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Abstract The dynamics of the learning equation, which
describes the evolution of the synaptic weights, is derived
in the situation where the network contains recurrent con-
nections. The derivation is carried out for the Poisson neu-
ron model. The spiking-rates of the recurrently connected
neurons and their cross-correlations are determined self-
consistently as a function of the external synaptic inputs. The
solution of the learning equation is illustrated by the analysis
of the particular case in which there is no external synap-
tic input. The general learning equation and the fixed-point
structure of its solutions is discussed.

1 Introduction

The hypothesis that changes in the efficacies of neuronal con-
nections, both during and after development, depend upon
the correlations in timing of pre- and postsynaptic action
potentials (spikes) has received considerable experimental
support (Bi and Poo 2001). A number of features of neural
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information processing have successfully been accounted for
by models of such spike-timing-dependent synaptic plastic-
ity (STDP). These include the astonishing precision of barn
owl sound localization (Gerstner et al. 1996) and the develop-
ment of a temporal-feature map in the avian laminar nucleus
(Leibold et al. 2001, 2002).

The development of a general theory of synaptic plasticity
that is based on the notions of Hebbian learning (Hebb 1949)
and a “learning window”, that relates the presynaptic input
and postsynaptic output times to the corresponding change
of the synaptic weight, has underpinned these developments
(for a review see van Hemmen 2001). Specifically, a synaptic
weight is potentiated if a presynaptic input precedes a post-
synaptic spike, and is depressed otherwise (Markram et al.
1997). In this paper we generalize this theory of synaptic
plasticity to analyze the situation where a neuron is part of a
network that has recurrent synaptic connections. The recur-
rent dynamics introduces additional difficulties in analyzing
the resulting pattern of synaptic strengths. Previous analyzes
of synaptic plasticity have focussed on the situation in which
the synapses are part of a feed-forward network structure in
which recurrent connections do not occur.

We first present a derivation of the differential equation
governing the evolution of both the feed-forward and the
recurrent synaptic weights, which is given in terms of the tim-
ing relationships between the pre- and postsynaptic spikes,
in Sect. 2. The evaluation of the spike-timing correlations is
presented in Sect. 3 for the Poisson neuron and extends the
earlier analysis for feed-forward networks (Kempter et al.
1998). In the feed-forward model the output spiking-rate of
the postsynaptic neuron has a linear dependence upon the
synaptic weight, which facilitates the analysis, whereas in
the recurrently connected model investigated here there is a
nonlinear dependence. In Sect. 4 the full system of five cou-
pled equations is presented, consisting of four consistency
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equations and two differential equations that describes the
learning on the external and recurrent weights. The solution
of the learning equation in the case where there are no exter-
nal synaptic inputs is presented in Sect. 5.

2 Spike-timing-dependent synaptic plasticity (STDP)

In this section the “learning equation” is derived for the
Poisson neuron model by using the explicit time relation-
ships between synaptic inputs and spike outputs. We con-
sider a network of N neurons, each of which receives synaptic
input via both recurrent connections (denoted by Ji j , a N ×N
matrix with zeros on the diagonal in order to prevent self-
connections) and feed-forward connections from M exter-
nal inputs (the recurrent connections are denoted by Kik , a
N × M matrix). The evolution of both these sets of weights
is considered.

2.1 Weight dynamics

Consider first the change in the synaptic strength of an excit-
atory recurrent synapse Ji j that connects the postsynaptic
neuron i with the presynaptic neuron j . At synapse {i j} (with
1 ≤ i, j ≤ N ) input spikes arrive at times tn

j (n is a label
representing the index of the sequence of spikes), and these
spikes are the output spikes of neuron j in the network. Like-
wise, at synapse {ik} (with 1 ≤ i ≤ N and 1 ≤ k ≤ M) input
spikes arrive at times t̂m

k (m represents the index of the spike-
sequence), and these spikes are from external inputs. This is
depicted in Fig. 1, which shows only the synaptic connec-
tions between the three illustrated neurons (two recurrently
connected and one external).

k

Kjk

Jji

Jij Recurrently
connected
neurons

External
neurons

Kik

i j

. . . . . .

. . . . .

Fig. 1 Synaptic connectivity illustrated for two neurons within a net-
work of recurrently connected neurons {i, j} receiving external synaptic
input (a single external neuron k is illustrated here). Neurons are indi-
cated by a large circle and excitatory synapses by small filled circles.
We study the development of both the recurrent synaptic weights Ji j
(1 ≤ i, j ≤ N ) and the weights from external neurons Kik (1 ≤ i ≤
N , 1 ≤ k ≤ M). The neuron i produces output spike flow denoted
by Si (t) and the external neuron k produces a spike flow denoted by
̂Sk(t); cf. (6)

The set of excitatory synaptic efficacies {Ji j , Kik} (1 ≤
i, j ≤ N , 1 ≤ k ≤ M) determines the membrane potential
of neuron i ,

vi (t)= Vr +
∑

j,n

Ji j (t
n
j ) ε(t − tn

j ) +
∑

k,m

Kik( t̂ m
k ) ε(t − t̂ m

k ),

(1)

where Vr is the reset potential after a spike (the voltage scale
is chosen so that Vr = 0 in what follows), Ji j = 0 for i = j ,
and ε(t) gives the time-course of an excitatory postsynaptic
potential (EPSP); ε(t) is also called the synaptic response
function. The magnitude of the membrane potential deter-
mines the times tn

i at which a postsynaptic neuron i will fire,
i.e., the timesv(tn

i ) = ϑ whereϑ is the spiking threshold. The
firing times tn

i of the postsynaptic neuron may, and in general
will, depend on Ji j and Kik . Once the neuron has fired, Ji j

increases or decreases according to whether tn′
j − tn

i < 0
or > 0. More precisely, synaptic change is determined by
the learning window W (Gerstner et al. 1996) through its
value W (tn′

j − tn
i ). An example of such a learning window is

illustrated in Fig. 2.
Given the input and output firing times, the change

∆Ji j (t) := Ji j (t) − Ji j (t − Tl) of the efficacy of synapse
{i j} (synaptic strength) during a learning session of duration
Tl and ending at time t is governed by

∆Ji j (t) = η

⎡

⎢

⎣

∑

t−Tl≤tn′
j <t

win +
∑

t−Tl≤tn
i <t

wout

+
∑

t−Tl≤tn′
j ,tn

i <t

W (tn′
j − tn

i )

⎤

⎥

⎦ , (2)

 −1  0  1 
time (ms)

W
(t

)

Fig. 2 Learning window W (t) governing spike-timing-dependent syn-
aptic plasticity (STDP). It is a function of the time difference s between
pre- and postsynaptic spikes. For a generic excitatory synapse we have
W (s) > 0 for s < 0, i.e., when a presynaptic spike arrives earlier than
the postsynaptic one and contributes to spike generation, and W (s) < 0
for s > 0, i.e., those that come too late shall be punished. The time scale
illustrated here is that of the barn owl (Kempter et al. 2001b)
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where ηwin and ηwout are changes in the weight Ji j induced
respectively by the arrival of a spike at neuron j or the gener-
ation of a spike by neuron i . The prefactor 0 < η � 1 ensures
explicitly that learning is slow on a neuronal time scale (milli-
seconds). Throughout what follows this condition is referred
to as the adiabatic hypothesis. It holds in numerous biologi-
cal situations and is a mainstay of the arguments below. The
learning window W takes into account how pre- and post-
synaptic spikes interact through temporal correlation, which
is the new meaning of Hebbian learning, while win and wout

describe their respective effects separately. We now analyze
three consequences of the adiabatic hypothesis 0 < η � 1
in turn.

2.2 Input processes are self-averaging

Consider first the input processes generating the spike
sequences {tn

i , 1 ≤ i ≤ N } and {̂t m
k , 1 ≤ k ≤ M}. The spik-

ing-rate is modelled as an inhomogeneous Poisson
process (van Hemmen, 2001, Appendix B), viz.,

– There exists a density λi (t) such that

Prob {one event in [t, t + ∆t)} = λi (t)∆t . (3)

– For o(∆t) meaning o(∆t)/∆t → 0 as ∆t → 0, we have

Prob {≥ 2 events in [t, t + ∆t)} = o(∆t) . (4)

We note that this is somewhat analogous with neuronal
refractoriness.

– Events in disjoint intervals are independent.

Because 0 < η � 1, we can take Tl on the one hand so long
that it greatly exceeds all neuronal time constants, including
interspike intervals and the temporal width of the learning
window W , and on the other hand so short that the Ji j have
hardly changed. That is, Tl can be chosen so as to separate
neuronal and synaptic timescales (Tl � 1

η
), a feature of the

analysis that enables the present analytical treatment.
Spike generation is (nearly) always a local process in time

and so are the 1 ≤ j ≤ N input processes generating the
input spikes tn

j from the recurrently connected neurons and
1 ≤ k ≤ M input processes generating input spikes t̂ m

k from
the external inputs.

Because of the independence of disjoint intervals, the sum
in (2) is self-averaging over the randomness. The strong law
of large numbers (Lamperti 1966) ensures that the average
can be used in the sum (2), rather than a specific realiza-
tion. This “ensemble average” is denoted by angular brack-
ets 〈…〉 and it comes for free (up to the limit that
neurons within the network are weakly correlated, which can
be considered realistic for more than 20 neurons). The error

is of the order of the standard deviation and has a Gaussian
distribution according to the central limit theorem (Lamperti
1966). This error is a “noise” that will not be discussed further
here.

2.3 Time averaging

Introducing the spike flows associated with the neurons and
the external inputs, respectively,

Si (t) =
∑

tn
i ≤t

δ(t − tn
i ), i = 1, . . . , N ,

(5)
̂Sk(t) =

∑

t̂ m
k ≤t

δ(t − t̂ m
k ), k = 1, . . . , M,

where δ(t) is the Dirac delta function, we can rewrite (2)

∆Ji j (t)

Tl
= η

{

1

Tl

t
∫

t−Tl

dt ′ [win〈S j (t
′)〉 + wout〈Si (t

′)〉]

+ 1

Tl

t
∫

t−Tl

dt ′
t−t ′
∫

t−Tl−t ′
du W (u)〈Si (t

′)S j (t
′ + u)〉

}

.

(6)

Averages over the time scale of learning, Tl , are denoted
by an overline f (t) := T −1

l

∫ t
t−Tl

dt ′ f (t ′). The mean

spiking-rates are then defined as νi (t) := 〈Si (t)〉. Averag-
ing S j over the randomness is a good approximation as Tl

becomes large, which is a direct consequence of the strong
law of large numbers (Lamperti 1966) and of the Poissonian
events being independent in disjoint intervals. Note that the
mean spiking-rates νi (t) are distinguished from the instanta-
neous spiking-rates λi (t), which are just the ensemble aver-
age λi (t) := 〈Si (t)〉. The mean spiking-rate is slowly varying
and consequently is related to the instantaneous spiking-rate
by νi (t) = λi (t). The integrals in (6) depend on t , and the
first and second terms in this equation can be substituted by
ν j (t) and νi (t).

The double integral in the last term in (6) explicitly cor-
relates input and output, which is a distinguishing property
of Hebbian learning. Let us consider a “typical” t ′, say, t ′ =
t − Tl + xTl with 0 < x < 1. Then the lower bound of the
integral over u is effectively −xTl , while the upper bound
is (1 − x)Tl . The learning window W is local in time, typi-
cally of the order of milliseconds for the auditory system and
tens of milliseconds for most of the cortex, so that it is much
shorter than Tl . Hence for a “typical” t ′ the lower bound of
the integral over u can be replaced by −∞, whereas the upper
bound can be replaced by +∞, so that up to a negligible error
we are left with
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1

Tl

t
∫

t−Tl

dt ′
∞
∫

−∞
du W (u)〈Si (t

′)S j (t
′ + u)〉

=
∞
∫

−∞
du W (u)

1

Tl

t
∫

t−Tl

dt ′ 〈Si (t
′)S j (t

′ + u)〉. (7)

The key idea behind this is the method of averaging (Sanders
and Verhulst 1985) as it is used in solving nonautonomous
differential equations. In agreement with the averaging phi-
losophy we take the Ji j to be constant while evaluating the
integrals in (7).

2.4 Deriving the learning equation

Due to the adiabatic hypothesis the change ∆Ji j (t) =
Ji j (t) − Ji j (t − Tl) is still “small” so that we can replace
∆Ji j (t)/Tl in (6) by the differential quotient dJi j/dt .
Exploiting (7), we then obtain the learning equation
(Kempter et al. 1999)

d

dt
Ji j (t) = η

⎡

⎢

⎣win ν j (t) + wout νi (t)

+
∞
∫

−∞
duW (u)

1

Tl

t
∫

t−Tl

dt ′〈Si (t
′)S j (t

′+u)〉
⎤

⎥

⎦ .

(8)

Except for the adiabatic hypothesis, which is a very weak
assumption, the above equation is universally valid and
exact.

It is a nice aspect of (8) that the final integral over t ′
is nothing but a time average of the correlation function
〈Si (t ′) S j (t ′′)〉. We may interpret it as the joint probability
density of observing an input spike at the j th synapse of
neuron i at time t ′′ and an output spike at time t ′.

It is straightforward to derive the exactly analogous
expression for the learning equation of the synapse Kik ,
which connects neuron i with the kth external input, so as
to get

d

dt
Kik(t) = η

[

win ν̂k(t) + wout νi (t)

+
∞
∫

−∞
duW (u)

1

Tl

t
∫

t−Tl

dt ′〈Si (t
′)̂Sk(t

′ + u)〉
⎤

⎥

⎦
.

(9)

The difficulty in evaluating these expressions is that the flow
of spikes Si (t) from the neurons in the network depends upon
the spikes on the inputs ̂Sk(t).

3 Learning dynamics with the Poisson neuron

The above highly nonlinear equations (8) and (9) that
describe synaptic evolution can not in general be solved
exactly. For a recurrent network such an exact solution would
be highly desirable. We therefore take the Poisson neuron
described by an inhomogeneous Poisson process with rate
function, or intensity, ρi (t) = ν0 + vi (t) ≥ 0 with the
membrane potential vi (t) given by (1) and ν0 chosen so that
ρi (t) ≥ 0. Here we discuss the ensuing learning dynamics.

3.1 Poisson neuron

The process of generating an output spike is highly nonlinear
since the weights (Ji j , Kik) appear in a number of places, so
that evaluating the correlation function or solving the system
of differential equations (8) is in general not possible ana-
lytically. This is, however, not the case if we model spike
generation by means of the Poisson neuron (Kempter et al.
1998), an inhomogeneous Poisson process with rate function,
or intensity,

ρi (t) = ν0 + vi (t) = ν0 +
∑

j,n

Ji j (t
n
j )ε(t − tn

j )

+
∑

k,m

Kik( t̂ m
k )ε(t − t̂ m

k ) ≥ 0 . (10)

Here ν0 is a spontaneous spiking-rate making the right-hand
side positive, if necessary. The sum over j = 1, . . . , N is
over the recurrent weights (i.e., the weights connecting the
N neurons), and the sum over k = 1, . . . , M is over feed-
forward weights (i.e., from the M external inputs). Though
ρi (t) is linear in the postsynaptic potential vi , spike gener-
ation is not. It is just a point process assigning high spiking
probability to times t with large values of vi (t), as it ought
to. To obtain an exact solution, one may alternatively use
ρ

clipped
i (t) = ν1Θ[vi (t) − ϑ1] (Kistler and van Hemmen

2000), where Θ is the Heaviside step function, Θ(x) = 1 for
x > 0 and Θ(x) = 0 for x < 0.

3.2 Output process for Poisson neuron

Because of causality, ε(t) = 0 for t < 0. In addition, we
take its integral

∫

dt ε(t) = 1. The stochastic approximation
entails that for the i th Poisson neuron, ρi (t) = λi (t) =
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〈Si (t)〉, where the latter average is over the stochastic input
processes. That is, using (10) we obtain the following expres-
sion for the spiking-rates of the neurons:

〈Si (t)〉 = ν0 +
N

∑

j=1

Ji j (t)

∞
∫

0

du ε(u)λ j (t − u),

+
M
∑

k=1

Kik(t)

∞
∫

0

du ε(u)̂λk(t − u), (11)

i.e., λi (t) = ν0 +
N

∑

j=1

Ji j (t)Λ j (t) +
M
∑

k=1

Kik(t)̂Λk(t) ,

wherêλm(t) is the spiking-rate of the mth external synaptic
input and

Λi (t) =
∞
∫

0

du ε(u)λi (t − u), i = 1, . . . , N ,

(12)

̂Λk(t) =
∞
∫

0

du ε(u)̂λk(t − u), k = 1, . . . , M,

which can be written as the convolutions Λi (t) = (ε ∗λi )(t)
and ̂Λk(t) = (ε ∗ ̂λk)(t). The derivation of (11), which
involves averaging over the Poisson distribution of spike
times, follows exactly that given by van Hemmen (2001).
Previous studies, in which recurrent connections were not
considered, did not contain any dependence upon λi (t) on
the right of Eq. (11).

3.3 Recurrent spiking-rates for Poisson neuron

The central difficulty in analyzing recurrent networks is that
the spiking-rates of the neurons, λi (t), are a function of
the recurrent weights, Ji j (t). Since the weights vary on a
much slower timescale than the network activation, they
can be considered quasi-constant (due to the adiabatic
hypothesis).

For quasi-constant weights an explicit expression for λi (t)
as a function of ν0 and thêλk(t) may be obtained using the
Laplace transform fL(s) := L{ f (t)} = ∫ ∞

0 dt e−st f (t).
Hence

ΛLi (s) = ν0

s
+ εL(s)

[

λLi (s) − ν0

s

]

, (13)

since λi (t) = ν0 for t < 0. There is a similar expres-
sion for ̂ΛLk (s). Consequently we solve the self-consistency
equation (11) as

λi (t) = L−1{λLi (s)},

λLi (s) =
N

∑

j=1

[1IN − JεL(s)]−1
i j

{

E j
ν0

s
(14)

+
N

∑

j ′=1

J j j ′ E j ′
ν0

s
[1 − ε(s)]

+
M
∑

k=1

K jk

[ν0

s
+ ε(s)

] [

̂λLk (s) − ̂Ek
ν0

s

]

}

,

where 1IN is the N × N identity matrix, E is the N -vector
(1,…,1), ̂E is the M-vector (1,…,1), and L−1{} is the inverse
Laplace transform. This expression (14) gives the explicit
dependence of the output spiking-rate of each neuron in terms
of the external synaptic inputs, the spontaneous spiking-rate,
and the weights in the network, provided that [1IN − JεL(s)]
is invertible. This expression is crucial for determining the
weight dependence of the learning equation in the general
case, such as when the external input is oscillatory. However
it can be simplified considerably for the case in which the
spiking-rates are constant, as discussed in Sect. 3.6.

3.4 Spike-time correlations for Poisson neuron

It now remains to calculate the correlation function
〈Si (t) S j (t + u)〉. In order to do this, it is useful to define
the following correlations:

Qi j (t, u) := 1

Tl

t
∫

t−Tl

dt ′ 〈Si (t
′) S j (t

′ + u)〉,

Dik(t, u) := 1

Tl

t
∫

t−Tl

dt ′ 〈Si (t
′)̂Sk(t

′ + u)〉,

̂Qkl(t, u) := 1

Tl

t
∫

t−Tl

dt ′ 〈̂Sk(t
′)̂Sl(t

′ + u)〉, (15)

Ri j (t, u) := 1

Tl

t
∫

t−Tl

dt ′ 〈(ε ∗ Si )(t
′) S j (t

′ + u)〉,

Fik(t, u) := 1

Tl

t
∫

t−Tl

dt ′ 〈(ε ∗ Si )(t
′)̂Sk(t

′ + u)〉,

̂Fik(t, u) := 1

Tl

t
∫

t−Tl

dt ′ 〈Si (t
′) (ε ∗ ̂Sk)(t

′ + u)〉,

̂Rkl(t, u) := 1

Tl

t
∫

t−Tl

dt ′ 〈(ε ∗ ̂Sk)(t
′)̂Sl(t

′ + u)〉.
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We obtain

〈Si (t)S j (t + u)〉 =
〈

⎡

⎣ν0 +
N

∑

j ′=1

Ji j ′(t)(ε ∗ S j ′)(t)

+
M
∑

k=1

Kik(t)(ε ∗ ̂Sk)(t)

]

S j (t + u)

〉

,

(16)

and hence,

Qi j (t, u) = ν0ν j (t + u) +
N

∑

j ′=1

Ji j ′(t)R j ′ j (t, u)

+
M
∑

k=1

Kik(t)̂Fjk(t + u,−u)+δi jδ(u)ν j (t),

(17)

where δi j is the Kronecker delta function. The final term on
the RHS results from the autocorrelation of the Poisson pro-
cess (Hawkes 1971) and we neglect a term Ji j (t)ε(u)ν j (t)
due to the spike-triggering effect. Likewise

Dik(t, u) = ν0ν̂k(t + u) +
N

∑

j=1

Ji j (t)Fjk(t, u)

+
M
∑

k′=1

Kik′(t)̂Rk′k(t, u) . (18)

This may conveniently be written in matrix notation as

Q(t, u) = ν0 EνT (t) + J (t)R(t, u) + K (t)̂FT (t + u,−u)

+ δ(u)diag [ν(t)] , (19)

D(t, u) = ν0 E ν̂T (t) + J (t)F(t, u) + K (t)̂R(t, u) ,

where E is defined following (14), diag(X ) is the diagonal
matrix with the vector X on the diagonal and zero elsewhere,
and the superscript T denotes transposition. Because of the
compact support of W (u) and large separation of time scales
Tl 
 u, we have used ν(t + u) = ν(t) and ̂F(t + u,−u) =
̂F(t,−u).

For the learning equations (8) and (9) we need to define
the following integrals of these functions over the learning
window:

QW
i j (t) :=

∞
∫

−∞
du W (u) Qi j (t, u),

(20)

QV
i j (t) :=

∞
∫

−∞
du W (u) Qi j (t,−u),

and likewise for each of the other variables on the LHS of
(15) (note that the superscript V involves the argument −u
in the last term of the integrand). The expressions (19) then
give

QW (t) = ˜W ν0 EνT (t) + J (t)RW (t) + K (t)̂F V T
(t),

(21)
DW (t) = ˜W ν0 E ν̂T (t) + J (t)F W (t) + K (t)̂RW (t),

where the tilde denotes integration over time ˜W :=
∫ ∞
−∞ dt W (t) and the autocorrelation term in (17) vanishes

since we choose the learning window W (t) such that W (0) =
0. The functions RW

i j (t), F W
ik (t), ̂F V

ik (t), and ̂RW
kl (t) are

related to the functions Qi j (t), Dik(t), and ̂Qkl(t) by

RW
i j (t) =

∞
∫

−∞
du W (u)

∞
∫

0

dr ε(r) Qi j (t, u + r),

F W
ik (t) =

∞
∫

−∞
du W (u)

∞
∫

0

dr ε(r) Dik(t, u + r), (22)

̂F V
ik (t) =

∞
∫

−∞
du W (u)

∞
∫

0

dr ε(r) Dik(t,−u + r),

̂RW
kl (t) =

∞
∫

−∞
du W (u)

∞
∫

0

dr ε(r) ̂Qkl(t, u + r) .

These expressions (21) and (22) allow all the spike-timing
cross-correlation functions to be solved in terms of the spike-
timing cross-correlation of the external inputs ̂QW

kl (t).

3.5 The learning equations in matrix notation

To obtain the learning equations for the weights Ji j (t) and
Kik(t) we now substitute the above results into the learning
equations (8) and (9).

A problem with using matrix notation here is that the
weights Ji j of the missing diagonal connections must remain
constant, since it is forbidden for a neuron to be connected
onto itself, i.e., all the Jii must remain zero and d

dt J (t) must
also remain zero on the diagonal. To achieve this, we use
projectors on the matrix space in which J belongs: ΦJ is the
projector that operates on N × N matrices and that forces the
matrix elements corresponding to the missing connections
to zero. For example, consider a network of N = 3 neurons
that is fully connected except for self-connections

⎛

⎝

a11 a12 a13

a21 a22 a23

a31 a32 a33

⎞

⎠ �→
⎛

⎝

0 a12 a13

a21 0 a23

a31 a32 0

⎞

⎠
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Such projection matrices could also be used for networks
with a more complex pattern of missing connections (e.g.,
the above network with a missing connection from neuron
#1 to neuron #2 would have associated with it a different
projection matrix that resulted in the term a21 on the RHS
of the above equation being replaced by zero). Although we
have considered here a fully connected recurrent network,
it is possible using such projection matrices ΦJ and ΦK to
model any architecture of individual connections within the
network by this framework.

Consequently, using the above matrix notation the learn-
ing equation (8) becomes

d

dt
J (t) = ΦJ

[

win EνT (t) + woutν(t) ET + QW (t)
]

,

(23)

where time has been rescaled by a factor of η. Likewise

d

dt
K (t) = win E ν̂T (t) + wout ν(t) ̂ET + DW (t) , (24)

where ̂E is the M-vector (1,…,1).
An interesting consequence is that the equilibria of the sys-

tem are defined for null images of the projectors, i.e. when
their argument is in their null space. Note that the null space
(or kernel) Ker ΦJ is a vector subspace of R

N×N , and the
dimension increases when the number of synaptic connec-
tions decreases. Hence, the more missing connections there
are in the network, the richer the equilibria may be; refor-
mulated, sparsely connected networks may be more inter-
esting (with more possible equilibria) than fully connected
networks that contain the same number of neurons.

3.6 The case of constant external spiking-rates

We now consider the situation where the spiking-rates of
the external synaptic inputs, ν̂k(t), are quasi-constant. Then
the spiking-rates of the recurrently connected neurons, λi (t),
can be considered constant over the timescale of Tl , but they
vary over the timescale of changes in the synaptic weights
(cf. Sect. 2.2). Thus we can neglect transients in the dynam-
ics, so that λi (t) = νi (t) = Λi (t) and the expression (11)
for the spiking-rates becomes

νi (t) = ν0+
N

∑

j=1

Ji j (t)ν j (t)+
M
∑

k=1

Kik(t )̂νk, i = 1, . . . , N ,

(25)

since the response kernel ε(t) is normalized. The solution,
which includes the recurrent connections, is given by

N
∑

j=1

[

δi j − Ji j (t)
]

ν j (t) = ν0 Ei +
M
∑

k=1

Kik(t )̂νk , (26)

which can be written in matrix notation as

ν(t) = [1IN − J (t)]−1 [ν0 E + K (t )̂ν] , (27)

provided that the matrix [1IN − J (t)] is invertible.
This constant spiking-rate approximation also results in a

considerable simplification of the expression for the spike-
timing cross-correlations (15) so that QW

i j (t) = RW
i j (t),

DW
ik (t) = F W

ik (t), ̂QW
i j (t) = ̂RW

i j (t) and DV
ik(t) = ̂F V

ik (t).
The self-consistency relations (21) for the case of quasi-
constant spiking-rates can be written in matrix notation as

QW (t) = ˜W ν0 E νT (t) + J (t) QW (t) + K (t) DV T
(t),

DW (t) = ˜W ν0 E ν̂T (t) + J (t) DW (t) + K (t) ̂QW (t),

DV (t) = ˜W ν0 E ν̂T (t) + J (t) DV (t) + K (t) ̂QV (t) ,

(28)

where we have included the expression for DV (t) in order to
provide a closed system of equations (recall that ̂QW (t) and
̂QV (t) are determined by the external input). Provided again
that the matrix [1IN − J (t)] is invertible, we have

QW (t) = [1IN − J (t)]−1
[

˜Wν0 E νT (t) + K (t) DV T
(t)

]

,

DW (t) = [1IN − J (t)]−1
[

˜Wν0 E ν̂T (t) + K (t) ̂QW (t)
]

,

DV (t) = [1IN − J (t)]−1
[

˜Wν0 E ν̂T (t) + K (t) ̂QV (t)
]

.

(29)

4 Dynamical system that characterizes the network
activity

Consequently when the external spiking-rates are constant
we obtain a system of six coupled matrix equations govern-
ing both the network activity and the time evolution of the
recurrent synaptic weights Ji j and the input synaptic weights
Kik : The network activity is given by the self-consistency
condition on the firing rates (26), the three network corre-
lation self-consistency conditions (29), and the two learning
equations (23) and (24). We note that in the situation where
there are no recurrent weights (Ji j = 0) the equation for
the feed-forward weights Kik is exactly that given in earlier
studies (Kempter et al. 1999; van Hemmen 2001).

An important issue is the invertibility of the matrix
[1IN − J (t)]. If we discard the case of no inputs and no spon-
taneous firing rates, the equation

[1IN − J (t)] ν(t) = ν0 E + K (t) ν̂(t) (30)

implies that the norm of ν(t) diverges to +∞ when
[1IN − J (t)] tends to a non-invertible matrix. Thus, if we
start from an invertible matrix (e.g., with suitable constant
weights) and we discard the case of diverging activity (note
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that in such a case many of the approximations we used would
turn out to be invalid), then the matrix will remain invertible.

We recapitulate the system of four consistency equations
(firing rates and correlations) and two learning differential
equations using matrix notation:

ν(t) = [1IN − J (t)]−1
[

ν0 E + K (t) ν̂(t)
]

, (31)

DW (t) = [1IN − J (t)]−1
[

˜W ν0 E ν̂T (t) + K (t) ̂QW (t)
]

,

DV (t) = [1IN − J (t)]−1
[

˜W ν0 E ν̂T (t) + K (t) ̂QV (t)
]

,

QW (t) = [1IN − J (t)]−1
[

˜Wν0 EνT (t) + K (t)DV T
(t)

]

,

d

dt
K (t) =

[

win E ν̂T (t) + wout ν(t) ̂ET + DW (t)
]

,

d

dt
J (t) = ΦJ

[

win E νT (t) + wout ν(t) ET + QW (t)
]

.

Note that time has been rescaled to eliminate η.
Now, using the four consistency equations we can express

the the two learning equations as coupled differential equa-
tions in the weights J and K in terms of only the external
inputs

d

dt
K (t) =

{

win E ν̂T (t) + wout [1IN − J (t)]−1

× [ν0 E + K (t) ν̂(t)] ̂ET + [1IN − J (t)]−1

×
[

˜W ν0 E ν̂T (t) + K (t) ̂QW (t)
]}

, (32)

d

dt
J (t) = ΦJ

(

win E [ν0 E + K (t )̂ν(t)]T [1IN − J (t)]−1 T

+wout [1IN − J (t)]−1 [ν0 E + K (t) ν̂(t)] ET

+ [1IN − J (t)]−1
{

˜W ν0 E
[

ν0 E ET

+ E ν̂T (t) K T (t) + K (t) ν̂(t) ET
]

+ K (t) ̂QV T
(t) K T (t)

}

[1IN − J (t)]−1 T
)

.

The dynamics of the network is described entirely by these
two coupled differential matrix equations.

5 Solution of the learning equations with no external
synaptic input

In order to illustrate how the above equations describe the
learning dynamics, we present here the solution in the situa-
tion where there is no external synaptic input. In this case the
network is driven entirely by the spontaneous spiking-rate
ν0 > 0 of the recurrently connected neurons. This reduces
the complexity of the calculation considerably, since we have
only three simultaneous equations to solve.

We can compute ν and Q in terms of J (the dependence
in t is implicit here)

ν = (1IN − J )−1 ν0 E,
(33)

Q = (1IN − J )−1
˜W ν0 E νT = ˜W ν νT ,

where we henceforth drop the superscript W . The above rela-
tions (33) lead to the learning equation in terms of ν alone

d

dt
J = ΦJ

(

win E νT + wout ν ET + ˜W ν νT
)

, (34)

where ΦJ is the projection matrix described in Sect. 3.5 that
nullifies the diagonal terms.

Consider now the difference Ji j − J ji (i �= j) at the sta-
tionary solution of (34);

d

dt

(

J ∗
i j − J ∗

j i

)

= (win − wout)(ν∗
j − ν∗

i ) = 0 , (35)

where the stationary solution is denoted by an asterisk. We
deduce that ν is homogeneous over the network at the equi-
librium, provided win �= wout, with

ν∗ = µ E and µ := − (win + wout)

˜W
, (36)

which requires that µ ≥ 0. A fixed-point of the matrix system
is given by

ν∗ = µ E,

Q∗ = ˜W µ2 E ET , (37)
(

1IN − J ∗) E = ν0

µ
E .

The space of solutions for J is defined by the last equation
of (37) and corresponds to the invertible matrices of MN for
which the column vector E as eigenvector for the eigenvalue
ν0/µ. Here MN is the linear subspace of matrices of R

N×N

with zeros on the diagonal (MN has dimension N (N − 1)).
For stability of the spiking-rates, all the eigenvalues of J

should be in [0, 1) so that the spiking-rates remain bounded,
which implies a condition on the learning parameters:
ν0 < µ.

We now assess the stability of the homogeneous solution
of the spiking-rates and the speed of convergence towards
the fixed-point. We define the mean weight over the neu-
rons Jav(t) := [N (N − 1)]−1 ∑

i �= j Ji j (t), mean correlation

Qav(t) := N−2 ∑

i, j Qi j (t), and mean spiking-rate

νav(t) := N−1 ∑

i νi (t). The approach here is to solve the
equations for the homogeneous spiking-rate situation and
find the conditions under which the resulting solution is
stable.

The equations for the mean network activity and correla-
tion (33) become

[1 − (N − 1)Jav] νav = ν0,
(38)

[1 − (N − 1)Jav] Qav = ˜W ν0 νav .
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The stationary solution of the learning equation (23) becomes

(win + wout) νav + Qav = 0 . (39)

This gives the solution

ν∗
av = µ,

Q∗
av = ˜W µ2, (40)

J ∗
av = µ − ν0

(N − 1) µ

with µ given in (36). The homogeneous fixed-point spik-
ing-rate is independent of ν0, but this homogeneous solution
exists only for µ ≥ ν0. Note that all the solutions for J ∗ (37)
have the properties of (40).

The stability is obtained by expanding the learning equa-
tion around the fixed-point νav = ν∗

av + ∆νav and Jav =
J ∗

av + ∆Jav, where

∆νav = (N − 1) µ

[1 − (N − 1) J ∗
av]

∆ Jav + o(∆Jav) . (41)

Consequently the learning equation (34) gives

d

dt
∆Jav = (win + wout + 2µ˜W )∆νav + o(∆νav)

(42)

= (N − 1) µ2
˜W

[1 − (N − 1)J ∗
av]

∆Jav + o(∆Jav) .

Therefore the mean weight is stable for ˜W < 0, in agreement
with the corresponding condition on the stability for a single
neuron with STDP (Song et al. 2000). We can gain further
insight into the stability from the full matrix analysis of the
variation of the weights ∆J (t) = [

J (t) − J ∗] about their
fixed-point J ∗ = J ∗

av ΦJ
(

E ET
)

:

d

dt
∆J (t) = L [∆J (t)] + o [∆J (t)] ,

L [∆J (t)] = −ν0 ΦJ

[

(1I − J ∗)−1
(

win ∆J E ET (43)

+wout E ET ∆J T
)

(1I − J ∗)−1T
]

,

where the matrix operator L operates on MN . The eigen-
values (λ0, λ1, λ2) of the operator L for the homogeneous
fixed-point are (see Appendix A)

λ0 = 0,

λ1 = −µ2 (N − 1)
[

win(N − 1) − wout
]

Nµ − ν0
, (44)

λ2 = −µ2 (N − 1) (win + wout)

ν0
,

which have multiplicities of N (N −2), (N −1) and 1, respec-
tively. This structure is similar to that for other fixed-points

(the eigenvalues and stability of the fixed-point manifold
are discussed in Appendix B). Stability of any fixed-point
requires win > 0 (required by λ1 < 0) and (win +wout) > 0
(required by λ2 < 0) in the large N limit. The convergence
of the mean variables J ∗

av, ν∗
av, Q∗

av is a consequence of the
convergence towards the fixed-point manifold. The high mul-
tiplicity zero eigenvalue in the spectrum of L reflects the fact
that the space of fixed-points is a continuum within which
there is no constraint upon J . In the case where λ1 and λ2 are
negative the whole manifold acts like an attractor within the
space MN . Note that the condition (win+wout) > 0 is equiv-
alent to the condition for the homeostatic stability ˜W 2 < 0,
from the definition of µ (36). If the condition win > 0 is
not satisfied then all the fixed-points will be saddle-points,
but the homeostatic equilibrium is still satisfied. This would
introduce some additional deterministic variance to the evo-
lution of the individual weights.

The calculation of the variance of the distribution of
weights follows exactly analogously to that performed by
Kempter et al. (1999). As in their analysis, the variance
initially grows linearly in time with coefficient D when the
initial weight distribution is a delta-function, but there is a
nonlinear contribution that eventually dominates. The var-
iance of a single weight Ji j (t) may be calculated as var
Ji j (t) := 〈J 2

i j 〉(t) − 〈Ji 〉2(t) as a function of time (the angu-
lar brackets denote an ensemble average; cf. Sec. 2.2). The
calculation of var Ji j (t), starting from some weight Ji j (t0) at
time t0, follows exactly that given in (Kempter et al. 1999),
with the result

var Ji j (t) = (t − t0)D for (t − t0) 
 W,
(45)

D = µ
[

(win)2 + (wout)2
]

+ µ2
˜W 2 ,

where W is the width of the learning window W . Conse-
quently, each weight Ji j (t) essentially undergoes a diffusion
process with diffusion constant D.

The results of numerical simulations confirm the above
analysis. Simulation results of νav and Jav as a function of
time are shown in Fig. 3 (solid lines) for four different initial
sets of weights. The simulations indicate that the fixed-points
ν∗

av and J ∗
av given in (40) and indicated in the plots by the dot-

ted line, are reached asymptotically and remain stable. The
dashed lines associated with each solid line are a fit to the
curves with a single exponential (see Appendix C)

Jav(t) = J ∗
av + (Jav(0) − J ∗

av) e−t/τJ ,
(46)

τJ = ν0 ˜W 2

(N − 1) (win + wout)3 .

The results indicate that the expression (41) and (42) pro-
vide a very good description of the dynamics of the average
weight and spiking-rate near the fixed-point.

The individual weights, however, tend to evolve to a
bimodal distribution at the maximum and minimum allowed,
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Fig. 3 Plots of the mean network spiking-rate νav (upper plot) and
weight Jav (lower plot) as a function of time for four different initial
sets of weights. The theoretical value (40) for the fixed-point values
ν∗

av and J ∗
av are shown by the dotted lines. The single exponential fit

(46) is shown by the dotted lines (partially obscured by the solid lines
for initial conditions near the fixed-point). Parameter values are N=30,
η = 10−7, win = 2, wout = 3, and ν0 = 15 Hz. The learning window
W (t) is given by W (t) = cDe−t/τD for t ≥ 0 and W (t) = cPet/τP

for t < 0, with cD = −10, cP = 5, τD = 34 ms, τP = 17 ms. The
time-step for the simulation is 10−4 s and the time axis is given in
seconds
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Fig. 4 Plot of the evolution of all the weights in a fully connected
recurrent network of 20 neurons. The thick line is the mean of the
weights, which is surrounded by the bundle of all the individual weight
plots, which are in grey. The theoretical equilibrium value J ∗

av is given
by the dotted line. The lower line is a plot of the variance (multiplied
by 104). The initial distribution of the weights is flat over an inter-
val ±0.0005 around its mean. Other parameter values are the same as
in Fig. 3

although this does not affect the convergence of the aver-
age weight discussed above. Consequently “hard” bounds are
required on the weights, as in the case of feedforward net-
work connectivity (Kempter et al. 1999). The divergence of
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Fig. 5 Plot of the distribution of the weights after saturation in a fully
connected recurrent network of 20 neurons. The thick line is the mean
of the weights, which is surrounded by the bundle of all the individual
weight plots, which are in grey. The theoretical equilibrium value J ∗

av
is given by the dotted line. The hard upper bound on the weights is set
at 0.025. The learning-rate is η = 10−6 and other parameter values are
the same as in Fig. 3

the individual weights from the mean fixed-point weight J ∗
av

is consistent with the high multiplicity of the zero eigen-
value in (44). This weight evolution within the zero-eigen-
value manifold induces competition between the weights and
eventually results in a bimodal distribution, i.e., each weight
is either saturated or silent, as illustrated in Fig. 5.

In order to compare the theoretical value of the variance
(45) with numerical simulations, it is more convenient to
compute the variance of the distribution {Ji j } of weights in
a single learning trial

var{Ji j }(t) = 1

[N (N − 1) − 1]
N

∑

i, j
i �= j

[

Ji j (t) − Jav(t)
]2

.

(47)

Figure 6 shows the comparison between the theoretical pre-
diction (45) for the evolution of the variance var{Ji j }(t) with
numerical simulation results for different values of N . The
plots show that the variance initially grows in an approxi-
mately linear fashion with the theoretically calculated diffu-
sion coefficient D.

In contrast to the case where each neuron receives only
feed-forward input (Kempter et al. 1999), each neuron here
receives correlated inputs from the neurons within the net-
work. Moreover, the correlation here is intrinsic to the net-
work activity and not a parameter associated with the external
inputs. However, the behavior has many similarities to that of
the feed-forward case, since in both cases the weight dynam-
ics causes the mean weight to approach a fixed-point value
and the weight distribution to become bimodal.
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Fig. 6 Plot of the evolution of the variance of the weight distribution
for the first 1,000 s. The solid line is the theoretical prediction (45). The
other lines show the results from numerical simulations with different
values of N : 20 (dotted line); 30 (dashed line); 50 (dash-dotted line);
100 (grey line). Other parameter values are the same as in Fig. 3

6 Discussion and conclusions

We have presented here a framework for the description of
synaptic learning dynamics in networks of recurrently con-
nected neurons. The analysis has employed the Poisson neu-
ron (Kempter et al. 1998) since the linear dependence of the
output spiking-rate upon the synaptic weights facilitates the
analytic study of the solution. Just as for the case with feed-
forward connectivity, this description encompasses the three
main players, viz., the presynaptic neuron, the postsynaptic
neuron, and the synapse that connects them. The learning
equation embodies the concept of a learning window that
describes the relationship between the input and output spike
times and the associated changes in synaptic strength. Each
pairing of input and output spikes through the learning win-
dow produces an incremental increase or decrease in synaptic
efficacy.

This approximation allows us to find the explicit expres-
sion (26) for the spiking-rates of the recurrently connected
neurons, which in turn allows the learning equations to be
written explicitly. The learning equations (23) and (24) pro-
vide a rigorous mathematical framework to describe the
resulting synaptic changes over time scales that are large
in comparison with the duration of the learning window. An
essential component of this stochastic analysis is the strong
law of large numbers (Lamperti 1966), which ensures that the
behavior of a large ensemble of synapses is essentially deter-
ministic, even though individual synapses have considerable
variability.

The effect of recurrent synapses is analyzed here in one
particular case, namely where there is no external synaptic
input. In future work we will analyze the asymptotic structure

of the weights in more complex and interesting situations,
such as where there are spontaneous homogeneous external
inputs with no correlation and where the external synaptic
inputs are partitioned into subgroups (Meffin et al. 2006),
in order to understand both the nature of the information
processing that the neurons carry out and the nature of the
memories that they are capable of storing and recalling. In the
case of feed-forward networks, in which there are no recur-
rent connections, the asymptotic pattern of evolution of the
weights, as determined by the learning equation, is governed
by the eigenvector of the matrix {Qi j } whose eigenvalue has
the largest real part (Kempter et al. 1999; van Hemmen 2001;
Burkitt and van Hemmen 2003). The goal of future studies
will be to elucidate the effect of the recurrent connections
upon this asymptotic pattern of weights.

In summary, the techniques presented here represent fur-
ther stepping stones in the quest to understanding synaptic
plasticity and thereby to further understand neuronal infor-
mation processing capabilities in a network of interacting
neurons.

Acknowledgements The authors cordially thank Walter Senn for his
most constructive criticism. They also thank Hamish Meffin for a crit-
ical reading of an early version of the manuscript and detailed com-
ments. They are at least equally indebted to David Grayden, Doreen
Thomas, Iven Mareels, Chris Trengove, and Sean Byrnes for useful
discussions. ANB is funded by the Australian Research Council (ARC
Discovery Projects #DP0453205 and #DP0664271), the Brockhoff
Foundation, and The Bionic Ear Institute. MG is funded by a schol-
arship from NICTA.

Appendix

A Calculation of eigenvalues of L for homogeneous
fixed-point

This appendix gives the calculation of the eigenvalues λ (44)
for the homogeneous fixed-point. The homogeneous solu-
tion provides some simplification of the matrix (1IN − J ∗).
We will now study the homogeneous solution where J ∗ ≡
J ∗

avΦJ (E ET ). In this case, we have a simple expression for

1IN − J ∗ = (

1 + J ∗
av

)

1IN − J ∗
av E ET (48)

and the inverse matrix is of the same form

(

1IN − J ∗)−1 = (a − b) 1IN + b E ET , (49)

where a, b are defined by

a − (N − 1)bJ ∗
av = 1,

(50)
b − [(N − 2)b + a] J ∗

av = 0 .
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Consequently

a = b + 1

1 + J ∗
av

,

(51)

b = J ∗
av

(1 + J ∗
av)

[

1 − (N − 1)J ∗
av

] .

For any matrix A in MN , L(A) can be written

L(A) = −ν0

{

b [a + (N − 1)b]
(

win + wout
)

×
(

ET A E
)

ΦJ

(

E ET
)

(52)

+(a − b) [a + (N − 1)b] ΦJ

(

win A E ET

+wout E ET AT
)

}

.

Note that we used the fact that the matrix
(

ET A E
)

is actu-
ally a scalar and thus commutes with any other matrix (and
can be removed from the argument of ΦJ ). Likewise the
following identities are useful

ET E = N ,

ET
[

(a − b) 1IN + b E ET
]

= [a + (N − 1) b] ET, (53)

ET ∆J E =
∑

k,l

∆Jkl .

Using Eq. (52), an eigenmatrix A related to the eigenvalue λ

must satisfy

− λ

ν0
A = b [a + (N − 1) b]

(

win + wout
)

×
(

ET A E
)

ΦJ

(

E ET
)

+ (a − b) [a + (N − 1)b] ΦJ

(

win A E ET

+wout E ET AT
]

. (54)

We then multiply on the left by ET and on the right by E to
obtain a necessary condition on A and λ,

− λ

ν0
ET A E

= b [a + (N − 1)b]
(

win + wout
)

×
(

ET A E
)

ET ΦJ

(

E ET
)

E

+(a − b) [a + (N − 1)b]

{

win ET ΦJ

(

A E ET
)

E

+wout ET ΦJ

(

E ET AT
)

ET
}

. (55)

The following identity for any vector V in R
N is useful here:

ΦJ

(

V ET
)

E = (N − 1) V , (56)

which holds because the network topology is fully connected.
Using this identity, we can rewrite the two last terms of (55) as

ET ΦJ

(

A E ET
)

E = (N − 1) ET A E,

ET ΦJ

(

E ET AT
)

E = (N − 1) ET AT E (57)

= (N − 1) ET A E ,

since (ET A E) is a scalar. We also have

ET ΦJ

(

E ET
)

E = (N − 1) ET E = (N − 1) N . (58)

Consequently (55) becomes

{

λ

ν0
+ (win + wout)(N − 1)

× [a + (N − 1)b]2
}

ET A E = 0 . (59)

Either the coefficient between the curly brackets on the left
side is zero, which gives the eigenvalue

λ2 ≡ −ν0(w
in + wout) (N − 1) [a + (N − 1) b]2 (60)

or the sum of the coefficient of the matrix A are zero

ET A E =
∑

i, j

Ai j = 0 . (61)

In the second case, the condition on A to be an eigenmatrix
of L becomes

− λ

ν0
A = (a − b) [a + (N − 1)b]

[

win ΦJ

(

A E ET
)

+wout ΦJ

(

E ET AT
)

]

. (62)

Multiplying on the right by E , we obtain

− λ

ν0
A E = (a − b) [a + (N − 1)b]

[

winΦJ

(

A E ET
)

E

+wout ΦJ

(

E ET AT
)

E

]

. (63)

The following identity is useful for any V in R
N (proof by

calculating the coefficients):

ΦJ

(

E V T
)

E =
(

ET V
)

E − V . (64)

Applied to V = AE , this relation leads to

ΦJ

(

E ET AT
)

E =
(

ET A E
)

E − A E . (65)
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Because here
(

ET A E
) = 0, (63) becomes

− λ

ν0
A E = (a − b) [a + (N − 1)b]

×
[

win(N − 1) A E − wout A E
]

. (66)

Hence we have

{

− λ

ν0
− (a − b) [a + (N − 1)b]

×
[

win(N − 1) − wout
] }

A E = 0 . (67)

Once again, either the coefficient between the curly brackets
on the left side is zero, which gives the eigenvalue

λ1 ≡ −ν0(a − b) [a + (N − 1)b]
[

win(N − 1) − wout
]

(68)

or the vector A E is zero, i.e., for all i we have
∑

j Ai j = 0.
The condition upon A E implies L(A) = 0, cf. (54), and
hence the eigenvalue is determined

λ0 ≡ 0 . (69)

Replacing the terms a, b by their values in (51) for each of
the eigenvalues λ0 (69), λ1 (68), λ2 (60), gives the expression
(44) for the eigenvalues. The multiplicity of the eigenvalues
follows from the analysis in Appendix B.

B Stability of the fixed-point manifold

The linearized operator L related to the learning equation
for any fixed-point J ∗ on the manifold is defined by (43). We
investigate here the spectrum of L for the matrices A in MN .
Recall that the dimension of MN is N (N − 1).

From the definition (43) of L it is clear that any matrix
A for which AE = 0 is an “eigenmatrix” with eigenvalue
zero:˜λ0 = 0. It can be shown that provided win �= wout the
converse is also true: any eigenmatrix A corresponding to
the zero eigenvalue satisfies AE = 0 (which determines a
linear subspace AN of dimension N (N − 2) of MN ). Note
that this linear subspace AN is parallel to the manifold of
fixed-points (in the sense that the manifold is contained in
the affine subspace defined by A E = µ−ν0

µ
E). Note also that

ΦJ
(

E ET
)

is always an eigenmatrix of L with eigenvalue

˜λ2 = −µ2

ν0

(

win + wout
)

. (70)

So far the situation is exactly the same as for the homoge-
neous fixed-point.

B.1 Relationship between the spectra of (1IN − J ∗) and L

For any eigenvector V of (1IN − J ∗) related to an eigenvalue
γ (γ �= 0 because (1IN − J ∗) is invertible on the manifold),
we can construct a matrix A defined by

A = ΦJ

(

α1 V ET + α2 E V T + α3 E ET
)

(71)

with

{α1, α2, α3} =
⎧

⎨

⎩

win, wout,
− µ

ν0
(ET V )

(N − 1)
(

µ
ν0

− 1
γ

)

⎫

⎬

⎭

(72)

(with the extra condition γ �= ν0
µ

) that satisfies

L(A) = −µ

γ

[

(N − 1) win − wout
]

A . (73)

Such a matrix A is then an eigenmatrix of L with eigenvalue

˜λ1(γ ) ≡ −µ

γ

[

(N − 1) win − wout
]

. (74)

Note that in Appendix A the eigenvalue λ1 = ˜λ1(γ ) with
γ = 1 + J ∗

av.

B.2 Case when (1IN − J ∗) is diagonalisable

In this case we have a basis of N eigenvectors {V1, . . . ,

VN−1, E} corresponding to the eigenvalues {γ1, . . . ,

γN−1,
ν0
µ

} of (1IN − J ∗). We can show that the construc-
tion of a family of matrices {Ak} as in the previous section
from a linearly independent family of vectors {Vk} is still
linearly independent provided (win �= wout). This follows
because the construction involves an injective linear mor-
phism: V �→ ΦJ

(

win V ET + wout E V T
)

. Moreover this
family of {Ak} together with ΦJ

(

E ET
)

still forms a line-
arly independent family provided (win + wout) �= 0.

Note that in general (i.e., when (N − 1) win − wout �= 0),
the eigenvalues ˜λ1(γk) of L defined in the previous section
are non-zero, which ensures the linear independence between
these N matrices {Ak, ΦJ

(

E ET
)} (k = 1, . . . , N − 1) and

any basis of AN with N (N − 2) elements. We thus obtain a
basis of MN formed by N (N − 1) eigenmatrices of L. Con-
sequently L is diagonalisable and the signs of its non-zero
eigenvalues are given by the signs of − [

(N − 1) win − wout
]

and − (

win + wout
)

(recall that γ > 0 and ν0 > 0).
Note that the signs do not depend on the fixed-point con-

sidered, and are constant over the whole manifold when we
use hard bounds to keep (1IN − J ∗) invertible at all times
(the manifold is then a compact connected subset of a linear
subspace of MN ). This means γ −1 is bounded, and the zero
eigenvalues are separated from the non-zero eigenvalues,
provided the already stated conditions on the parameters
hold: namely

[

(N − 1) win − wout
] �= 0,

(

win + wout
) �= 0
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and win �= wout. We say the fixed-points are “quasi-stable”
when the non-zero eigenvalues are strictly negative.

B.3 Extension to the whole manifold

Because of the separation of the eigenvalues stated in
Sect. B.2, there is no zero eigenvalue except for those along
the direction of the manifold itself. Then, the “quasi-stable”
property (i.e., along the orthogonal direction of the mani-
fold) of any fixed-point would apply also in its surrounding.
Because the eigenvalues of the linear operator related to them
vary continuously along the manifold, we can use the fact
that the diagonalisable matrices are dense in the manifold,
in order to extent their dynamical properties to the whole
manifold.

Consequently, the whole manifold acts like an attractor
with respect to the rest of the space MN if the following
conditions on the parameters are satisfied

(N − 1) win − wout > 0,
(75)

win + wout > 0 .

Along the manifold, due to the zero eigenvalues, there is
no deterministic constraint (see discussion in Sect. 5 on the
stochastic origin of the variance).

C Calculation of Jav(t)

The equations describing the evolution of Jav(t) are straight-
forwardly derived from (31)

νav(t) = ν0 [1 − (N − 1)Jav(t)]
−1 , (76)

QW
av(t) = ˜W ν0 νav(t) [1 − (N − 1)Jav(t)]

−1 ,

d

dt
Jav(t) = ν0 (win + wout)

1 − (N − 1)Jav(t)
+ ν2

0
˜W

[1 − (N − 1)Jav(t)]2 .

This can be rewritten as

− 1

(N − 1)

d

dt
x(t) = r

x(t)
+ s

x2(t)
, (77)

where x(t) = [1 − (N − 1)Jav(t)], r = ν0 (win + wout) and
s = ν2

0
˜W . Hence by rearranging

− (N − 1) dt = F(x) dx,
(78)

F(x) =
[

x

r
− s

r2 + s2

r2 (r x + s)

]

.

Integrating from {t = 0 , x(0) = x0} to {t , x} gives

t = 1

N − 1

[

F(x0) − x2

2r
+ sx

r2 − s2

r3 ln |r x + s|
]

. (79)

Consequently the leading exponential term is given by

x(t) ∼ e−(N−1) r3 t/s2
, (80)

which gives the time constant (46): τJ = s2/(N −1) r3. The
deviations from this exponential behavior, as illustrated in
Fig. 3, are due to the polynomial terms in (79) and are larger
when the initial mean is further from the fixed-point J ∗

av.
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