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Abstract Optimal filtering of noisy voltage signals
on dendritic trees is a key problem in computa-
tional cellular neuroscience. However, the state vari-
able in this problem—the vector of voltages at every
compartment—is very high-dimensional: realistic mul-
ticompartmental models often have on the order of
N = 104 compartments. Standard implementations of
the Kalman filter require O(N3) time and O(N2) space,
and are therefore impractical. Here we take advan-
tage of three special features of the dendritic filtering
problem to construct an efficient filter: (1) dendritic
dynamics are governed by a cable equation on a tree,
which may be solved using sparse matrix methods in
O(N) time; and current methods for observing den-
dritic voltage (2) provide low SNR observations and (3)
only image a relatively small number of compartments
at a time. The idea is to approximate the Kalman equa-
tions in terms of a low-rank perturbation of the steady-
state (zero-SNR) solution, which may be obtained in
O(N) time using methods that exploit the sparse tree
structure of dendritic dynamics. The resulting methods
give a very good approximation to the exact Kalman
solution, but only require O(N) time and space. We
illustrate the method with applications to real and
simulated dendritic branching structures, and describe
how to extend the techniques to incorporate spatially
subsampled, temporally filtered, and nonlinearly trans-
formed observations.
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1 Introduction

The problem of understanding dendritic computation
remains a key open challenge in cellular and com-
putational neuroscience (Stuart et al. 1999; Spruston
2008; Sjostrom et al. 2008). The major difficulty is
in recording physiological signals (especially voltage)
with sufficient spatiotemporal resolution on dendritic
trees. As pointed out in Morse et al. (2001), Wood
et al. (2004), Huys et al. (2006), if we are given the
full spatiotemporal voltage signal on the dendritic tree,
then simple, direct statistical methods allow us to infer
many biophysical quantities of interest, including pas-
sive cable parameters (e.g., the axial resistance at each
point on the tree), active properties (e.g., the spatial
membrane density distribution of voltage-gated chan-
nels), and in some cases even time-varying information
(e.g., synaptic weights and presynaptic input conduc-
tances (Cox 2004; Paninski and Ferreira 2008; Paninski
et al. 2009)). Unfortunately, multiple-electrode record-
ings from dendrites are quite technically challenging,
and provide spatially-incomplete observations (Stuart
and Sakmann 1994; Cox and Griffith 2001; Cox and
Raol 2004; Bell and Craciun 2005; Petrusca et al. 2007),
while high-resolution imaging techniques provide more
spatially-complete observations, but with significantly
lower signal-to-noise (Djurisic et al. 2004; Sacconi et al.
2006; Araya et al. 2006; Palmer and Stuart 2006; Go-
bel and Helmchen 2007; Vucinic and Sejnowski 2007;
Canepari et al. 2007; Djurisic et al. 2008).
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One avenue for extending the reach of these
currently available methods is to develop statistical
techniques for optimally combining, filtering, and de-
convolving these noisy signals. As argued in Huys
and Paninski 2009, state-space filtering methods are
attractive here, since these methods allow us to quite
transparently incorporate 1) realistic, spatially-complex
multicompartmental models of dendritic dynamics
and 2) time-varying, heterogeneous observations (e.g.,
spatially-scanned multiphoton imaging data) into our
filtering equations.

The problem is that the time-varying state vec-
tor in this problem—which includes, at least, the
vector of voltages at every compartment—is very
high-dimensional: realistic multicompartmental models
often have on the order of N ∼ 104 compartments.
Standard implementations of state-space filter methods
(e.g., the Kalman filter) require O(N3) time and O(N2)

space, and are therefore impractical for applications to
large dendritic trees. (Note that the analyses in Huys
and Paninski 2009 were restricted to relatively low-
dimensional systems.)

However, we may take advantage of three special
features of the dendritic filtering problem to construct
efficient filtering methods. First, dendritic dynamics are
governed by a cable equation on a tree, which may be
solved using symmetric sparse matrix methods in O(N)

time (Hines 1984). Second, current methods for imag-
ing dendritic voltage provide low SNR observations,
as discussed above. Finally, in typical experiments we
record only a few image observations (n < 100 or so
coarse pixels) at a time. Taken together, these special
features allow us to approximate the Kalman equations
in terms of a low-rank perturbation of the steady-state
(zero-SNR) solution, which in turn may be obtained in
O(N) time using efficient matrix solving methods that
exploit the sparse tree structure of the dynamics1. The
resulting methods provide a very good approximation
to the exact Kalman solution, but only require O(N)

time and space. Some O(n3) operations are required;
thus n is the real bottleneck for this problem, not N.

We present a derivation of this fast tree Kalman
filter method in Section 2 below. We illustrate the

1Kellems et al. (2009) recently introduced powerful model-
reduction methods for decreasing the effective dimensionality
of the state vector in large dendritic voltage simulations; these
methods are distinct from the techniques we introduce in this
paper, but there are a number of interesting connections between
these methods which we will describe below.

method with some applications to simulated, spatially-
subsampled observations on large, real dendritic trees
in Section 3. Finally, in Section 4 we discuss a number
of key extensions of the basic method: in particular,
we can incorporate spatially blurred or scanned ob-
servations; temporally filtered observations and inho-
mogenous noise sources on the tree; “quasi-active”
membrane dynamics (Koch 1984; Manwani and Koch
1999; Coombes et al. 2007; Kellems et al. 2009); and
even in some cases nonlinear observations of the mem-
brane state. Conclusions and directions for future re-
search are discussed in Section 5.

2 Basic method

We begin by describing the state-space model em-
ployed here. Most of our analysis is based on a sim-
ple linear-Gaussian (Kalman) model for the noisy
dynamics of the dendritic voltage and for the observed
data (though we will consider more general nonlin-
ear observations in Section 4.3 below). This linear-
Gaussian model is of course a crude approximation,
but serves as a reasonable starting point for under-
standing subthreshold (non-spiking) passive dynamics
along dendritic trees; see Huys and Paninski (2009) for
further background and discussion. We take the state
vector here to include the vector of voltages on the full
dendritic tree: if we have broken up the tree into N
compartments, then our hidden state Vt has dimension-
ality N. (See Section 4.2 for a generalization.) For the
dynamics and observation equations, we take

Vt+dt = AVt + itdt + εt, εt ∼ N (0, σ 2dtI) (1)

yt = BtVt + ηt, ηt ∼ N (μ
y
t , Wt). (2)

Here A is an N × N matrix that implements the ca-
ble equation (as discussed further below), it is an N-
vector of known, possibly time-varying currents that
are injected into the compartments, and εt denotes a
Gaussian noise source that perturbs the cable equation
stochastically on each time step; N (μ, C) denotes a
Gaussian density of mean μ and covariance C. We
assume for now that the covariance of εt is proportional
to the identity matrix, though we may generalize this
assumption somewhat; see Section 4.2 below. Note that
it is fair to assume that membrane channel noise on
a dendrite is spatially uncorrelated (corresponding to
a diagonal covariance matrix for εt); synaptic noise,
on the other hand, may not be completely spatially
uncorrelated between compartments (due to branching
presynaptic axons forming multiple terminals on the
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observed postsynaptic cell), but modeling this source of
noise as uncorrelated as well seems to be a reasonable
first approximation. The noise is assumed to have zero
mean (with no loss of generality, due to the inclusion
of the it term) scaled by a standard deviation σ and a√

dt factor to ensure that the behavior of the model is
insensitive to the choice of the timestep dt.

The second equation determines the observed data
vector yt. Bt is a matrix that specifies how the observa-
tions are related instantaneously to the voltage vector;2

for example, in the case of a whole-cell recording with
a single electrode, Bt would be an N vector all of
zeros, except at the compartment whose voltage is be-
ing recorded, while in an imaging experiment Bt could
encode instantaneous optical blurring and sampling
transforming the N-element voltage vector Vt to the
n-pixel observed vector yt. More generally, we could
combine imaging and electrode observations, simply
by appending the corresponding rows of Bt. It is also
worth noting that our methods are sufficiently general
to allow the observation gain matrix Bt, offset mean
μ

y
t , and noise covariance Wt to vary with time; in fact,

even the dimensionality of yt could vary with time (e.g.,
in the case of scanning optical experiments). However,
neither A nor σ in the dynamics equation are allowed
to vary with time.

We will begin by discussing a forward Euler dis-
cretization for the cable equation matrix A:

Vt+dt(x) = Vt(x) + dt
(

− gxVt(x) + it(x)

+
∑

w∈N(x)

axw[Vt(w) − Vt(x)]
)

+ εt(x),

where Vt(x) denotes the voltage in compartment x at
time t, gx is the membrane conductance in compartment
x, it(x) and εt(x) represent the known current and noise
current, respectively, injected into compartment x at
time t, and N(x) is the set of nearest neighbors of
compartment x, i.e., the set of all compartments adjoin-
ing x;3 axw = awx denotes the intracellular conductance
between compartments x and w. The choice of forward

2In some cases it is overly crude to assume that the observations
yt are linearly and instantaneously related to the voltage Vt; we
will discuss extensions to this basic setup in Section 4 below.
3We will assume throughout this paper that the structural
anatomy of the dendritic tree (i.e., the neighborhood structure
N(x)) is fully known.

Euler here is for simplicity only, to keep the derivations
below as transparent as possible; we will discuss more
efficient implicit implementations of the discrete-time
cable equation in Section 2.1 below. The key fact about
the matrix A that implements this forward Euler prop-
agation is that it is symmetric and “tree-tridiagonal”
(also known as of “Hines” form Hines (1984)): all off-
diagonal elements Axw are zero unless the compart-
ments x and w are nearest neighbors on the dendritic
tree.

Now the focus of this paper is the efficient imple-
mentation of the Kalman filter recursion (Durbin and
Koopman 2001) for computing the forward mean

μt = E(Vt|Y1:t)

and covariance

Ct = Cov(Vt|Y1:t),

where Y1:t denotes all of the observed data {ys} up to
time t. The Kalman recursions are4:

Ct =
[(

ACt−dt AT + σ 2dtI
)−1 + BT W−1 B

]−1

μt = Ct

[(
ACt−dt AT + σ 2dtI

)−1
(Aμt−dt + itdt)

+ BT W−1
(
yt − μ

y
t

)]
.

We have suppressed the possible time-dependence of
B and W in the observation equation for notational
clarity; the extension of these equations to the general
case is standard (Durbin and Koopman 2001). Note
that the computation of the inverses in the recursion
for Ct requires O(N3) time in general, or O(N2) time
(via the Woodbury lemma) if the observation matrix B
is of low rank. In either case, O(N2) space is required
to store Ct.

These recursions are typically initialized with the
marginal equilibrium covariance (i.e., the steady-state
covariance of Vt in the absence of any observations):

C0 = lim
t→∞ Cov(Vt).

This equilibrium covariance C0 satisfies the discrete
Lyapunov equation (Brockwell and Davis 1991)

AC0 AT + σ 2dtI = C0. (3)

4For simplicity, we focus exclusively on the forward Kalman filter
recursion in this paper, to compute p(Vt|Y1:t), but note that all of
the methods discussed here can be applied to obtain the forward-
backward (Kalman smoother) density p(Vt|Y1:T ), for t < T.



J Comput Neurosci

This equation can be solved explicitly here: applying
the standard moving-average recursion (Brockwell and
Davis 1991) for the autoregressive model Vt leads to

C0 =
∞∑

i=0

Aicov(ε)
(

AT)i (4)

in general, and in our case, cov(ε) = σ 2dtI and AT =
A, so this reduces to the explicit solution

C0 = σ 2dt
∞∑

i=0

A2i = σ 2dt(I − A2)−1

whenever the dynamics matrix A is stable (all eigen-
values have absolute value less than one); for the cable
equation written in forward Euler form, A may be guar-
anteed to be stable when the timestep dt is sufficiently
small. Note that we do not represent C0 directly, as this
would require O(N2) storage and computation time. If
desired, we can compute the diagonal elements of C0

(corresponding to the marginal equilibrium variances
of the voltages at each compartment x) via the junction
tree algorithm (Jordan 1999; Weiss and Freeman 2001;
Shental et al. 2008), which is guaranteed to require
just O(N) time (and space) because the potential ma-
trix C−1

0 ∝ (I − A2) has a generalized tree structure:
[C−1

0 ]xw is nonzero only if compartments x and w are
nearest- or second-nearest neighbors.

With these preliminaries out of the way, we can
move on to the main contribution of this paper. The
basic idea is that, in low-SNR conditions, Ct should

be close to C0: i.e., we should be able to represent
the time-varying covariance Ct as a small perturbation
about the steady-state solution C0, in some sense. This
intuition is illustrated in Fig. 1. If we compare Ct to
C0 by computing the spectrum of C−1

0 Ct, we see that
only a small fraction of the eigenvalues of C−1

0 Ct are
significantly different from one. Thus C−1

0 Ct may be
approximated as a low-rank perturbation of the iden-
tity matrix, or equivalently, Ct may be approximated
as a low-rank perturbation of C0. The effective rank
of this perturbation will depend on the SNR of the
observations, specifically on the scale of the observation
noise W and on the dimensionality n of the observation
vector yt: the larger n is, or the smaller W is, the larger
the effective rank of I − C−1

0 Ct.
Thus, more concretely, we will approximate Ct as

Ct ≈ C0 + Ut DtU T
t ,

where Ut DtU T
t is a low-rank matrix we will update

directly. We can compute and update the perturba-
tions Ut and Dt in O(N) time, as discussed in detail
below. We should note that a great deal of related
work on low-rank approximations to Ct has appeared
in the engineering and applied math literature (Verlaan
1998; Treebushny and Madsen 2005; Gillijns et al. 2006;
Chandrasekar et al. 2008). However, we are not aware
of previous low-rank approximations specialized to the
case of low-SNR observations; note that, as discussed
above, there is no good justification for approximating
Ct itself as low-rank in this setting.
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Fig. 1 Ct is fairly close to C0; in particular, I − C−1
0 Ct has low

effective rank. N = 400. n = 20: each 20-th compartment is ob-
served. Observation noise set to be about 1/2 of the marginal
variance. This neuron had one branch; the branch point is visible
at about compartment 230. Left: true Ct (t is taken to be large
enough that Ct has converged to its limit, the solution of the

corresponding Riccati equation (Durbin and Koopman 2001)).
Middle: C0. Both C0 and C have been divided by max(C0), to
improve visibility. Right: spectrum of I − C−1

0 Ct. Note that the
magnitude of the eigenvalues falls sharply after the 20-th eigen-
value, and again after the 40-th eigenvalue; an approximation of
rank about 60 would seem to suffice for I − C−1

0 Ct here
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We now derive the O(N) low-rank updates for
μt, Ut, and Dt. First, write

(
ACt−dt AT +σ 2dtI

)−1

= (
A

[
C0 + Ut−dt Dt−dtU T

t−dt

]
AT + σ 2dtI

)−1

= (
C0+ AUt−dt Dt−dtU T

t−dt AT)−1;

the second equality follows from Eq. (3). Now apply the
Woodbury matrix lemma:

(
C0 + AUt−dt Dt−dtU T

t−dt AT)−1

= C−1
0 − C−1

0 AUt−dt

× (
D−1

t−dt + U T
t−dt ATC−1

0 AUt−dt
)−1

U T
t−dt ATC−1

0

= C−1
0 − Rt Qt RT

t ,

where we have abbreviated

Rt = C−1
0 AUt−dt

and

Qt = (
D−1

t−dt + U T
t−dt ATC−1

0 AUt−dt
)−1

.

Now plug this into the covariance update:

Ct =
[(

ACt−dt AT + σ 2dtI
)−1 + BT W−1 B

]−1

= [
C−1

0 − Rt Qt RT
t + BT W−1 B

]−1
.

We see that the update is of low-rank form. To apply
Woodbury again, we just need to simplify the term
−Rt Qt RT

t + BT W−1 B. Choose an orthogonal basis

Ot = orth([Rt B])

and then write

−Rt Qt RT
t + BT W−1 B = Ot Mt OT

t ,

with

Mt = −OT
t Rt Qt RT

t Ot + OT
t BT W−1 BOt.

Now, finally, apply Woodbury again:5

Ct = [
C−1

0 − Rt Qt RT
t + BT W−1 B

]−1

= [
C−1

0 + Ot Mt OT
t

]−1

= C0 − C0 Ot
(
M−1

t + OT
t C0 Ot

)−1
OT

t C0. (5)

We obtain Ut and Dt by truncating the SVD of the
expression on the right-hand side: in Matlab, for exam-
ple, do

[U ′, D′] = svd(C0 Ot
(
M−1

t + OT
t C0 Ot

)−1/2
, ‘econ′),

then choose Ut as the first k columns of U ′ and Dt as
the negative square of the first k diagonal elements D′,
where k is chosen to be large enough (for accuracy)
and small enough (for computational tractability). We
have found that a reasonable choice of k is as the least
solution of the inequality:
∑
i≤k

D2
ii ≥ c

∑
i

D2
ii; (6)

i.e., choose k to capture at least a large fraction c of
the variance in the right-hand term perturbing C0 in
Eq. (5). Figure 2 illustrates the accuracy of this approx-
imation for the full Ct.

Now the update for μt is relatively standard:

μt = Ct

[(
ACt−dt AT + σ 2dtI

)−1
mt + BT W−1

(
yt − μ

y
t

)]

= (
P−1

t + BT W−1 B
)−1 [

P−1
t mt + BT W−1

(
yt − μ

y
t

)]
= (

Pt − Pt BT(
W + BPt BT)−1

BPt
)

× [
P−1

t mt + BT W−1
(
yt − μ

y
t

)]
= mt − Pt BT(

W + BPt BT)−1
B [st + mt] + st,

where we have made the abbreviations

Pt = C0 + AUt−dt Dt−dtU T
t−dt AT , (7)

mt = Aμt−dt + itdt, (8)

and

st = Pt BT W−1
(
yt − μ

y
t

)
.

5It is well-known that the Woodbury formula can be numerically
unstable when the observation covariance W is small (i.e., the
high-SNR case). Our applications here concern the low-SNR
case instead, and therefore we have not had trouble with these
numerical instabilities. However, it should be straightforward to
derive a low-rank square-root filter (Howard and Jebara 2005;
Treebushny and Madsen 2005; Chandrasekar et al. 2008) to
improve the numerical stability here, if needed.
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Fig. 2 Ct is very well-approximated by C0 + Ut DtU T
t ; rank(U) =

39 here (chosen automatically by the algorithm using c = .999
in Eq. (6)). This tree has two branches (near compartments 150
and 300); otherwise simulation details are as in Fig. 1. U and

D denote the large-t limits of Ut and Dt, respectively. Left:
true Ct. Middle: C0 + U DU T . Right: error of the approximation,
Ct − (
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)
. As in Fig. 2, each panel has been divided by

max(C0), to improve visibility

Note that we update the mean μt first, then truncate Ut

and Dt. See Fig. 3 for an illustration.
To sum up, the key point is that all of the necessary

computations described above can be done in O(N)

time and memory. C0 need never be computed explic-
itly; instead, all we need is to multiply and divide by C−1

0
(by “divide,” we mean to solve equations of the form
C−1

0 v = r for the unknown vector v and known vector

r); the former can be done directly with a sparse matrix
multiply, and the latter by the junction tree algorithm,
or with, e.g., C−1

0 \r in Matlab (where C−1
0 is represented

as a sparse matrix), which has efficient elimination tree
code built in to its sparse matrix solver. The posterior
marginal variance [Ct]ii can also easily be computed
in O(N) time, to provide errorbars around μt: given
the diagonal of C0 (obtained via the junction tree

Fig. 3 The low-rank
approximation for μt is
similarly accurate. Top: true
μt (black) and approximate
μt (red) at an arbitrarily
chosen timepoint t (the
approximation quality
remains roughly constant
over the course of the trial;
data not shown). Bottom:
error of the approximation,
μt − μ

approx
t . As in Fig. 2,

each panel has been divided
by max(|μt|), to improve
visibility. Note that the error
is small; the details of μt here
are driven by noise and are
relatively unimportant in this
example. All parameters of
the simulation are as in Fig. 2
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algorithm, as discussed above), computing the diagonal
of Ct just requires us to sum the squared elements of
(−Dt)

1/2Ut.
We should also note that the method can be sped up

significantly in the special case that B is time-invariant:
in this case, Ct will converge to a limit (as an approx-
imate solution of the corresonding Riccati equation),
and we can stop recomputing Ut and Dt on every time
step. More generally, if Bt is time-varying in a periodic
manner (e.g., we are repeatedly sequentially scanning
over a region of dendrite in an imaging experiment),
then Ct will also be periodic, and we can store a period’s
worth of Ut and Dt in memory, instead of continuing to
recompute these on each timestep.

2.1 Incorporating implicit methods for solving
the cable equation

It is well-known that the forward Euler method de-
scribed above for solving the cable equation is unstable
for large values of adt (where a denotes the inter-
compartmental conductance) (Hines 1984; Press et al.
1992). The following “backwards Euler” (implicit) dis-
cretization is unconditionally stable and can therefore
be made much faster, by choosing a larger timestep dt:6

Vt+dt(x)= Vt(x)+dt
(
−gxVt+dt(x)

+
∑

w∈N(x)

axw[Vt+dt(w)−Vt+dt(x)]
)

.

We can write this in matrix-vector form as

Vt+dt = Vt + RVt+dt

for a suitable Hines matrix R, or in other words

Vt+dt = (I − R)−1Vt.

It is conceptually straightforward to replace A with
(I − R)−1 in our above derivations. Of course, (I −
R)−1 is not a sparse matrix, so we do not want to
make this substitution explicitly; instead, we will use
our efficient matrix-divide methods to solve for any
term of the form (I − R)−1v. In particular, we need to
multiply and divide by C0. We have

C−1
0 = 1

σ 2dt

[
I − A2] = 1

σ 2dt

[
I − (I − R)−2];

6We have suppressed the input current it(x) and noise εt(x) in
the following, for notational simplicity; inclusion of the input
current term does not significantly complicate the derivations in
this section, since the steady-state covariance C0 does not depend
on it(x).

(I − R)2 has tree-bandwidth two (i.e., matrix elements
corresponding to pairs of compartments which are fur-
ther than two nodes apart on the tree are zero), so we
can efficiently divide by this matrix. Similarly,

C0 = σ 2dt
[
I − A2

]−1

= σ 2dt
[
I − (I − R)−2

]−1

= σ 2dt
[
(I − R)2 − I

]−1
(I − R)2;

multiplying by (I − R)2 is clearly fast, and since [(I −
R)2 − I] has tree-bandwidth two, we can efficiently
divide by this matrix as well.

Second-order semi-implicit Crank-Nicholson meth-
ods (Hines 1984; Press et al. 1992) may be incorporated
in a similar fashion, though we have found the fully
implicit method described here to be adequate for our
needs, and have not pursued the Crank-Nicholson im-
plementation in depth.

At this point it is worth pausing to summarize
our approach. Given the reconstructed neuron file
(containing the neighborhood structure N(x)) and the
observed matrix of voltage-sensitive measurements Y,
the first step is to define the parameters in the dynamics
and observations Eqs. (1) and (2). Specifically, we must
form the dynamics matrix A, the input current vector
it, the observations matrix Bt, and the noise parameters
σ 2, Wt, and μ

y
t . The observation parameters Bt, Wt,

and μ
y
t are characteristics of the imaging apparatus,

and good initial estimates of these parameters should
therefore be available directly: as discussed above,
the i-th row of Bt specifies how the observed voltage
at each compartment is weighted and summed to
form the observations at the i-th pixel at time t, while
Wt, and μ

y
t specify the noise covariance and bias

of these observations, respectively. The dynamics
parameters A, it, and σ can also be initialized in
a straightforward manner: in the simplest case, we
could let the intercompartmental couplings axw and
membrane conductance gx be proportional to the
compartment diameter, reducing the difficult task
of choosing A to the much simpler job of selecting
two proportionality coefficients. As discussed in Huys
and Paninski (2009), these parameters (along with
the dynamics noise variance σ 2) may be estimated
using an iterative expectation-maximization approach,
and initialized using prior knowledge from previous
estimates in similar neurons. Once all of these system
parameters are chosen, we need only select the
fraction of variance parameter c (from Eq. (6)): larger
values of c lead to greater accuracy at the cost of
speed. Then we simply iterate the update equations
above to obtain the desired filter outputs E(Vt|Y1:t)
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and Cov(Vt|Y1:t). Sample code implementing the
simulations described in the next section is available at
http://www.stat.columbia.edu/∼liam/research/abstracts/
dendrite-kalman-abs.html.

3 Applications to spatially-subsampled dendritic trees

We illustrate the fast implicit Kalman filtering methods
described in the last section with two simulations here.
The results of the simulations are best viewed in movie
form (low-rank-speckle.mp4 and low-rank-horiz.mp4);
we show snapshots and two-dimensional representa-
tions of these movies in Figs. 4, 5, 6, 7, and 8. In the
first three figures, we demonstrate the output of the fast
Kalman filter given sparsely-sampled spatial observa-
tions of a complex, real dendritic tree (reconstructed
from a rabbit starburst amacrine cell), and in the last
two figures we apply the fast Kalman filter to highly
spatially-coarsened observations: we observe only the
vertically-summed, noise-corrupted voltage on the tree,

instead of retaining full spatial information about the
observations Y. (This latter simulation is an effort
to roughly emulate the results of fast planar imaging
methods, as discussed for example in Holekamp et al.
(2008).)

In each case, the filter is able to recover the spa-
tiotemporal voltage fairly well (and is even able to
restore some of the spatial information that is appar-
ently lost by vertically summing the observations in
Figs. 7–8), though the filtered voltage E(Vt|Y1:t) con-
sistently underestimates and smooths the true voltage
Vt, as we would expect of any optimal linear filter. We
emphasize that our goal here is to give a qualitative
picture of the filter’s behavior, to illustrate that the
approximate methods developed above do not lead to
any visible artifacts in the filter output; for more quan-
titative analyses of the estimation performance of the
Kalman and other Bayesian filters applied in this setting
(albeit in the context of much lower-dimensional neural
models, where more direct computational approaches
are tractable), see Huys and Paninski (2009).

true V

tim
es

te
p 

=
 1

00
0

obs Y est V

Fig. 4 Snapshot of a simulation in which we made noisy observa-
tions of just 100 out of > 2000 compartments. The full simulation
may be viewed in movie form in low-rank-speckle.mp4. The
neuronal geometry is taken from the “THINSTAR” file (rabbit
starburst amacrine cell) available at http://neuromorpho.org; see
Bloomfield and Miller (1986) for details. Left panel: true voltage
Vt(x) at timestep t = 1000; color indicates voltage (red corre-
sponds to high voltage and blue corresponds to low). Each dot
represents an individual compartment. The somatic compartment

(center, red) was driven with a sinusoidal input (see Fig. 5 below
for details). Middle panel: observed data yt. 100 compartments
were randomly chosen and then observed (with noise) at each
time step. Underlying black trace indicates structure of dendritic
tree. Each colored dot indicates an observed compartment. Right
panel: filter estimate E(Vt(x)|Y1:t). The first two panels are plot-
ted on the same color scale; the third is plotted on its own color
scale for improved visibility. See Fig. 5 for the full Vt(x), yt, and
E(Vt(x)|Y1:t) for all times t

http://www.stat.columbia.edu/~liam/research/abstracts/dendrite-kalman-abs.html
http://www.stat.columbia.edu/~liam/research/abstracts/dendrite-kalman-abs.html
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Fig. 5 Full spatiotemporal voltage traces corresponding to the
snapshots shown in Fig. 4; data matrices may be obtained by run-
ning the code at http://www.stat.columbia.edu/∼liam/research/
abstracts/dendrite-kalman-abs.html. Top: true spatiotemporal
voltage Vt(x); middle: observed data yt; bottom: filtered voltage
E(Vt(x)|Y1:t). All plots share the same units (voltage scaled by
a factor which in this case may be ignored), but are plotted with
different color scaling, for improved visibility. In this simulation,
a 1 Hz sinusoidal current was injected into compartment 1 (visible

as the soma, colored red in the left panel in Fig. 4); however,
this current was not considered known (i.e., it in Eq. (1) was set
to zero), to make the filtering problem a bit more challenging
here. The average SNR per compartment (computed by taking
the average signal variance var(Vt(x)) over all the compartments
and dividing by the observation noise variance, normalized by the
fraction of observed compartments, n/N) was about 4%. Note
that the filtered voltage E(Vt|Y1:t) underestimates and smooths
the true voltage V, both spatially and temporally

4 Extending the basic method

In this section we discuss several important extensions
of the basic methods introduced in Section 2.

4.1 Temporally-filtered observations
and dynamics noise

First we would like to relax the assumption that the
observations yt are instantaneously related to the volt-
age Vt. For example, it is well-known that whole-
cell recordings introduce filtering effects, due to the
RC dynamics of the electrode-cell system (Brette
et al. 2007); similarly, some voltage sensors (particu-
larly genetically-encoded voltage sensors) respond non-
instantaneously to voltage steps and thus effectively
lowpass filter the voltage (Knopfel et al. 2006).

We therefore modify our basic dynamics and obser-
vation equations to incorporate this temporal filtering

of the observations. For clarity, we will treat just the
simplest case, in which the observations are filtered in
a first-order (low-pass) manner, though generalizations
are straightforward. We write

qt+dt = Aqt + √
dtεt, εt ∼ N (0, I)

zi
t+dt = zi

t +
(

aqi
t − zi

t

τ

)
dt + √

dtξ i
t , ξ i

t ∼ N
(
0, σ 2

)

yt = Bzt + ηt, ηt ∼ N (0, W).

Here we have introduced a scaled voltage variable qt

to simplify the notation below, and we make linear
observations of the low-pass filtered variable zt; τ de-
notes the time constant of this filter, and a denotes
the filter gain. (A minor technical point: since we do
not observe qt directly, there is a free scale parameter
which must be fixed here; thus we have set the q-
dynamics noise variance to 1, and set the z-dynamics
noise variance to σ 2. We have also set the observation

http://www.stat.columbia.edu/~liam/research/abstracts/dendrite-kalman-abs.html
http://www.stat.columbia.edu/~liam/research/abstracts/dendrite-kalman-abs.html


J Comput Neurosci

–0.5

0

0.5

tr
ue

 V
compartment 1

–0.1

0

0.1

compartment 1073

200 400 600 800 1000

–0.05

0

0.05

time (ms)

es
t V

200 400 600 800 1000

–0.02

0

0.02

time (ms)

Fig. 6 Example one-dimensional voltage traces selected from the
data matrices shown in Fig. 5. The true and inferred somatic
voltages are shown on the left (compartment 1); voltages from
a randomly-chosen compartment are shown on the right. Neither
of these compartments were among the subset of 100 compart-
ments which were observed directly in the middle panels of

Figs. 4–5. The effect of the sinusoidal somatic input current is
most strongly visible on the left, and is more attenuated in the
distal compartment shown on the right. Again, note that the
filtered voltage significantly underestimates and smooths the true
voltage V, due to the low effective SNR here
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slice
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50 100 150 200
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Fig. 7 Snapshot of a simulation similar to that shown in Figs. 4–
5, but with vertically-scanned observations (i.e., the dynamics
equation is identical here, but the observation equation is differ-
ent). Layout and conventions are as in Fig. 4. In this case, the

observations Y were formed by summing the observed voltages
over the 250 nonoverlapping “slices” shown in the left panel (only
every fifth slice is shown, for visibility) and adding noise. The full
simulation may be viewed in movie form in low-rank-horiz.mp4
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Fig. 8 Full spatiotemporal voltage traces corresponding to the
snapshots shown in Fig. 7. As in Figs. 4–5, sinusoidal current
was injected into the soma but not included in the Kalman
filter (it = 0). Again, the filtered voltage E(Vt|Y1:t) significantly

smooths and shrinks the true voltage V. In addition, the vertical
sampling here leads to significant loss of spatial detail relative to
the simulation shown in Figs. 4–5

mean μ
y
t to zero, and suppressed the input current it(x)

for notational simplicity; inclusion of these terms does
not significantly complicate the following derivations,
since again the steady-state covariance C0 does not
depend on μ

y
t or it(x).)

Now the key to the basic methods described in
Section 2 is that we could compute the steady-state
covariance C0 of the state vector qt quite explicitly.
In the case of interest here, the state vector is (qt, zt);
unfortunately, computing the steady-state covariance
(which we will continue to denote as C0) is a bit less
trivial now, since the dynamics matrix is asymmetric,
and therefore the infinite sum Eq. (4) is more difficult
to compute. We write

C0 =
(

c0 J
JT F

)
,

where we have abbreviated the upper-left block as

c0 = (
I + A2

)−1
dt

(i.e., c0 denotes the familiar steady-state covariance
of qt).

To compute the matrices J and F, we rewrite the zt

dynamics slightly,

zt+dt = b zt + dqt + √
dtξt, ξt ∼ N (0, σ 2 I),

where we have abbreviated b = 1 − dt/τ and d = adt.
Now we can write a simple recursion for the cross-
covariance:

E
(
qt+dtzT

t+dt

)= E
([

Aqt+
√

dtεt

] [
b zt+dqt+

√
dtξt

]T
)

= dAE
(
qtqT

t

) + b AE
(
qtzT

t

)
.

Here E
(
qtqT

t

)
tends to c0, as before, and E

(
qt+dtzT

t+dt

)
should be equal to E

(
qtzT

t

)
in the limit t → ∞. This

leads to the equation

J = d(I − b A)−1 Ac0.

Note that J is symmetric, since it is a product of sym-
metric commuting terms.

We may derive a similar recursion for the covariance
of zt:

cov(zt+dt)=b 2cov(zt)+d2cov(qt)+2bdE
(
qtzT

t

)+σ 2 Idt.
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Taking limits as above, we compute

F = (
1 − b 2

)−1 (
d2c0 + 2bdJ + σ 2 Idt

)
.

Now we need to efficiently multiply and divide by C0.
Multiplying by C0 can clearly be done in O(N) time. To
divide, we write the inverse as

C−1
0 =

(
c−1

0 + c−1
0 JG−1 Jc−1

0 −G−1 Jc−1
0

−G−1 Jc−1
0 G−1

)
,

where we have abbreviated the Schur complement

G = F − Jc−1
0 J.

Multiplying by J and c−1
0 can clearly be done in O(N)

time. After some cancellations, G may be written as

G =
[(

1 − b 2
)−1(

d2
(
I − b 2 A2

) + σ 2dt(I − b A)2c−1
0

)

− d2 A2

]
c0(I − b A)−2.

The term in brackets has a tree-bandwidth of 4, and we
can therefore divide by G in O(N) time, as desired. See
Fig. 9 for an illustration.

A very similar approach may be used to handle
the case of temporally-correlated input noise, e.g.,
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Fig. 9 An example of the Kalman filter applied to lowpass-
filtered voltage observations. Top panel: true spatiotemporal
voltage. Sinusoidal current (2 Hz) was injected into a branch
point of the tree (compartment 380); the tree was a simple one-
branched structure with 400 compartments in this case. Second
panel: lowpass-filtered (τ = 100 ms) voltage. Third panel: ob-
served Y; the lowpass-filtered voltage was spatially subsampled

4x and corrupted with noise. Fourth and fifth panels: output of
Kalman filter: estimated voltage V and lowpass-filtered voltage,
respectively. Note that the Kalman filter is causal, so the esti-
mated voltage V lags the true V; to obtain a non-lagged estimate,
we must run the full forward-backward Kalman smoother (data
not shown)
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synaptically-filtered noise arising from spontaneous re-
lease of neurotransmitter, followed by postsynaptic
conductance transients which do not decay instanta-
neously. As above, we treat the case of a first-order
lowpass filter, and begin with the recursion

qt+dt = Aqt + dwt + √
dtεt, εt ∼ N (0, I)

wt+dt = bwt + √
dtξt, ξt ∼ N (0, σ 2 I),

where wt represents the filtered noise source. From
here we may derive a simple recursion for the cross-
covariance:

E
(
qt+dtw

T
t+dt

)= E
([

Aqt+dwt+
√

dtεt

] [
bwt+

√
dtξt

]T
)

= b AE
(
qtw

T
t

) + bdE
(
wtw

T
t

)
.

Computing the steady-state solution of this recursion,
we find that the cross-covariance E

(
qtw

T
t

)
tends to

J = bdσ 2(1 − b 2)−1(I − b A)−1.

We also have that

E
(
qt+dtqT

t+dt

) = AE
(
qtqT

t

)
AT + d2 E

(
wtw

T
t

)
+2dAE

(
qtw

T
t

) + Idt,

from which we conclude that the covariance E
(
qtqT

t

)
tends to

F = (I − A2)−1
[(

d2σ 2(1 − b 2)−1 + dt
)
I

+ 2bd2σ 2(1 − b 2)−1 A(I − b A)−1
]
.

The full steady-state covariance

C0 =
(

(1 − b 2)−1σ 2 I J
J F

)

may now be multiplied and divided in O(N) time
using sparse Schur methods nearly identical to those
described above.

4.2 Inhomogeneous cable noise
and quasi-active membranes

In the case that the dynamics noise covariance cov(ε)

is diagonal but not proportional to the identity, the
infinite sum Eq. (4) is even more difficult to compute
(since cov(ε) and A will not commute in general). Stan-
dard direct methods for solving the Lyapunov equation
(e.g., the Bartels-Stewart algorithm (Antoulas 2005))
require an orthogonalization step that takes O(N3)

time in general. There is a large applied mathematics
literature on the approximate solution of Lyapunov
equations with sparse dynamics (see e.g. Sabino (2007)
for a nice review), but the focus of this literature is on
the case that the noise covariance matrix is of low rank.

Since we expect the voltage at every compartment to
be perturbed by at least some noise (implying that the
rank of the noise covariance is at least as large as N),
these low-rank methods are less attractive here. We use
a direct iterative method for computing C0 instead.

Abbreviate D = cov(ε). Now we recurse

Si+1 = (
AS−1

i A + D
)−1

= D−1 − D−1 A
(
Si + AD−1 A

)−1
AD−1; (9)

the solution of this recursion is exactly the steady-state
inverse covariance C−1

0 . The key now is that the iterates
Si remain “almost” tree-banded if the elements of D
vary smoothly along the tree; i.e., we can safely set all
but O(N) of the elements of Si to zero without incur-
ring much numerical error.7 In particular, we find that
the limit S∞ = C−1

0 remains effectively tree-banded in
this case.

Now, if Si is tree-banded, then so is (Si + AD−1 A),
as is the Cholesky decomposition Li defined by

Li LT
i = (Si + AD−1 A).

Similarly, since Si+1 and D−1 are both tree-banded,
then so is L−1

i AD−1, and therefore we can compute
this term—and from here complete the recursion for
Si+1—in O(N) time. Once the limit of this recursion
(i.e., our approximation to C−1

0 ) is obtained, we may
apply the O(N) methods described in Section 2 with
no further modifications. We have found that a very
effective initialization for this procedure is to set

S0 = D−1/2(I − A2)D−1/2; (10)

this may be computed in O(N) time and gives the exact
solution C−1

0 in the case that D is proportional to the
identity. See Fig. 10 for an illustration.

A very similar problem arises in the case of “quasi-
active” membranes (Koch 1984; Manwani and Koch
1999; Coombes et al. 2007; Kellems et al. 2009), in
which the dynamics of each compartment are described
by a k-dimensional linear system (instead of the one-
dimensional stable dynamics for each compartment we
have used in the rest of this paper); this linear system is
derived from a first-order expansion about a fixed point
of the original nonlinear model neuronal dynamics. In
this setting the dynamics matrix A may be written most
conveniently as a block-tree-tridiagonal matrix, with
block size equal to k; see, e.g., Kellems et al. (2009) for

7We do not have a good theoretical explanation for this fact; this
is a purely empirical observation. Indeed, we have found that if
the noise scale D varies discontinuously along the tree, then Si
tends to be much less sparse, sharply reducing the efficacy of this
procedure.
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Fig. 10 Computing C−1
0 via

the sparse recursion Eq. (9).
In this case, the tree was a
simple single-branched
structure (with the branch at
compartment 35), and the
noise variance D varied
linearly over two orders of
magnitude as a function of
the compartment number.
Left: initial approximate
inverse covariance S0 (top;
Eq. (10)) and rescaled matrix
D1/2 S0 D1/2 (bottom),
included for clarity. Right:
limit matrix S∞ = C−1

0 (top)
and rescaled matrix
D1/2 S∞ D1/2 (bottom). Note
that S0 provides a very good
initialization, and that both
S0 and C−1

0 are very sparse
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further details. The problem is that A here will be asym-
metric in general, and therefore, once again, we can
not solve the Lyapunov equation directly by computing
the infinite matrix sum Eq. (4) explicitly. However, we
have found that this quasi-active case may be handled
in a very similar manner; we simply recurse Eq. (9),
with S0 set to D−1/2(I − AAT)D−1/2 (Eq. (10) needs
to be modified slightly since A is asymmetric here).
As in the asymmetric-noise case discussed above, we
find empirically that Si remains tree-banded, making
the recursion Eq. (9), and therefore the computation
of C−1

0 , quite tractable.

4.3 Nonlinear voltage or calcium observations

The last extension we consider involves the case of
nonlinear observations yt. For example, some voltage
sensors saturate somewhat over their dynamic range,
rendering the linear model yt = BtVt + ηt inadequate.
It is also worth considering observations of fluorescent
calcium sensors: as discussed above, voltage-sensing
techniques are currently hampered by low SNR (al-
though optimal filtering methods can at least partially
alleviate this problem). On the other hand, spatiotem-
poral calcium-sensing fluorescence signals may be cur-

rently recorded at relatively high SNR (Gobel and
Helmchen 2007; Larkum et al. 2008), but calcium sig-
nals, by their nature, provide only highly-thresholded
information about the underlying voltage, since calcium
channels are inactive at hyperpolarized voltages. Can
we exploit these high-SNR superthreshold calcium ob-
servations to reconstruct (at least partially) the sub-
threshold voltage signal? More generally, we would like
to optimally combine calcium and voltage measure-
ments, where voltage measurements may be available
via imaging techniques, or whole-cell patch recordings
at the soma or apical dendrite, or even through dense
multielectrode recordings (Petrusca et al. 2007).

To incorporate calcium observations into our
Kalman filtering framework, we must first write down a
dynamical model for the evolution of the intracellular
calcium concentration. For simplicity, we consider a
first-order model for these calcium dynamics:

Ct+dt(x) = Ct(x) +
(

− Ct(x)

τC
+ k

[
Ct(x + dx) − 2Ct(x)

+ Ct(x − dx)

]
+ f [Vt(x)]

)
dt + σC

√
dtεt(x),
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where Ct(x) denotes the calcium concentration in
compartment x at time t, k is a diffusion constant,
k

[
Ct(x + dx) − 2Ct(x) + Ct(x − dx)

]
represents diffu-

sion within the dendrite (this assumes that x corre-
sponds to an interior compartment of a linear segment
of the dendrite, and may be easily modified in the
case of a boundary or branching compartment), and
f (V) is a nonlinear function corresponding to voltage-
dependent calcium influx. (Note that we have approx-
imated the calcium channel dynamics as instantaneous
here, though this assumption can be relaxed.)

Now the important point is that the intracellular
and transmembrane calcium diffusion terms k and 1/τC

are relatively small; in the subthreshold regime the
calcium concentration changes much more slowly than
the voltage. We can take advantage of this fact: if we
sample sufficiently rapidly along the dendritic tree, then
we may obtain Ct(x) (up to some observation noise)
and then numerically subtract the estimated dCt(x)/dt
from the linear terms on the right hand side of our
dynamics equation to obtain, finally, our observation
yt, which will correspond to a nonlinear measurement
f [Vt(x)] of the voltage. Of course, this will be a noisy
measurement; the variance of this noise can be com-
puted given the variance of the dynamics noise ε and
the calcium-sensitive observation fluorescence noise.
More precisely, if yt = BCt + ηt, and k and 1/τC are
both small, then we may approximate

yt+dt − yt ≈ B
(

f (Vt)dt + σC

√
dtεt

)
+ ηt+dt − ηt.

If ηt and εt are approximately Gaussian, then if we
define the new observation y′

t = yt − yt−dt, we can write

y′
t ≈ h(Vt) + ε′

t,

for a suitable function h(.) and Gaussian noise ε′
t with a

suitable covariance matrix. (We note in passing that a
similar approach may be suitable for sodium-sensitive
imaging data (Kole et al. 2008).)

Thus, more generally, we would like to incorpo-
rate observations yt obeying some arbitrary conditional
density p(yt|Vt) into our filter equations. This is of
course difficult in general, since if p(yt|Vt) is chosen
maliciously it is clear that our posterior distribution
p(Vt|Y1:t) may be highly non-Gaussian, and our ba-
sic Kalman recursion will break down. However, if
log p(yt|Vt) is a smooth function of Vt, it is known that
a Gaussian approximation to p(Vt|Y1:t) will often be
fairly accurate (Fahrmeir and Tutz 1994; Brown et al.
1998; Paninski et al. 2009), in which case our Kalman
recursion may be adapted in a fairly straightforward
manner.

For simplicity, we will focus on the case that
the observations yit are independent samples from
p(yit|BiVt), where Bi denotes the i-th row of the obser-
vation matrix B. We approximate the posterior mean
μt with the maximum a posteriori (MAP) estimate,

μt ≈ arg max
Vt

[
log p(Vt|Y0:t−dt) + log p(yt|Vt)

]

≈ arg max
Vt

[
− 1

2
(Vt − mt)

T P−1
t (Vt − mt)

+
∑

i

log p(yit|BiVt)

]
.

(Recall that the one-step covariance matrix Pt and
mean mt were defined in Eqs. (7–8).) This MAP update
is exact in the linear-Gaussian case (and corresponds
exactly to the Kalman filter), but is an approximation
more generally.

To compute this MAP estimate, we use Newton’s
optimization method. We need the gradient of the log-
posterior with respect to Vt,

∇ = −P−1
t (Vt − mt) + BT f1(Vt),

and the Hessian with respect to Vt,

H = −P−1
t + BTdiag[ f2(Vt)]B.

Here f1(Vt) and f2(Vt) are the vectors formed by
taking the first and second derivatives, respectively, of
log p(yit|u) at u = BiVt, with respect to u. Now we may
form the Newton step:

Vnew = Vold − H−1∇

= Vold − (−P−1
t + BTdiag[ f2(Vold)]B

)−1

× (−P−1
t (Vold − mt) + B′ f1(Vold)

)

= Vold − (
Pt − Pt BT( − diag

[
f2(Vold)

−1
]

+BPt BT)−1
BPt

)[
P−1

t (Vold−mt)−BT f1(Vold)
]

= mt + Pt BT(−diag[ f2(Vold)
−1] + BPt BT)−1

×B
[
Vold − mt − Pt BT f1(Vold)

]+Pt BT f1(Vold)

We iterate, using a backstepping linesearch to guar-
antee that the log-posterior increases on each itera-
tion, until convergence (i.e., when Vnew ≈ Vold, set μt =
Vold). Then, finally, we update the covariance Ct by
replacing W−1 with −diag[ f2(Vt)] in the derivation in
Section 2. Since multiplication by Pt requires just O(N)

time (and we need to compute Pt BT just once per
timestep), all of these computations remain tractable.
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Fig. 11 Example of the approximate Kalman filter applied to
nonlinear observations. Top panel: true voltage V. Sinusoidal
current (2 Hz) was injected into a branch point of the tree
(compartment 380); the tree was a simple one-branched structure
with 400 compartments in this case. Middle panel: observations
Y were generated by emulating the calcium-sensitive experiment
described in the text. The voltage was spatially subsampled (8x),

transformed by a nonlinear activation curve f (V), and then cor-
rupted with noise. Note that most details about the subthreshold
voltage are obscured by this nonlinear transformation f (V). Bot-
tom panel: voltage V recovered by the approximate Kalman filter.
Note that superthreshold voltages are recovered fairly accurately,
though subthreshold information is lost. The top and bottom
panels share the same (rescaled) units

Note that initialization of this iteration is important
here (unlike in the standard Kalman case), since the
loglikelihood log p(yt|Vt) is not necessarily concave in
Vt. We have found that an effective strategy is to ini-
tialize Vold by taking one Kalman step forward from the
point μt−dt, with Vt(x) fixed at E[Vt(x)|yxt] (which may
in turn be computed via a one-dimensional numerical
integral if Bx is spatially localized); this corresponds
to treating E[Vt(x)|yxt] as the observed data, with the
noise variance set to zero. From this initialization we
iterate to convergence, as described above. See Fig. 11
for an illustration.

5 Discussion

We have presented a collection of methods that make
it possible to perform optimal quasi-linear filtering of
noisy, subsampled voltage observations on large realis-
tic dendritic trees. Perhaps the major current limitation
of our approach is that we are forced to assume that
the dynamics on the tree are constant in time, since we

make heavy use of the steady-state covariance C0, and
this quantity is well-defined only in the case of time-
invariant dynamics. It will be important to generalize
this approach, perhaps via extended Kalman filter or
hybrid particle filter methods (Doucet et al. 2001),
to the case of active dendritic membranes (Johnston
et al. 1996), where the dynamics depend strongly on the
recent voltage history.

Another exciting potential direction for future re-
search involves the optimal design of sampling schemes;
we would like to design our imaging experiments so
that each observation reduces our posterior uncertainty
about the underlying voltage V (as summarized by
the posterior state covariance Ct) as much as possible
(Fedorov 1972; Lewi et al. 2009). As one example, it
is intuitively plausible that observations of the voltage
at or near branch points may be more informative
than observations at the tips of dendrites (though we
have not yet checked this intuition in numerical detail).
Given a limited budget of compartments that may be
sampled per unit of experimental time, it might be ben-
eficial to optimize our experimental design accordingly,
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by computing the expected reduction in the uncertainty
Ct for each of a number of candidate sampling schemes,
using the fast methods proposed here.

Our methods are based on low-rank approxima-
tions of the time-varying system covariance Ct (or
more precisely, we represent Ct as a low-rank per-
turbation of the steady-state covariance C0). A very
promising related approach was recently described by
Kellems et al. (2009); these authors used tools from the
applied mathematical literature on low-rank approxi-
mations of high-dimensional linear systems (Antoulas
2005) to sharply reduce the dimensionality of quasi-
active models used to describe subthreshold voltage
dynamics. Our method is different: we do not trun-
cate the system dynamics directly, but instead use the
full dynamics to propagate a truncated approxima-
tion to the system covariance Ct. It will be interesting
in the future to combine the benefits of these two
approaches.
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