
DOI: 10.1126/science.1179867 
, 584 (2010); 327Science

  et al.Alexander S. Ecker,
Microcircuits
Decorrelated Neuronal Firing in Cortical

This copy is for your personal, non-commercial use only.

. clicking herecolleagues, clients, or customers by 
, you can order high-quality copies for yourIf you wish to distribute this article to others

. herefollowing the guidelines 
 can be obtained byPermission to republish or repurpose articles or portions of articles

 (this information is current as of February 18, 2010 ):
The following resources related to this article are available online at www.sciencemag.org

 http://www.sciencemag.org/cgi/content/full/327/5965/584
version of this article at: 

 including high-resolution figures, can be found in the onlineUpdated information and services,

 http://www.sciencemag.org/cgi/content/full/327/5965/584/DC1
 can be found at: Supporting Online Material

 http://www.sciencemag.org/cgi/content/full/327/5965/584#otherarticles
, 16 of which can be accessed for free: cites 28 articlesThis article 

 http://www.sciencemag.org/cgi/collection/neuroscience
Neuroscience 

: subject collectionsThis article appears in the following 

registered trademark of AAAS. 
 is aScience2010 by the American Association for the Advancement of Science; all rights reserved. The title 

CopyrightAmerican Association for the Advancement of Science, 1200 New York Avenue NW, Washington, DC 20005. 
 (print ISSN 0036-8075; online ISSN 1095-9203) is published weekly, except the last week in December, by theScience

 o
n 

F
eb

ru
ar

y 
18

, 2
01

0 
w

w
w

.s
ci

en
ce

m
ag

.o
rg

D
ow

nl
oa

de
d 

fr
om

 

http://www.sciencemag.org/about/permissions.dtl
http://www.sciencemag.org/help/about/permissions.dtl
http://www.sciencemag.org/cgi/content/full/327/5965/584
http://www.sciencemag.org/cgi/content/full/327/5965/584/DC1
http://www.sciencemag.org/cgi/content/full/327/5965/584#otherarticles
http://www.sciencemag.org/cgi/collection/neuroscience
http://www.sciencemag.org


Decorrelated Neuronal Firing
in Cortical Microcircuits
Alexander S. Ecker,1,2,3 Philipp Berens,1,2,3 Georgios A. Keliris,1 Matthias Bethge,1,2
Nikos K. Logothetis,1,4 Andreas S. Tolias3,5,6*

Correlated trial-to-trial variability in the activity of cortical neurons is thought to reflect the
functional connectivity of the circuit. Many cortical areas are organized into functional columns, in
which neurons are believed to be densely connected and to share common input. Numerous studies
report a high degree of correlated variability between nearby cells. We developed chronically
implanted multitetrode arrays offering unprecedented recording quality to reexamine this question
in the primary visual cortex of awake macaques. We found that even nearby neurons with similar
orientation tuning show virtually no correlated variability. Our findings suggest a refinement of
current models of cortical microcircuit architecture and function: Either adjacent neurons share
only a few percent of their inputs or, alternatively, their activity is actively decorrelated.

Correlated response fluctuations among
simultaneously recorded neurons have
been observed in a number of cortical

areas (1–14). The prevailing hypothesis is that
these correlations (referred to as “noise correla-
tions”) are caused by random fluctuations in the
activity of neurons presynaptic to a pair of cells
(5, 6, 15–17). Noise correlations are reported to
be particularly strong in nearby cells with similar
response properties (5–13, 18), which supports
the idea that nearby cells within a functional col-
umn are densely connected and share a substan-
tial amount of common input (17). Theoretical
work shows that noise correlations with such a
“limited-range” structure are particularly detri-
mental for population coding (5, 19–21). Thus,
knowledge of the precise nature of noise correla-
tions can advance our understanding of the struc-
ture and function of cortical microcircuits in vivo.

Although the prevalent finding of spike count
correlations in the range of 0.1 to 0.3 (2–11)
seems to suggest that their magnitude and cause
have been firmly established, there are several
technical challenges in the measurement of noise
correlations. Spike count correlations can be gen-
erated in the absence of shared presynaptic noise
by a number of factors: First, it is difficult to con-
trol for internal variables, which modulate firing
rates, such as motor plans, or cognitive states,
like attention. Second, recordings from electrodes
that are not chronically implanted often suffer
from instabilities in the electrodes’ positions.
Third, if multiple cells are recorded from the
same electrode, suboptimal single-unit isolation is
a concern (22). Fourth, in experiments conducted
under anesthesia, correlationsmay arise from spon-

taneous oscillations that are absent in behaving
animals (23). Given that all these factors will arti-
ficially increase estimates of noise correlations, it
is important to control for every single one.

We reexamined this issue and measured spike
count correlations by using arrays of chronically
implanted tetrodes (fig. S1) to simultaneously
record the activity of local groups of neurons in
the primary visual cortex (area V1) of awake mon-
keys (24, 25). Tetrodes provide a superior quality
of single-unit isolation of nearby neurons (26)
compared with conventional single electrodes or
rigidmultielectrode arrays. An example of a tetrode
isolatingmultiple cells is shown in Fig. 1. Because

the signal is recorded simultaneously by four
adjacent microwires, the location of the neurons
can be triangulated, resulting in distinct clusters,
each representing the action potentials of a single
neuron (Fig. 1, A and B). If, for example, only
channel 4 had been recorded (as could be the case
with a single electrode), cells 1, 2, 4, and 5 would
have been nearly impossible to distinguish. For
our analyses, we only considered cells that were
quantitatively determined to be very well iso-
lated, in this case discarding the second neuron,
which had ~8% falsely assigned spikes (25).
Cells recorded on one tetrode had highly over-
lapping receptive fields (Fig. 1C, colored out-
lines). We presented sine wave gratings drifting
in 16 directions of motion perpendicular to the
grating orientation (Fig. 1C). Consistent with the
columnar organization of V1, three of the four
neurons had very similar preferred orientations
(Fig. 1D). When we examined the spike count
correlations (rsc) of the six pairs, they were
extremely low (Fig. 1E), with an rsc average
value of 0.02.

We collected data in a total of 46 recording
sessions from two monkeys (D, 27; H, 19).
Gratings were presented at eight different orien-
tations and were either static or drifting in the
direction orthogonal to the orientation. The grat-
ings were large enough to cover the receptive
fields of all neurons recorded by the array (Fig.
1C). Spatial frequency and speed were chosen
such that a large number of neurons was driven,
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Fig. 1. Example of five single units recorded from one tetrode. Colors are matched in all panels. (A)
Scatter plots showing amplitude of first principal component of spike waveforms for all pairs of channels.
Clusters are modeled as multivariate Gaussians, which allows quantification of their separation. (B)
Example waveforms of multiunit (black) and the five single units (colored). Each row corresponds to one
tetrode channel. Estimated false-assignment rates (25) are shown below each column. Neuron 2 (orange)
is discarded because of insufficient isolation. (C) Grating stimulus overlaid with receptive field outlines of
24 simultaneously recorded neurons. Red dot, fixation spot. (D) Tuning curves. Error bars are SEM. (E)
Scatter plots of z score–transformed responses for all pairs obtained from the four neurons. rsc values are
indicated. Pair identities are coded by colored dots.
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but not optimized for any specific cell. In total,
we recorded 917 single units. After discarding
cells that were not well isolated (>5% falsely
assigned spikes), not visually responsive, or not
tuned to orientation, we obtained 407 (D, 262;
H, 145) single units. This corresponds to 1907
(D, 1335; H, 572) simultaneously recorded pairs,
in 406 of which (D, 361; H, 45) both neurons
were recorded by the same tetrode.

Neurons recorded from one tetrode are phys-
ically close to each other, have highly overlap-
ping receptive fields, and are believed to receive
strong common input. Nevertheless, spike count
correlations in pairs of neurons recorded by the
same tetrode were exceedingly low (rsc = 0.005 T
0.004; mean T SEM) (Fig. 2). Even cells with
similar preferred orientations (rsignal > 0.5) had
very weak correlations (rsc = 0.028 T 0.010). This
also held if pairs were strongly driven by gratings
with orientations close to the cells’ preferred
orientations. Under such stimulation, spike count
correlations were not larger than those under stim-

ulation with less optimal gratings (rsc = 0.021 T
0.013 versus 0.016 T 0.011, two-sample t test: P=
0.80, n = 361). Only ~14% of all pairs with cells
recorded from the same tetrode had correlations
significantly different from zero (a = 0.05; for
rsignal > 0.5: 13.2% positive, 2.4% negative; for
rsignal < 0.5: 5.9% positive, 7.4% negative).
Theoretical considerations and numerical studies
indicate that much of the scatter in the distribution
(Fig. 2B) may result from estimating correlation
coefficients from finite data (figs. S2 and S3).
Even though there were cases where similarly
tuned neurons were correlated, these constituted
only a small minority of pairs. Under our experi-
mental conditions, spike count correlations for local
ensembles were smaller than previously reported
by more than an order of magnitude (Fig. 2C).

Previous studies report high correlations also
for similarly tuned cells recorded on different
electrodes separated by up to several millimeters
(7–11). Therefore, we analyzed all simultaneously
recorded pairs, including those pairs where the

two neurons were recorded by different tetrodes.
Average spike count correlations were low (rsc =
0.010 T 0.002, mean T SEM) (Fig. 3, A and B).
There was only a weak relation between tuning
similarity and spike count correlation (two-sample
t test, rsignal < 0.5 versus rsignal > 0.5: P = 0.003,
n = 1907) (Fig. 3C), and even similarly tuned
cells had an average correlation close to zero
(rsignal > 0.5: rsc = 0.023 T 0.005, mean T SEM)
(Fig. 3C). Correlations did not depend on the
distance between the two neurons (linear regres-
sion slope: P = 0.99; two-sample t test within
versus across tetrodes: P = 0.16) (Fig. 3D).
Although there was a weak relation between two
neurons’ average firing rate and their spike count

Fig. 2. Spike count correlations of pairs of neurons recorded by the same tetrode. (A) Relation between
rsignal and rsc for all pairs of nearby neurons (both neurons recorded by the same tetrode). (B) Distribution
of rsc (mean T SEM = 0.005 T 0.004). Colored lines are distributions obtained by generating artificial data
with the same number of trials as in the experiments (red, fixed rsc = 0.01; blue, average rsc = 0.01 and
S.D. 0.1), which indicate that most of the scatter in the empirical distribution is due to estimating
correlations from finite data [see supporting online material (SOM) text sections 1 and 2 for discussion].
(C) Average rsc compared with previously reported values [black symbols, V1 (3, 4, 7–9); MT (5, 6); IT (2)].
Cells with similar tuning (rsignal of >0.5) have slightly higher correlations (rsc = 0.028 T 0.010) than
dissimilar cells (rsc = –0.001 T 0.004, two-sample t test, P = 0.002, n = 406), but rsc is an order of
magnitude smaller than in previous reports.

Fig. 3. (A) Relation between rsignal and rsc for all
pairs of simultaneously recorded neurons. (B) Dis-
tribution of rsc (mean T SEM = 0.010 T 0.002). (C)
Cells with similar tuning (rsignal of >0.5) have
slightly higher correlations (rsc = 0.023 T 0.005)
than the remaining cells (rsc = 0.008 T 0.002, two-
sample t test, P = 0.025, n = 1907). (D) rsc values
do not depend on the distance between neurons
(linear regression: P = 0.99, n = 1907). The bin at
zero contains neurons recorded by the same tetrode
(Fig. 2). Error bars show SEM.

Fig. 4. Spike count correlations for natural images. (A) Example of the stim-
ulus with receptive field outlines of 13 simultaneously recorded neurons. Red
dot, fixation spot. (B) Peristimulus time histograms of cells in (A) for this stim-
ulus. In each trial, the stimulus was flashed four times for 200 ms, with 50-ms
pauses. For consistency with the grating stimulus, spike counts were computed

from the first 500ms (two stimulus flashes). (C) Relation between receptive field
distance and rsc is not significant (linear regression: P = 0.11, n = 329). (D)
Distribution of rsc (mean T SEM = 0.001 T 0.005). (E) Average rsc for pairs with
overlapping receptive fields versus pairs with nonoverlapping receptive fields.
Two-sample t test: P = 0.89, n = 329.
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correlations, this relation arose on time scales
longer than one trial and therefore appears to be
unrelated to shared presynaptic noise (fig. S4).

To investigate whether low correlations also
occur under more naturalistic stimulus conditions,
we conducted additional experiments in one of
the monkeys (H). We first mapped the neurons’
receptive fields before presenting natural images
(Fig. 4, A and B) (25). The average rsc was close
to zero (rsc = 0.001 T 0.005, mean T SEM, one-
sample t test:P= 0.89, n = 329) (Fig. 4, C andD),
with no relation between receptive field overlap
and spike count correlations (linear regression
slope: P= 0.12, n = 329) (Fig. 4C). Neurons with
receptive fields within 0.5° of visual angle had
spike count correlations similar to neurons with
more distant receptive fields (two-sample t test:
P = 0.43, n = 329) (Fig. 4E).

We recorded another 56 pairs of neuronswhile
a third monkey (B) was presented with moving
bars. As with the other stimuli, spike count cor-
relations were close to zero under these conditions
(0.014 T 0.011, mean T S.E.M, P = 0.21, n = 56)
(fig. S5).

Under a variety of stimulation conditions
ranging from classic stimuli (such as bars and
gratings) to natural images, spike count correla-
tions in the primary visual cortex of awake
monkeyswere extremely low. These results stand
in contrast to a number of previous studies, which
report correlations of the order 0.1 to 0.3. Above
we suggested four factors that could lead to spike
count correlations unrelated to shared presynaptic
noise (27). We now demonstrate how artificially
introducing any one of these into our data produces
correlations similar to previously published results.
First, uncontrolled external or internal variables
can be studied by assuming the neurons’ firing
rates are gain-modulated by a common under-
lying process. Shared modulations of only ~15%
can lead to correlations on the order of 0.2, as

shown in fig. S6. It is extremely hard, if not im-
possible, to control precisely the effects of at-
tentional state, reward expectancy, task-solving
strategy, or other cognitive factors (28). In con-
trast to extrastriate areas like V4 or MT, area V1
is much less affected by such modulations. Sec-
ond, slow drifts over time or abrupt movements
of the electrode tip can lead to changing wave-
forms and, thus, lost spikes or increased contami-
nation by multiunit activity because of decreasing
signal-to-noise ratio. Because movement is likely
to affect all neurons recorded by one electrode, it
can be modeled as a common gain modulation,
and the above arguments apply. Our recordings
were extraordinarily stable, as demonstrated by
our ability to track neurons over several days
(24). Third, contamination of waveform clusters
identified as single units by spikes of other cells
can create artificially high correlations and can
even give rise to or amplify the limited-range cor-
relation structure (fig. S7 shows that ~10% false
assignments during spike sorting can produce
correlations of order 0.1). Fourth, during anesthe-
sia, up and down states or even subtle variations
in the level of anesthesia will inevitably cause
changes in firing rates common to many cells
[analogous to point 1 but on a relatively rapid
time scale; see also (29)], potentially having a
stronger impact on nearby cells. Thus, any mean-
ingful characterization of the impact of noise cor-
relations on population coding critically depends
on the ability to obtain stable recordings from
large populations of well-isolated adjacent neu-
rons, ideally in an awake animal and in a cortical
region like V1, which is not modulated strongly
by variables that cannot be precisely controlled.
Interpreting spike count correlations in terms of
their effects on encoding capacities of cortical
microcircuits or drawing conclusions about func-
tional connectivity only makes sense if one can
separate covariability because of uncontrolled
variables from that reflecting intrinsic noise in
the circuit.

Our findings have implications for models of
cortical circuit architecture. The current view on
the generation of correlations in cortical circuits
rests on twomajor assumptions: (i) nearby cortical
neurons receive a substantial amount of common
input (6, 17, 30, 31); (ii) such common input leads
to correlations (15–17, 32). In light of our data, at
least one of these assumptions cannot be correct.

Based on measured spike count correlations,
an influential modeling study inferred that, on
average, nearby cells share up to 30% of their
inputs (17). Under the same model, our data
suggest that at most, 5% of the inputs are shared.
Note that anatomical studies report ~10% com-
mon inputs for excitatory neurons (30, 31). In
addition, cortical excitatory connections may be
very precisely structured (33) to form many in-
dependent subunits. In this case, most recorded
pairs consist of neurons belonging to different
subunits, and average correlations are very low.

Assumption (ii) has been challenged by
recent network models in which a dynamic

balance of excitatory and inhibitory fluctuations
counteracts correlations induced by common in-
puts (29, 34). This results in correlations that are
positive on average but very low (~0.01), a pre-
diction in good agreement with our data. To
prevent small correlations from accumulating
and dominating network activity, such a decorre-
lation mechanism might be a crucial prerequisite
of hierarchical cortical processing.

Whatever the mechanism behind the decorre-
lated state of the neocortex, it offers substantial
advantages for information processing: Consider
a downstream neuron reading out the orientation
of a grating from the activity of V1 neurons. If
correlations were ~0.12 on average (5, 6), the
number of neurons necessary to achieve 2° pre-
cision (root mean square error) would be five
times larger than those in the scenario in which
the average correlations are ~0.01 (Fig. 5 and fig.
S8). Moreover, it is unclear whether neurons
have access to the correlation structure of their
synaptic inputs. If the network is in the
decorrelated state, however, the effect of not
taking any remaining correlations into account is
small, and decoding is greatly simplified.
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The Asynchronous State
in Cortical Circuits
Alfonso Renart,1*‡ Jaime de la Rocha,1,2* Peter Bartho,1,3 Liad Hollender,1 Néstor Parga,4
Alex Reyes,2 Kenneth D. Harris1,5†

Correlated spiking is often observed in cortical circuits, but its functional role is controversial. It is
believed that correlations are a consequence of shared inputs between nearby neurons and could
severely constrain information decoding. Here we show theoretically that recurrent neural networks can
generate an asynchronous state characterized by arbitrarily low mean spiking correlations despite
substantial amounts of shared input. In this state, spontaneous fluctuations in the activity of excitatory
and inhibitory populations accurately track each other, generating negative correlations in synaptic
currents which cancel the effect of shared input. Near-zero mean correlations were seen experimentally
in recordings from rodent neocortex in vivo. Our results suggest a reexamination of the sources
underlying observed correlations and their functional consequences for information processing.

The spiking activity of neurons is often cor-
related within local cortical populations
(1–4). Although correlations could be a

signature of active information processing (5, 6),
they can also impair the estimation of informa-
tion conveyed by the firing rates of neural pop-
ulations (7, 2, 8) and might limit the efficiency
of an organism for performing sensory discrimi-
nations (7, 2). Under special conditions, correlated
spiking is an inevitable consequence of shared
presynaptic input (9, 10). In general, however, the
overall contribution of shared input to correla-
tion magnitudes measured in vivo is unclear, as
measured correlations could reflect mostly covar-
iations in activity due to cognitive or external
variables outside the control of the experimenter
(11–13). To investigate the relation between cor-
relations and shared input, we studied theoret-
ically the correlation structures characteristic of
densely connected recurrent networks.

We start by considering how the correlation
between a single neuronal pair depends on the

fraction p of shared inputs and the degree rin to
which the inputs are themselves correlated. The
effect of shared input can be isolated by consid-
ering presynaptic neurons that fire independent-

ly (rin = 0). Both excitatory (E) and inhibitory
(I ) shared inputs cause positive correlations of a
moderate magnitude in the synaptic input and
spiking activity of the postsynaptic pair (Fig. 1,
A and B) (9, 14). Spiking correlations rin be-
tween inputs, however, have a major impact on
the output correlation rout of the postsynaptic
pair. When all inputs are E, weak input correla-
tions give rise to strongly correlated synaptic cur-
rents and output spikes (Fig. 1C). This occurs
because, when p and rin are small, the correla-
tion c of the two input currents is approximately
equal to

c ≃ pþ Nrin ð1Þ

(15), where N is the number of synaptic in-
puts, resulting in a large gain in the relation be-
tween rin and rout (Fig. 1E, upper solid curve).
The situation changes when both neurons re-
ceive I as well as E inputs. Correlations between
E or between I neurons lead to strongly cor-
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Fig. 1. Effect of shared inputs and correlated inputs on output correlation. (A) Shared excitatory (E,
green) or inhibitory (I, red) inputs induce positive correlations in the synaptic currents of two cells (c > 0).
(B) Correlation coefficient of synaptic currents c (dashed line) and output spikes rout (circles, count
window 50 ms) of a postsynaptic pair of integrate-and-fire neurons as a function of the shared input
fraction p (21). Each postsynaptic cell received NE = 250 Poisson input spike trains. (C) Input spike raster
(top), synaptic currents (middle), and membrane potentials (bottom) of a postsynaptic pair receiving
weakly correlated E inputs [black circle in (E), rin = 0.025]. (D) Whereas correlations between E inputs or
between I inputs contribute positively to c, correlations between E and I inputs have a decorrelating
effect. (E) Correlations c (dashed line) and rout (circles) as a function of the input spike correlation rin at
fixed p = 0.2. E inputs only: Each cell receives NE = 250 correlated Poisson spike trains (21); E and I
inputs: NI = 220 inhibitory input trains were added with identical statistics and correlations. (F) Same as
(C) but for the case with E and I inputs [blue circle in (E), rin = 0.025]. E and I currents are shown
separately from the total currents (black and gray). Asterisks indicate large fluctuations in the excitatory
and inhibitory currents that occur simultaneously.
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