BMS) criterion, which intrinsically accounts for any overfitting problem (MacKay, 1992; Pitt and Myung, 2002; Schwartz, 2006).

In this context, the present paper aims at reconsidering the invariant vs subject-dependent audiovisual fusion problem, in a sound BMS framework. A classical test corpus of audiovisual consonant-vowel stimuli extensively studied by Massaro (1998) will provide a basis for assessing possible discrepancies in audiovisual fusion between subjects, independent of any linguistic or developmental effect. For this aim, weighted FLMP (WFLMP), a variant of FLMP explicitly incorporating subject-dependent weights of the audio and visual inputs in integration, will be compared with FLMP. This will provide the opportunity to use both BMS and RMSE criteria on these two models. This will also lead to a principled methodology for comparing audiovisual speech perception models on a given set of data. This methodology uses a so-called Laplace approximation of BMS, called BMSL, together with a systematic assessment of the number of really useful parameters in the models to compare, relying on the BMS ability to deal with variations in the number of degrees of freedom in these models.

Section II will recall the experimental material and provide a detailed description of the proposed methodology, together with the models to compare, and the assessment criteria. In Sec. III, the obtained results will be presented, before a discussion in Sec. IV.
II. METHODOLOGY

A. Experimental material: The UCSC corpus of CV audiovisual discrepant stimuli

The corpus considered here has been extensively used for comparing audiovisual fusion models in speech perception (Massaro, 1998). This corpus crosses a synthetic five-level audio /ba/-/da/ continuum with a synthetic video similar continuum. The 10 unimodal (SA, 5V) and 25 bimodal (AV) stimuli were presented for /ba/ vs /da/ identification to 82 subjects, with 24 observations per subject. The responses are kindly made available by Massaro and colleagues on their website (http://mambo.ucsc.edu/ps1/8236/).

B. Model comparison

1. RMSE and corrected RMSE

Let us consider a given speech perception experiment consisting in the categorization of speech stimuli involving n_e experimental conditions E_j and in each condition, n_c possible responses corresponding to different phonetic categories C_i. In most papers comparing models in the field of speech perception, the tool used to compare models is the “fit” estimated by the RMSE, computed by taking the squared distances between observed and predicted probabilities of responses, averaging them over all categories C_i and all experimental conditions E_j and taking the square root of the result

$$\text{RMSE} = \left[\frac{1}{n_e n_c} \sum_{E_j, C_i} (p_{E_j}(C_i) - p_{E_j}(C_i))^2 \right]^{1/2}$$

(observed probabilities are in lower case and predicted probabilities in upper case throughout this paper).

Considering that two models M_A and M_B might differ in their number of degrees of freedom, Massaro (1998) proposed to apply a correction factor $k/(k-f)$ to RMSE, with k the number of data and f the number of degrees of freedom of the model (p. 301). This provides a second criterion:

$$\text{RMSE}_{\text{cor}} = k/(k-f) \left[\frac{1}{n_e n_c} \sum_{E_j, C_i} (p_{E_j}(C_i) - p_{E_j}(C_i))^2 \right]^{1/2}.$$

(2)

2. BMSL

If D is a set of k data d_i, and M a model with parameters Θ, the fit may be derived from the logarithm of the maximum likelihood of the model considering the data set, that is the value of Θ maximizing $L(\Theta|M) = p(D|\Theta,M)$. However, comparing two models by comparing their best fits means that there is a first step of estimation of these best fits, and it must be acknowledged that the estimation process is not error-free. Therefore, the comparison must account for this error-prone process, which is done in Bayesian model selection by computing the total likelihood of the model knowing the data. This results in integrating likelihood over all model parameter values. Taking the opposite of the logarithm of total likelihood leads to the so-called BMS criterion that should be minimized for model evaluation (MacKay, 1992; Pitt and Myung, 2002):

$$\text{BMS} = - \log \int L(\Theta|M)p(\Theta|M)d\Theta.$$

(3)

The computation of BMS through Eq. (3) is complex. It involves the estimation of an integral, which generally requires use of numerical integration techniques, typically Monte Carlo methods (e.g., Gilks et al., 1996). However, Jaynes (1995) (Chap. 24) proposed an approximation of the total likelihood in Eq. (9), based on an expansion of $\log(L)$ around the maximum likelihood point θ:

$$\log(L(\Theta)) \equiv \log(L(\theta)) + 1/2(\theta - \Theta)[\frac{\partial^2 \log(L)}{\partial \Theta^2}]_\theta(\Theta - \theta),$$

(4)

where $[\frac{\partial^2 \log(L)}{\partial \Theta^2}]_\theta$ is the Hessian matrix of the function $\log(L)$ computed at the position of the parameter set θ providing the maximal likelihood L_{max} of the considered model. This leads to the so-called Laplace approximation of the BMS criterion (Kass and Raftery, 1995):

$$\text{BMSL} = - \log(L_{\text{max}}) - m/2 \log(2\pi) + \log(V) - 1/2 \log(\det(\Sigma)),$$

(5)

where V is the total volume of the space occupied by parameters Θ, m is its dimension, which is the number of free parameters in the considered model, and Σ is defined by

$$\Sigma^{-1} = -[\frac{\partial^2 \log(L)}{\partial \Theta^2}]_\theta.$$

(6)

The preferred model considering the data D should minimize the BMSL criterion. There are, in fact, three kinds of terms in Eq. (5). First, the term $-\log(L_{\text{max}})$ is directly linked to the maximum likelihood of the model, more or less accurately estimated by RMSE in Eq. (1): the larger the maximum likelihood, the smaller the BMSL criterion. Then, the two following terms are linked to the dimensionality and volume of the considered model. Altogether, they result in handicapping models that are too “large” (that is, models with a too high number of free parameters) by increasing BMSL. Finally, the fourth term provides a term favoring models with a large value of $\det(\Sigma)$. Indeed, if $\det(\Sigma)$ is large, the determinant of the Hessian matrix of $\log(L)$ is small, which expresses the fact that the likelihood L does not vary too quickly around its maximum value L_{max}. This means that the fit provided by the model around its maximum likelihood point is stable: exactly the contrary of FLMP with McGurk data, since its overfitting around the maximum likelihood point is stable: exactly
sons. BMSL has the advantage of being easy to compute and to interpret in terms of fit and stability. Furthermore, if the amount of available data is much higher than the number of parameters involved in the models to compare (that is, the dimension \(m \) of the \(\Theta \) space), the probability distributions become highly peaked around their maxima, and the central limit theorem shows that the approximation in Eqs. (4) and (5) becomes quite reasonable (Walker, 1967). Kass and Raftery (1995) suggested that the approximation should work well for a sample size greater than 20 times the parameter size \(m \) (see Slate, 1999, for further discussions about assessing non-normality).

3. Estimating the “true” number of degrees of freedom in a model

The number of model parameters in most model comparison studies in AV speech perception is generally kept fixed to the “natural number of degrees of freedom” of the model, that is, the number of free parameters necessary to implement the model in its most extensive definition. Care is generally taken to check that the models have basically the same number of degrees of freedom; otherwise the RMSE correction described previously could be applied. Notice that the same number of degrees of freedom; otherwise the RMSE is estimated from the mean value taken by the parameter in the observation of experimental data guided the selection of the model parameters involved in the models to compare. This may be done on a statistical objective basis, and it will also be the case here—it could be interesting to test if some parameters could not, in fact, be similar from one subject to the other. The same could be done from one experimental condition to the other. Therefore, various implementations of the models to compare will be systematically tested, with a progressively increasing number of fixed parameters, in order to attempt to determine the true number of degrees of freedom of the model, that is, the number of free parameters really useful, and providing the highest global likelihood of the model knowing the data. Our basic assumption is that it is under the condition of true number of degree of freedom that models can be really assessed and compared in sound conditions.

Decreasing the number of free parameters raises two problems. First, the parameters to fix must be adequately selected. This may be done on a statistical objective basis, for example, through principal component analysis techniques, but this results in combinations of parameters difficult to interpret. A heuristic approach was preferred in which the observation of experimental data guided the selection of possible parameters to be kept fixed from one subject to another. The second problem is to estimate the value of the parameters being kept fixed. This was done through a Round Robin technique, in which a given parameter for one subject is estimated from the mean value taken by the parameter in the whole corpus excluding the current subject from the computation. This technique, classical and computationally simple, prevents from any artificial introduction of the current data to model inside the “fixed” parameter used to model the data in a circular approach, which would be inappropriate.

C. Models

Two models were compared, FLMP and a variant with weighted contribution of the auditory and visual inputs in the integration, WFLMP. For each corpus, each model (including the variants associated with the decrease in the number of degrees of freedom) was fitted to the data separately for each subject. This enabled us to compute both mean values of the selected criteria, averaged over all subjects, and to assess differences between models by applying Wilcoxon signed-rank tests over the compared criteria for each subject.

1. FLMP

In a speech perception task consisting in the categorization of auditory, visual, and audiovisual stimuli, the FLMP model may be defined as a Bayesian fusion model with independence between modalities, and the basic FLMP equation is

\[
P_{AV}(C_i) = P_A(C_i)P_V(C_i)\sum_j P_A(C_j)P_V(C_j),
\]

(7)

C_i and C_j being phonetic categories involved in the experiment, and \(P_A, P_V, \) and \(P_{AV} \) the model probability of responses respectively in the A, V, and AV conditions.

2. WFLMP

The weighted FLMP model, called WFLMP, is defined by

\[
P_{AV}(C_i) = P_A^{\lambda_A}(C_i)P_V^{\lambda_V}(C_i)\sum_j P_A^{\lambda_A}(C_j)P_V^{\lambda_V}(C_j),
\]

(8)

where \(\lambda_A \) and \(\lambda_V \) are subject-dependent factors used to weight the A and V inputs in the computation of the audiovisual responses estimated by \(P_{AV}(C_i) \) (see other introductions of weights inside FLMP in Schwarz and Massaro, 2001; or for a similar kind of weighted fusion model applied to speech recognition, in various implementations since Ajdoudani and Benoît, 1996; see a review in Teissier et al., 1999). For each subject, a lambda value is defined between 0 and 1, and \(\lambda_A \) and \(\lambda_V \) are computed from lambdas by: \(\lambda_A = \text{lambda}/(1 - \text{lambda}) \) and \(\lambda_V = (1 - \text{lambda})/\text{lambda}, \) with thresholds maintaining \(\lambda_A \) and \(\lambda_V \) between 0 and 1. Figure 1 shows how lambda controls the weights \(\lambda_A \) and \(\lambda_V \) and how this results in varying \(P_{AV} \) from a value close to \(P_A \) when lambda is close to 0, to a value close to \(P_V \) when lambda is close to 1, passing by a value identical to the FLMP prediction when lambda is set at 0.5, with \(\lambda_A \) and \(\lambda_V \) both equal to 1.
III. RESULTS

A. Analysis of individual experimental data

The UCSC corpus has been extensively used in AV speech perception model assessment, generally with a good fit using the FLMP and RMSE criterion (Massaro, 1998; see also Massaro et al., 2001, for an assessment of FLMP with a BMS criterion on this corpus). However, looking at the data, there seems to appear an effect not predicted by the FLMP, that is, interindividual differences in AV interaction. This is displayed in Fig. 2, showing two subjects with very close auditory and visual performances, although with quite different audiovisual responses. It seems that the weight of the visual modality is, respectively, high for the first one [Fig. 2(a)] and low for the second one [Fig. 2(b)]. Though the FLMP does not incorporate A and V weights, the fit is, however, quite acceptable (with RMSE values, respectively, 0.04 and 0.02 for these two subjects). This good fit is actually obtained because of the 0/0 instability: indeed, the FLMP simulation of unimodal data for the first subject is drawn toward slightly more ambiguous values for A responses and less ambiguous values for V responses [see Fig. 2(a)], while the inverse is done for the second subject [see Fig. 2(b)]. This is the indirect way the FLMP may decrease the importance of a modality in fusion, by slightly but consistently misfitting the unimodal data without introducing subjectspecific weights, and while keeping a very low RMSE value (a very good fit) because of the 0/0 problem (Schwartz, 2006). Such consistent misfits of unimodal data, if they happen in a significant number of cases, would indicate a problem in modeling. They should be taken into account in a BMS criterion, although they are almost undetectable in a RMSE criterion.

B. Selected degrees of freedom for FLMP and WFLMP

The first implementation of FLMP needs ten parameters for each subject, that is five values A_i=PA_i/(da_i) and five values V_j=PV_j/(da_j) for the five stimuli of each continuum. Since the WFLMP model needs one more parameter per sub-

FIG. 1. (Color online) Variations in weighting coefficients λ_A and λ_V (left) and predicted p_{AV} (right) as a function of the lambda parameter tuning fusion in WFLMP. When lambda is close to 0, the audio weight decreases toward zero, the video weight increases toward 1, and the modeled p_{AV} reaches a value close to p_A. Conversely, when lambda is close to 1, the audio weight increases toward 1, the video weight decreases toward zero, and the modeled p_{AV} reaches a value close to p_V. Notice that for a lambda value at 0.5, both audio and video weights are set to 1, which provides exactly the FLMP predictions. In this example, p_V is set to 0.2 and p_A to 0.8.

FIG. 2. (Color online) (a) Audio (top left), visual (top right), and audiovisual (bottom) data for subject 3 in UCSC corpus: data in solid lines and FLMP predictions in dotted lines. (b) Same as Fig. 2(a) for subject 18 in UCSC corpus.
Table 1. The five variants of FLMP and WFLMP. All fixed parameters are estimated by the Round Robin technique.

<table>
<thead>
<tr>
<th>No. of parameters per subject</th>
<th>Parameters for FLMP</th>
<th>Parameters for WFLMP</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>V1–V5, A1–A5</td>
<td>+lambda</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A5 fixed</td>
</tr>
<tr>
<td>6</td>
<td>V1, V3, V5, A2, A3, A4</td>
<td>+lambda</td>
</tr>
<tr>
<td></td>
<td>V2, V4 estimated by linear regression</td>
<td>A4 fixed</td>
</tr>
<tr>
<td>5</td>
<td>V1, V3, A2, A3, A4</td>
<td>+lambda</td>
</tr>
<tr>
<td></td>
<td>V2, V4, V5 estimated by linear regression</td>
<td>A4 fixed</td>
</tr>
<tr>
<td>4</td>
<td>V1, V3, A2, A3</td>
<td>+lambda</td>
</tr>
<tr>
<td></td>
<td>V2, V4, V5 estimated by linear regression</td>
<td>A2 fixed</td>
</tr>
<tr>
<td>3</td>
<td>V1, V3, A3</td>
<td>+lambda</td>
</tr>
<tr>
<td></td>
<td>V2, V4, V5 estimated by linear regression</td>
<td>V1 fixed</td>
</tr>
</tbody>
</table>

Subject, one parameter was removed by fixing the value of the parameter A5 (audio response for the fifth audio stimuli, higher than 0.99 in average) at a value equal to the mean of the value it takes for the other subjects.

To explain how the number of parameters was decreased, on Fig. 3 a sample of auditory and visual identification curves is displayed for 10 of the 82 subjects. In the audio results [Fig. 3(a)], the curves are all S-shaped from a value close to 0 to a value close to 1, with less variation on the sides (for A5, A1, and to a lesser extent A4 and A2). Therefore, it was attempted to fix these parameters, in this order, with the Round Robin procedure. In the visual curves [Fig. 3(b)], the configuration is different and suggests that it should be possible to describe these curves by estimating some values by a linear regression prediction on logit values of Vi, that is, log(Vi/(1−Vi)). For this aim, two linear regression predictions on logit values were defined, one predicting V2 and V4 from the parameters V1, V3, and V5, and the other predicting V2, V4, and V5 from the parameters V1 and V3. Altogether, this lead to five variants of the FLMP and WFLMP models, respectively, with 10, 6, 5, 4, and 3 free parameters per subject (Table 1).3

C. Modeling results

Figure 4 shows the results for the two models with their five free-parameter variants. For each case, means and standard deviations computed on the modeling results for the 82 subjects are presented.

With ten parameters per subject, the FLMP fit is good, with an average RMSE value at 0.051 (see Massaro, 1998, p. 64). Interestingly, the fit is significantly better for the WFLMP with the same number of free parameters, with an average RMSE value at 0.0445. RMSE then logically increases when the number of parameters decreases [Fig. 4(a)]. The portrait for RMSEcor is the same [Fig. 4(b)]. However, BMSL reaches a minimum for six parameters, both for FLMP and WFLMP [Fig. 4(c)]. In this variant of both models, A1 and A5 are fixed, together with A4 for WFLMP. V2 and V4 are estimated from V1, V3, and V5 by logit linear regression. For this optimal six-parameter implementation, there is a significant gain of WFLMP over FLMP (u=4.77, p<0.001).

In Fig. 5, the histogram of logarithms of estimated lambda values are plotted for all subjects for WFLMP with six parameters. It appears that the range is indeed large, with auditory subjects on the right of the 1-value and visual subjects on the left. Under a criterion of λA/λV values, respectively, higher than 1.5 or lower than 0.67 (1/1.5), there are 33 “audio” and 14 “visual” subjects, the remaining 35 being intermediary.

Figure 6 shows how WFLMP models the two subjects compared in Fig. 2. Typically, the auditory and visual fits are similar between subjects—as in the experimental data themselves—while the good fit of the differences between subjects in audiovisual values is due to large differences in the lambda values, as shown on Fig. 5. This confirms that subject (a) is rather visual (with a λA/λV ratio at 0.23) and subject (b) is rather auditory (with a λA/λV ratio at 3.89), as suggested by the data themselves.

IV. GENERAL DISCUSSION

Two topics are addressed in the present work. One concerns methodology for model comparison, which is of particular importance in audiovisual fusion, as evidenced by the very large number of controversies regularly arising in the domain. This also has implications for designing models for audiovisual fusion in speech perception. The second one concerns the invariant vs subject-dependent nature of audiovisual fusion and more generally the parameters able to intervene in fusion. These topics will be addressed one after the other.
A. An adequate methodology for comparing models

There are two important claims in our methodological approach. First, a local criterion such as RMSE, or its quasi-equivalent maximum likelihood criterion, can be inappropriate, particularly in cases involving models which have a tendency to overfit the data, e.g., with FLMP and McGurk data. A global BMS criterion is theoretically sounder, as has been discussed in a large number of papers, unfortunately not much acknowledged in the speech perception community. The local approximation provided by BMSL is simple to compute, easy to interpret, and efficient assuming that the number of experimental data points is sufficient. In the present paper, it appears that RMSE and BMSL converge on showing the superiority of WFLMP over FLMP for the McGurk data. But this is not systematically the case (see,...
e.g., Schwartz and Cathiard, 2004; Schwartz, 2006). Therefore, we suggest that any model comparison involving FLMP based on a RMSE criterion should be taken cautiously, and its conclusions should be considered as probably arguable unless a new evaluation based on Bayesian model selection is undertaken.

Second, varying the number of parameters in model assessment is very important. Of course, the difficulty is that there is much freedom in the strategies that can be proposed for this principled reduction. This should involve both a simple and intuitive approach, and a substantial number of variants to be able to assess the approximate number of really meaningful parameters for comparing models.

In fact, these two claims are related. Decreasing the number of parameters forces one to use a criterion able to take the size of the model parameter set into account. This is the case of BMS and its BMSL approximation, and not the case of RMSE, in which any correction is largely arbitrary. Variation in the number of parameters showed that there was indeed some redundancy in the ten free parameters per subject involved in FLMP for the present corpus, six appearing as a more plausible number of degrees of freedom (three for the visual input, three for the audio input). It is interesting to note that a reduced number of degrees of freedom provided a much larger difference in favor of WFLMP, compared with the complete set of ten parameters.

B. Audiovisual fusion models

The present paper is focused on FLMP for methodological reasons associated with its very frequent use in publications, and its excessive adaptability to McGurk data leading in several cases to inappropriate or mistaken analyses of experimental results. However, FLMP is actually neither weakened nor strengthened by the present paper.

It is not weakened since we proposed both an adequate method for testing it in safer conditions—through the BMS framework—and a possible variant with subject-specific modulation—WFLMP—which could provide the route for new developments more in line with evidence that fusion is subject-dependent. Massaro and colleagues already introduced both ingredients in some of their work, but the present paper shows that they are actually required in any further use of FLMP in speech perception, particularly (but not exclusively) in experiments involving incongruent stimuli, as in the McGurk effect.

It is not strengthened either, since the present analysis could have been applied to other fusion models, such as Braida’s pre- and postlabeling models (Braida, 1991; see also Grant and Seitz, 1998; Grant, 2002), with quite probably the same conclusions. Actually, a number of models have been recently developed explicitly taking into account the possibility that one modality could be favored in the fusion process. This is the point addressed by Ernst and colleagues with their maximum likelihood framework according to which integration would be “optimal” in leading to the largest possible reduction in the variance of the multisensory output. This is achieved by adaptively weighting modalities in relation to their reliability (or variance) for the considered task (Ernst and Banks, 2002; Ernst and Bulthoff, 2004; Denève and Pouget, 2004; Körding et al., 2007 and a precursor use of this concept in audiovisual speech perception models in Robert-Ribes et al., 1995). This “optimal integration” view is different from the optimal Bayesian fusion of decisions implemented in FLMP, since it occurs at a precategorical level.

C. What drives audiovisual fusion in speech perception?

The major theoretical output of the present paper is that it clearly shows that fusion is subject-dependent. There are indeed large intersubject differences in audiovisual fusion for speech perception, with various groups of subjects, some being more auditory, and others more visual. Many papers mention such a large variability in audiovisual performance. However, it was always unclear whether this was due to differences in unisensory performance or multisensory integration. The present analysis strongly reinforces the second view.

This opens the route to a number of questions about the fusion mechanism itself. Differences between subjects in the McGurk paradigm could result from a general “orientation” of a given subject toward one or the other modality for individual reasons (specific or related to, e.g., culture, language, sex, or age). They could also be the consequence of properties of the task or the experimental situation, which could have driven the subject toward one rather than the other stimulus input in a bimodal task.

1. Interindividual factors

It could well be the case that some subjects rely more on audition and others more on vision, and that they weight audiovisual fusion accordingly (see Giard and Peronnet, 1999). Hence, it could be assumed that there is for a given subject a general trend to favor one modality over another one, whatever the task. This should result in future studies comparing audiovisual fusion in various speech and non-speech tasks, searching for individual portraits stable from one task to the other. These different behaviors could also be associated with differences in neuroimaging experiments, in terms of the involved cortical networks and of the quantitative role of each part in the global portrait.

We have already discussed in the Introduction possible factors that likely to play a role in sensor fusion: some languages could use the visual input more than others (e.g., English more than Japanese), female subjects could use it more than males, and adults more than children. Notice that the methodology employed here could be used to reanalyze all data relevant for these claims, in order to carefully disentangle the role of unimodal and multimodal factors in the corresponding studies.

This opens an important question, which is to know to what extent the weighting process can be dynamically modified during the subject’s life. We have already mentioned the developmental evolution leading to an increase in the role of the visual input (see e.g., Sekiyama et al., 2003; Sekiyama and Burnham, 2004). Recent data by Schorr et al. (2005)
suggested that there is a critical period for the development of audiovisual fusion in speech perception, before 2.5 years. In the case of a perturbation of one or the other modality, related to age or handicap, the question becomes to know if a subject can, voluntarily or through any reeducation means, selectively reinforce the weight of the most efficient modality.

In a recent study, Rouger et al. (2007) claimed that this could indeed be the case, hearing impaired subjects equipped with cochlear implants displaying, in their terms, “a greater capacity to integrate visual input with the distorted speech signal” (p. 7295). Actually, these data should be considered with caution, being a possible case of unimodal effects interpreted as bimodal. Indeed, Rouger et al. compared three populations of subjects: hearing impaired subjects equipped with cochlear implants (CIs), normal hearing subjects with audition degraded by noise (NHN), and normal hearing subjects presented with noise-band vocoder speech degrading audition in a way supposed to mimic the cochlear implant (NHV). They showed that for a similar level of audio performance, the audiovisual recognition is larger for CI than for NHV, NHN being in the middle. Two factors could be, in their view, responsible for this pattern: differences in the visual performance and in integration per se. A modeling approach leads them to claim that while the global visual scores are actually better in CI compared with NHN and NHV, there would be an additional gain in CH compared with NHV, hence the claim about a “greater capacity to integrate visual input with the distorted speech signal.” Notice that integration efficiency would be as high in NHN as in CH according to their analysis. However, careful inspection of auditory confusion matrices for NHV and NHN, available in Rouger, 2007, shows that the structure of these matrices is quite different. Importantly, the transmission of the voicing mode was poorer in speech degraded with noise-band vocoder (NHV) than with white noise (NHN), suggesting that there could be a poorer complementarity in the audio and visual inputs in NHV, logically resulting in lower audiovisual scores. Differences in audiovisual performance would hence result from the structure of the unimodal inputs (being less complementary for normal hearing subjects presented with noise-band vocoder speech) rather than from integration per se. Actually, in this case, a study based on WFLMP and BMS would probably not reveal any discrepancy in integration between impaired subjects equipped with cochlear implants (CI) and normal hearing subjects (NHV and NHN).

2. Intraindividual factors

Finally, it is quite possible that the weight of one modality depends on the experimental situation per se. First, stimuli themselves could possibly drive the weighting factor. In a review of intersensory interactions, Welch and Warren (1986) proposed “modality precision” or “modality appropriateness” as a key factor in explaining which modality should dominate intersensory judgments. Evidence for the role of reliability in audiovisual fusion for speech perception can be found in the study by Lisker and Rossi, 1992 on the auditory, visual, and audiovisual identification of vocalic rounding. Careful inspection of their data shows that although auditory identification seems in some cases quite accurate, there is a systematic trend for putting more weight in the visual modality within audiovisual data, as if the subjects “knew” that their eye was better than their ear at this particular task. Conversely, Robert-Ribes et al. (1998) on their study of audiovisual vowel perception in noise reported that with a very high level of noise, some subjects consistently select a given response (e.g., [ø]) for all vowels in noise in the auditory modality, which could lead in a model as FLMP to a large probability of response of this category in the audiovisual modality. However, this is not the case, showing that subjects know that the auditory modality is not reliable at high levels of noise and hence discards it almost completely from the fusion process.

Second, the experimental conditions could lead to enhance or decrease the role of one modality in the fusion process. Attentional mechanisms should play a role at this level. Actually, while it had been initially claimed since McGurk and MacDonald, 1976 that the McGurk effect was automatic and not under the control of attention, it appeared later that the instruction to attend more to audition or to vision might bias the response (Massaro, 1998). A recent set of experiments by Tiippana et al. (2004) showed that if the attention is distracted from the visual flow, the role of the visual input seems to decrease in fusion, with less McGurk effect. Notice that the authors themselves attempted to simulate their data with FLMP and argued that the good fit of their data by a model claiming that fusion is automatic appeared as “a paradox” (p. 458). Actually, reanalysis of their data in a BMS framework with a weighted FLMP suggests that there are indeed attentional factors intervening in fusion itself, independent of unimodal effects (Schwartz and Tiippana, in preparation). This is confirmed by a number of recent experiments showing the possibility to modulate the McGurk effect based on manipulations of attention (e.g., Alsius et al., 2005, 2007), although here again, a precise analysis of experimental results in a BMS framework could provide an adequate control for disentangling unimodal from multimodal factors.

V. CONCLUSION

The present work proposed a new methodology for comparatively assessing models of audiovisual speech perception. This methodology is based on both the use of a Bayesian model selection criterion approximated in a computationally simple way (BMSL) and on a systematic variation in the number of degrees of freedom of the models to assess, in order to reveal the “true” number of parameters in a given model for a given task. The comparison of FLMP with a variant with auditory and visual weights varying from one subject to another (WFLMP) leads to the conclusion that weights are indeed variable, and hence that audiovisual integration seems subject-dependent.

This could have important consequences in future studies about audiovisual speech perception. First, from a methodological point of view, it suggests that studies on audiovisual speech perception should consider these differences and possibly separate experimental groups into “auditory” or “vi-
ual” subgroups based on such criteria as McGurk performance. Second, from an audiological point of view, this indicates that subjects should be assessed based on their audiovisual fusion abilities, and considered differently—in terms of reeducation and practice—depending on whether they are more auditory or more visual in their behavior.

1In the following, bold symbols deal with vectors or matrices, and all optimizations are computed on the model parameter set Θ.

2The interpretation of the term $\log(V)$ is straightforward and results in handicapping large models by increasing BMSL. The term $m/2 \log(\pi)$ comes more indirectly from the analysis and could seem to favor large models. In fact, it can only decrease the trend to favor small models over large ones.

3It could seem paradoxical to maintain the number of free parameters similar for each subject, while attempting to show interindividual differences. This is not the case actually. The principle is to freeze as much as possible the structure of the model for all subjects, in order to let the differences appear in an objective way.

