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The Asynchronous State
in Cortical Circuits
Alfonso Renart,1*‡ Jaime de la Rocha,1,2* Peter Bartho,1,3 Liad Hollender,1 Néstor Parga,4
Alex Reyes,2 Kenneth D. Harris1,5†

Correlated spiking is often observed in cortical circuits, but its functional role is controversial. It is
believed that correlations are a consequence of shared inputs between nearby neurons and could
severely constrain information decoding. Here we show theoretically that recurrent neural networks can
generate an asynchronous state characterized by arbitrarily low mean spiking correlations despite
substantial amounts of shared input. In this state, spontaneous fluctuations in the activity of excitatory
and inhibitory populations accurately track each other, generating negative correlations in synaptic
currents which cancel the effect of shared input. Near-zero mean correlations were seen experimentally
in recordings from rodent neocortex in vivo. Our results suggest a reexamination of the sources
underlying observed correlations and their functional consequences for information processing.

The spiking activity of neurons is often cor-
related within local cortical populations
(1–4). Although correlations could be a

signature of active information processing (5, 6),
they can also impair the estimation of informa-
tion conveyed by the firing rates of neural pop-
ulations (7, 2, 8) and might limit the efficiency
of an organism for performing sensory discrimi-
nations (7, 2). Under special conditions, correlated
spiking is an inevitable consequence of shared
presynaptic input (9, 10). In general, however, the
overall contribution of shared input to correla-
tion magnitudes measured in vivo is unclear, as
measured correlations could reflect mostly covar-
iations in activity due to cognitive or external
variables outside the control of the experimenter
(11–13). To investigate the relation between cor-
relations and shared input, we studied theoret-
ically the correlation structures characteristic of
densely connected recurrent networks.

We start by considering how the correlation
between a single neuronal pair depends on the

fraction p of shared inputs and the degree rin to
which the inputs are themselves correlated. The
effect of shared input can be isolated by consid-
ering presynaptic neurons that fire independent-

ly (rin = 0). Both excitatory (E) and inhibitory
(I ) shared inputs cause positive correlations of a
moderate magnitude in the synaptic input and
spiking activity of the postsynaptic pair (Fig. 1,
A and B) (9, 14). Spiking correlations rin be-
tween inputs, however, have a major impact on
the output correlation rout of the postsynaptic
pair. When all inputs are E, weak input correla-
tions give rise to strongly correlated synaptic cur-
rents and output spikes (Fig. 1C). This occurs
because, when p and rin are small, the correla-
tion c of the two input currents is approximately
equal to

c ≃ pþ Nrin ð1Þ

(15), where N is the number of synaptic in-
puts, resulting in a large gain in the relation be-
tween rin and rout (Fig. 1E, upper solid curve).
The situation changes when both neurons re-
ceive I as well as E inputs. Correlations between
E or between I neurons lead to strongly cor-
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Fig. 1. Effect of shared inputs and correlated inputs on output correlation. (A) Shared excitatory (E,
green) or inhibitory (I, red) inputs induce positive correlations in the synaptic currents of two cells (c > 0).
(B) Correlation coefficient of synaptic currents c (dashed line) and output spikes rout (circles, count
window 50 ms) of a postsynaptic pair of integrate-and-fire neurons as a function of the shared input
fraction p (21). Each postsynaptic cell received NE = 250 Poisson input spike trains. (C) Input spike raster
(top), synaptic currents (middle), and membrane potentials (bottom) of a postsynaptic pair receiving
weakly correlated E inputs [black circle in (E), rin = 0.025]. (D) Whereas correlations between E inputs or
between I inputs contribute positively to c, correlations between E and I inputs have a decorrelating
effect. (E) Correlations c (dashed line) and rout (circles) as a function of the input spike correlation rin at
fixed p = 0.2. E inputs only: Each cell receives NE = 250 correlated Poisson spike trains (21); E and I
inputs: NI = 220 inhibitory input trains were added with identical statistics and correlations. (F) Same as
(C) but for the case with E and I inputs [blue circle in (E), rin = 0.025]. E and I currents are shown
separately from the total currents (black and gray). Asterisks indicate large fluctuations in the excitatory
and inhibitory currents that occur simultaneously.
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related excitatory and inhibitory synaptic cur-
rents (Fig. 1F, red and green traces). However,
when E and I inputs are themselves correlated,
large fluctuations in the excitatory and inhibitory
currents occur simultaneously (Fig. 1F, aster-
isks) and cancel, which leads to a significant
reduction in the correlation of the total synaptic
currents c and output spikes (Fig. 1F, black and
gray traces). Correlations between E and I in-
puts thus decorrelate the synaptic currents to
postsynaptic neurons (16).

To investigate whether such decorrelation
can arise spontaneously from the dynamics of a
recurrent network, we characterized the behav-
ior of correlations in a simple recurrent circuit of
binary neurons (17–19). The network consists of
two populations (of size N ) of E and I neurons
connected randomly, both receiving excitatory
projections from an external (X ) population of
N cells (Fig. 2A). The network has two key prop-
erties: First, the connectivity is “dense” so that
the connection probability p (and thus the mean
fraction of shared input) is fixed independent-
ly of the network size [e.g., p = 0.2 (20) as in
Fig. 2]. Second, the synaptic couplings are
“strong,” such that only a small fraction of a
cell’s excitatory inputs is enough to evoke
firing (Fig. 2B); in the model, although the
average number of inputs is proportional to N,
the number of E inputs needed to induce firing
is only proportional to √N (19). Our analysis
showed that, even in the presence of shared
input, the network settles into a stationary state
in which the population-averaged firing cor-
relation r is weak, if inhibition is sufficiently
strong and fast. In fact, in networks of different
sizes, r decreases in a way inversely propor-
tional to N (Fig. 2C, open squares) [(17) section
2.3], a signature of asynchronous networks (18).
In an asynchronous state, the variance of the
population-averaged instantaneous activity
scales in the same way as if the neurons were
completely independent—as 1/N. Thus, correla-
tions in the asynchronous state do not qualita-
tively constrain averaging of activity across
neural populations (fig. S2) (18).

Asynchronous activity persists in the pres-
ence of shared input because of a spontaneously
generated tracking of fluctuations in the
population-averaged instantaneous activities mE(t)
and mI(t) of the E and I neurons (Fig. 2D) [(17)
section 2.4]. Specifically, mI(t) tracks mE(t) with
a small lag (EI-Lag), and they both closely fol-
low the external instantaneous activity mX(t). In
larger networks, tracking becomes more accu-
rate and becomes perfect in the large N limit,

mE(t) ¼ AE mX (t); mI (t) ¼ AI mX (t) ð2Þ

where AE and AI are constants that depend on
the network architecture. Tracking occurs be-
cause, when the connectivity is strong and
dense, even small “random” fluctuations in
instantaneous excitatory activity, of order 1/√N,
are large enough to recruit inhibitory feedback.

Tracking of the instantaneous population ac-
tivities is equivalent to a precise cancellation of the
different components of the (zero-lag) population-
averaged current correlation c (Fig. 2E) [(17)
section 2.5]. Because the synaptic current to each
cell consists of an excitatory and an inhibitory
component, the average current correlation across
cell pairs, c, can be decomposed into cEE, cII,
and cEI (the term cIE = cEI). Both cEE and cII are
positive and large, i.e., independent of N, for
large networks (Fig. 2C, colored squares) be-
cause of amplification of weak firing correla-
tions and of shared E or I inputs (Fig. 2F, i; and
Fig. 1F, red and green traces). However, cEI is
large and negative because of correlations between
E and I cells generated by tracking, which leads
to the cancellation:

c ¼ cEE þ cII þ 2cEI ∼ 1=
ffiffiffiffi

N
p

ð3Þ
(Fig. 2C, filled squares; 2F, ii; and fig. S3).
Even after this cancellation, however, the instan-
taneous current correlation c is still larger than
the correlation in firing r (Fig. 2C, filled and open
squares). This is possible because neurons in-

tegrate their inputs over time, so that the instan-
taneous correlation r is related to the area under
the current cross-correlogram (CCG). Because
tracking becomes faster for larger networks, both
the width of the current CCG (effectively set by
the EI-Lag) and its magnitude decrease as 1/√N
(Fig. 2E, insets). Its area is thus 1/N, as required
for asynchronous firing (Fig. 2F, iii). Because
the asynchronous state just described is a dy-
namical phenomenon, it does not require fine-
tuning of network parameters (fig. S4). Parameter
changes lead to adjustments in rates and
correlations such that the cancellation in Eq. 3
still holds.

Although the theory predicts that the population-
averaged correlation r should be close to zero, it
does not predict that every pair of cells should
be as weakly correlated. Rather, the distribution
of r across pairs is “wide,” with a standard de-
viation sr much larger than its mean r for large
networks (sr decays only as 1/√N), which results
in similar numbers of positively and negatively
correlated pairs (Fig. 2G). This is because the
hard-wired sources of correlation have a strong
impact on individual r values (of order 1/√N) and

1000 1500
-20

0

Time (ms)

In
pu

tc
ur

re
nt

s

E
X

Total

I

Network size N

C
or

re
la

tio
n

τ =10 ms

P
op

ul
at

io
n

ac
tiv

ity

N=1024

N=8192

EIIE

-0.4

0

0.4
C

ur
re

nt
co

rr
el

at
io

n

-10 0 10
Lag (ms)

-0.03 0 0.03
Firing correlation r

E

I

X p

p

p

N = 1024
N = 8192

EI-Lag

EI-Lag

EIIE

r ~ 1/N

~ 1/ Nσr

Asynchronous firing
r ~ 1/N

Synchronous
current components

c ,c ,c ,cEE II EI XXc, width ~ 1/ N

Weakly asynchronous
total currents

(i)

(ii)

(iii)

A B C

D

E

F

G

r

c

cEE

cII
cXX

100 1,000 10,000
0.0001

0.01

1

Fig. 2. Asynchronous activity in a binary recurrent network. (A) Schematic of the network architecture.
The shared input fraction is p. (B) Strong coupling produces irregular spiking activity because of a
dynamic balance between the large excitatory (E and X) and inhibitory (I) currents to each cell (19, 22).
Dashed line represents threshold. (C) Population-averaged correlation coefficients of the firing ac-
tivity (r, open squares); total current (c, filled squares); and current components versus network size
N. Dashed lines show 1/√N and 1/N scaling for comparison. (D) Instantaneous population-averaged
activities (transformed to z scores) of the E, I, and X neurons showing that tracking becomes more
accurate with increasing N. (Insets) Instances of the lag between E and I activities (EI-Lag). Color code
as in (B). (E) Population-averaged CCGs of the current components (N = 8192). Color code as in (C).
(Insets) Magnification of the peak of the IE and EI CCGs (bottom) shows that the EI-Lag decreases with N,
which leads to the decrease in the magnitude and width of the total current CCG (top). (F) Description of
the asynchronous self-consistent solution (see text). (G) The histogram of firing correlations in the network
(EE pairs; N = 8192) is wide: sr >> r.
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therefore generate large heterogeneity across pairs
(fig. S3). Asynchronous activity is also possible
under nonstationary conditions: Numerical simu-
lations with time-varying inputs display a similar
correlation structure if r is computed with re-
spect to the time-varying instantaneous average
activity of each cell (fig. S5).

Active decorrelation of synaptic currents also
occurs in a more biologically plausible network
of spiking neurons. We simulated large net-
works of randomly connected conductance-based
integrate-and-fire neurons (21), with parameters
chosen to produce a balanced state (19, 22)

where neurons fired irregularly (Fig. 3A). As
predicted, the distribution of spike count
correlation coefficients r is wide (Fig. 3B), with
an extremely low average (in EE pairs r <
0.001 for all count window sizes, fig. S6C).
This happened for a large range of average
firing rates and connection probabilities (fig. S7,
A to F), with synchrony developing only when
inhibition was substantially slower than excita-
tion (fig. S7, G to I). The distribution of r
conditioned on the response to time-varying ex-
ternal inputs was also wide for a large range of
modulation frequencies (fig. S8). To determine

whether a cancellation between the components
of the current correlation (Eq. 3) underlies the
small value of r observed, we injected different
levels of constant current into cell pairs in which
we had disabled the spiking mechanism. The
range of current levels was adjusted to isolate
the excitatory postsynaptic potential (EPSP) and
the inhibitory postsynaptic potential (IPSP) com-
ponents near their respective reversal potentials
(23), or combinations of EPSPs and IPSPs at in-
termediate potentials. The correlation between iso-
lated EPSPs (Fig. 3C, green) and between isolated
IPSPs (red) was much larger than the correlation
measured with no injected current (black), be-
cause of a cancellation with the large negative
correlation between EPSPs and IPSPs (gold). The
V-shaped relation between membrane potential
correlation and holding potential (Fig. 3D) is an
experimentally testable prediction of our theory.

The existence of a wide distribution of spike
count correlations was confirmed in neuronal
population recordings collected with silicon mi-
croelectrodes in somatosensory and auditory
cortices of urethane-anesthetized rats (21). Un-
der urethane anesthesia, cortical activity displays
spontaneous changes in state (24) homologous
to those seen during sleep (25). Network activity
alternates between an “activated” (ACT) state of
tonic firing, resembling that seen in rapid eye
movement (REM) sleep (Fig. 4, A and B, blue),
and an “inactivated” state (InACT), character-
ized by global fluctuations in population activity
(up-down transitions) resembling slow-wave sleep
(Fig. 4, C and D, red). During ACT periods,
correlations were, on average, remarkably small,
and the correlation histogram was wide. (Fig. 4B
shows one experiment: r = 0.0075; 47% of pairs
negatively correlated.) These values were typical
of ACT state correlations across different ani-
mals [(Fig. 4E) n = 11 recording sessions in nine
rats, r median was 0.0053 (0.0024 to 0.0094
interquartile range); across all 30,772 pairs, r =
0.0052, and 47% had r < 0]. This behavior did
not depend strongly on the time scale at which
correlations were measured (fig. S9). Although
r in the ACT state was systematically low, it
was positive and significantly different from zero
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Fig. 3. Cancellation of correlations in a recurrent network of spiking neu-
rons. (A) Raster (top) of 500 E (green) and I (red) neurons sorted by rate in a
conductance-based integrate-and-fire network receiving shared independent
Poisson inputs (p = 0.2). Bottom curves show tracking of instantaneous
population-averaged activities (transformed to z scores, bin size 3 ms).
Average firing rates of E and I cells were 1 and 3.6 spike per s, respectively.
(B) Histogram of spike count correlations (black; count window 50 ms) and

of jittered spike trains [gray, jitter T 500 ms (21)]. (C) Population-averaged
CCGs of the membrane potential containing mostly EPSPs (green) or IPSPs
(red) in both cells, or EPSPs for one cell and IPSPs for the other (gold). The
black curve is from pairs at resting potential. (D) Peak height of the
membrane potential CCG as a function of the mean holding potential of
both neurons in the pair. Green and red circles correspond to the reversal of
inhibition and excitation, and the black circle corresponds to rest.

Fig. 4. Distribution of corre-
lations in the rat neocortex in
vivo. (A) Raster (top) and in-
stantaneous population activ-
ity (bottom) for a population of
100 simultaneously recorded
neurons (sorted by rate) during
a period of cortical activation
(ACT). (B) Histogram of spike
count correlations of the pop-
ulation in (A) is wide (sr >> r).
The white curve is the mean
histogram of the jittered spike
trains [jitter T 200 ms, gray
shade 95%confidence interval;
count window 50 ms (21)].
Insets show average raw cross-
correlograms of all negatively
(left) and positively (right) sig-
nificantly correlated pairs (P <
0.01). (C and D) Same as (A
and B) for the same population
of cells during a period of cor-
tical inactivation (InACT). Histo-
gram of correlations during
InACT is biased toward positive
values (red). Restricting the
analysis to up-state activity by
removing down-state periods
[black brackets in (C), (21)] largely eliminates the positive bias (Up-St, orange). (E) Box-whisker plots
showing the distribution of mean correlations across experiments for different conditions. Crosses
represent outliers. (F) Median fraction of significantly correlated pairs (P < 0.01, white bars) and of
significantly and negatively correlated pairs (filled bars) across experiments. Error bars represent
interquartile range.
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in all experiments (Fig. 4E; P < 0.005). A mi-
nority of both positive and negative correlations
were statistically significant (Fig. 4, B and F,
blue versus gray). Pairs with significant negative
(positive) correlations showed clear troughs
(peaks) in their cross-correlograms on average
(Fig. 4B, insets, and fig. S10). Finally, the cor-
relation histogram during the ACT state was still
wide, even if only neurons recorded in the same
shank were considered (fig. S11). During InACT
periods, as expected from comodulation by the
slow oscillation, the distribution of r was con-
sistently biased toward positive values [(Fig. 4,
C to F, red) for seven sessions in five rats, r
median was 0.0953 (0.088 to 0.109 interquartile
range); across all 18,916 pairs, r = 0.096, and
9% had r < 0]. Within up-state periods, how-
ever, average correlations were again weak (26);
removal of down-states from the recorded spike
trains (21) resulted in correlation histograms
similar to those during the ACTstate [(Fig. 4, D
and E, orange) r median was 0.0163 (0.0066 to
0.023 interquartile range); across all 18,916 pairs,
r = 0.0136, and 45% had r < 0]. Thus, correcting
for common modulations in activity revealed a
wide distribution of correlations even under non-
stationary conditions in vivo.

In summary, we demonstrate theoretically
that recurrent network dynamics can lead to an
active decorrelation of synaptic currents, result-
ing in a state of arbitrarily low mean correlation.
We therefore conclude that shared input does
not inevitably cause correlated activity. By pre-
venting uncontrolled network-wide synchrony,
this mechanism generates a background of weak-
ly correlated spiking, as required for efficient in-
formation processing based on either firing rates
or coordinated spike timing patterns (27, 28).
Both simulations and in vivo recordings showed
a wide distribution of correlations under sta-
tionary conditions. In nonstationary conditions,

global activity modulations can result in posi-
tively biased correlations, but correlations around
the mean activity imposed by these modulations
can still be extremely small (Fig. 4, D and E;
and figs. S5 and S8). Similarly weak correla-
tions have been reported in visually driven neural
populations in area V1 of awake behaving mon-
keys (29). However, as the constellation of inputs
driving a cortical circuit is, in general, unknown
to the experimenter, positive correlations may
persist even after all experimentally controlled
variables are accounted for (11, 12). Whether
“residual” correlations of this nature will have a
strong impact on coding will depend on the
extent to which downstream networks are able
to disambiguate modulations in activity due to
different sources. In either case, we suggest that
cortical circuitry does not itself constitute an ir-
reducible source of “noise.”
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Direct Restart of a Replication Fork
Stalled by a Head-On RNA Polymerase
Richard T. Pomerantz and Mike O’Donnell*
In vivo studies suggest that replication forks are arrested by encounters with head-on transcription
complexes. Yet, the fate of the replisome and RNA polymerase (RNAP) after a head-on collision
is unknown. We found that the Escherichia coli replisome stalls upon collision with a head-on
transcription complex, but instead of collapsing, the replication fork remains highly stable and
eventually resumes elongation after displacing the RNAP from DNA. We also found that the
transcription-repair coupling factor Mfd promotes direct restart of the fork after the collision by
facilitating displacement of the RNAP. These findings demonstrate the intrinsic stability of the
replication apparatus and a previously unknown role for the transcription-coupled repair pathway
in promoting replication past a RNAP block.

In vivo studies suggest that replication forks
are arrested by head-on transcription com-
plexes, but are unaffected by codirectional

transcription complexes (1) [supporting online
material (SOM) Text S1]. Mechanisms that

resolve head-on collisions in favor of the repli-
some are therefore necessary for chromosome
duplication and may preserve genomic integrity
by preventing fork collapse. In vivo data in-
dicate that head-on replisome–RNA polymerase

(RNAP) collisions cause chromosomal deletions,
which suggests dissociation of the replisome (2).
Genetic studies implicate recombinational repair
in resolving conflicts between replication and
transcription, which also suggests the possibility
of fork collapse (3, 4). Similarly, in vitro data
imply that the replisome dissociates after en-
countering a lac repressor, which arrests the fork
(5). In contrast, several in vivo studies indicate that
although replication forks stall at protein barriers,
the replisome remains stable and resumes elonga-
tion after removal of the block (6). Thus, repli-
some stalling may not necessitate fork collapse
(7).We investigated the stability of theEscherichia
coli replisome after it encounters a head-on
RNAP in vitro.
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