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Current models for learning feature detectors work on two timescales:
on a fast timescale, the internal neurons’ activations adapt to the cur-
rent stimulus; on a slow timescale, the weights adapt to the statistics
of the set of stimuli. Here we explore the adaptation of a neuron’s in-
trinsic excitability, termed intrinsic plasticity, which occurs on a separate
timescale. Here, a neuron maintains homeostasis of an exponentially dis-
tributed firing rate in a dynamic environment. We exploit this in the
context of a generative model to impose sparse coding. With natural im-
age input, localized edge detectors emerge as models of V1 simple cells.
An intermediate timescale for the intrinsic plasticity parameters allows
modeling aftereffects. In the tilt aftereffect, after a viewer adapts to a grid
of a certain orientation, grids of a nearby orientation will be perceived as
tilted away from the adapted orientation. Our results show that adapting
the neurons’ gain-parameter but not the threshold-parameter accounts
for this effect. It occurs because neurons coding for the adapting stim-
ulus attenuate their gain, while others increase it. Despite its simplicity
and low maintenance, the intrinsic plasticity model accounts for more
experimental details than previous models without this mechanism.

1 Introduction

Primary visual cortex V1 is one of the best-studied brain areas because it
is easily accessible at the brain surface in many mammalian species, and it
represents information that can be easily visualized. The most prominent
response property of V1 simple cells is that they respond to localized edges
in the visual field, their receptive fields characterizable as Gabor filters (for
a review of V1 cell properties, see, e.g., Hirsch & Martinez, 2006). Dur-
ing early development, the filter characteristics are strongly susceptible to
learning (Sengpiel, Stawinski, & Bonhoeffer, 1999). On a timescale of several
seconds, however, filter characteristics can vary by the neurons adapting
to the incoming stimuli (Blakemore & Campbell, 1969). This can improve
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discriminability of visual patterns by reducing correlations (Müller, Metha,
Krauskopf, & Lennie, 1999; Wainwright, 1999), and leads to visual afteref-
fects.

In this letter, we present a new generative model describing adaptation
and learning at these different timescales. Its principal innovation is the
utilization of an intrinsic plasticity mechanism rooted in information theory
(Triesch, 2007). Here we show how the fast-adapting neuronal variables of
this mechanism allow modeling of aftereffects and help learning of V1
simple-cell-like receptive fields.

1.1 Models for the Development of Edge Detectors. Learning edge
detectors from natural images became popular with sparse coding gener-
ative models (Olshausen & Field, 1997) and independent component anal-
ysis (ICA) models (Bell & Sejnowski, 1996), both of which are equivalent
under certain assumptions (Olshausen & Field, 1997). ICA is mostly per-
formed with PCA-based preprocessing for dimensionality reduction based
on principal component analysis (PCA) and using a fast algorithm version
(Hyvärinen, Karhunen, & Oja, 2001). These models assume that V1 neurons
are sparsely active and hence must code an image in terms of features that
are sparsely distributed in images. Learning optimal image reconstructions
under this constraint leads to neurons becoming localized edge detectors
in accordance with V1 simple cells. A recent variant, the sparse set coding
network (Rehn & Sommer, 2007), eliminates small activations and thereby
obtains a minority of circular receptive fields, as found in macaque.

In a generative model, the input data will be reconstructed from the hid-
den code (latent variables) using top-down feedback connections. The error
between this reconstruction and the data is the main learning signal for these
feedback connections. Recent evidence indicates that V1 feedback to lateral
geniculate nucleus (LGN) is inhibitory in those LGN regions from which the
corresponding V1 cell receives its input, and excitatory to the opposite (ON
versus OFF) LGN layer (Wang, Jones, Andolina, Salt, & Sillito, 2006), sup-
porting the negative feedback used for learning by the generative models.

The most commonly used models (Olshausen & Field, 1997; Rao &
Ballard, 1997) use the reconstruction error in the input to reestimate and
refine the V1 code. They learn the feedback projections and obtain the for-
ward, LGN-V1, connections by matrix transposition or, in the case of ICA,
by a nonlocal learning rule (Bell & Sejnowski, 1996). The wake-sleep algo-
rithm (Hinton, Dayan, Frey, & Neal, 1995), which we have already used to
model V1 simple cells (Weber, 2001), involves no iterative computations of
the V1 code. Feedback and forward connections are both learned by local
learning rules in separate phases, as we describe below.

A generative model has the advantage that as one neuron generates a
specific feature of the data stimulus, other neurons need only to consider
other, nonexplained, features. This happens because only the difference
between the data and its reconstruction contributes to learning. Hereby the
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neurons’ firing becomes decorrelated, assuming that the latent variables are
uncorrelated in their prior. Hence, no inhibitory lateral interaction between
the hidden neurons is necessary for feature learning.

Another class of models enforces sparse coding via lateral weights
(Földiák, 1990; Bednar & Miikkulainen, 2000), which decorrelate the neu-
rons’ firing. These models do not use feedback connections to the input
layer. They produce localized edge detectors with larger receptive fields
than those produced by sparse generative models (Falconbridge, Stamps,
& Badcock, 2006).

1.2 Models for the Tilt Aftereffect. In the tilt aftereffect (TAE), the
perceived orientation of a test grating is altered. For instance, after adapting
to a vertical grating, slightly off-vertical test gratings are perceived as being
more strongly tilted. This effect arises after several seconds; its magnitude
rises logarithmically in time, until it saturates after approximately 1 hour
of adaptation (Greenlee & Magnussen, 1987). In these experiments, the
maximally perceived orientation error was approximately 4 degrees at a
test orientation 12 degrees away from the adapting orientation. The effect
decays with the same rate constant as it arises. Orientations near 90 degrees
away from the adapting orientation are perceived tilted toward the adapting
stimulus’s orientation. This weaker effect is termed the indirect TAE.

The simplest explanation of the tilt aftereffect is that the V1 simple cells
that perceive the adapting stimulus selectively reduce their excitability. This
involves reducing their mean membrane potential (Carandini, 2000). In ad-
dition, there have been found response increases away from the adapting
orientation (Dragoi, Sharma, & Sur, 2000). A test stimulus that is tilted
slightly away from the adapting orientation will excite cells at the adapting
orientation as well as cells farther away. With cells at the adapting orienta-
tion being less excitable and cells farther away having stronger responses,
the perception of the orientation of the test stimulus will be biased away
from the adapting orientation.

In order to find out how adaptation is implemented in the brain, it
has been studied how varying the neuronal model parameters influences
the shape and size of the TAE curve. For example, Wilson and Humanski
(1993) adapt one parameter per neuron, which increases divisive feedback
to the input units. This is done to match an experiment that shows in-
creased thresholds for judging contrast increments, and to explain the TAE
experiment for a given adaptation time. Clifford, Wenderoth, and Spehar
(2000) allow only two operations that resemble additive and multiplicative
changes of the tuning curves and model successfully the TAE, tilt illusion
(TI), and motion-related direction aftereffect (DAE) as well as a color af-
tereffect. Jin, Dragoi, Sur, and Seung (2005) mold neuronal tuning curves
by scaling, changing the widths, and shifting. They conclude that repul-
sive shifts of preferred orientations (an effect of lateral interactions) are
important for achieving accurate predictions of the TAE.
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Models that aim at maximizing information transmission show that af-
tereffects can be modeled by adjusting a local parameter such as the vari-
ance of the hidden units’ responses (Dayan, Sahani, & Deback, 2002) or
a response envelope function over the hidden units (Wainwright, 1999).
Schwabe and Obermayer (2006) investigate the adaptation of different pa-
rameters and find that optimizing the values of the neuronal gain accounts
best for experimental data on attentional modulation, while optimizing the
strength of recurrent connections explains changes observed in perceptual
learning experiments.

In the LISSOM model (Bednar & Miikkulainen, 2000), lateral inhibitory
connections gain strength by fast Hebbian learning during adaptation.
Hence, neurons that code for the adapting orientation increase their mutual
inhibition, thereby attenuating their firing and causing the TAE. Further-
more, the indirect TAE arises because as a consequence of inhibitory weight
normalization, neurons coding for the adapting stimulus are less inhibited
from the far orientations that are tested in the indirect TAE. This induces
a bias toward the adapting orientation. In another study (Ciroux, 2006),
the LISSOM model also explains the McCollough effect, in which a color
is negatively associated with an orientation (McCollough, 1965). However,
this aftereffect naturally decays only after hours or days, much slower than
it emerges, unlike the TAE. Therefore, a different mechanism is likely to be
involved.

1.3 Motivation for New Model. Recently we have suggested that a
neuron adjusts its transfer function parameters, slope and threshold, to
maintain its firing rate in a sparse exponential regime (Triesch, 2007). It
is important that a neuron can respond to perturbations in a homeostatic
manner (Davis & Bezprozvanny, 2001), and we propose this mechanism for
firing rate homeostasis. Since our neuron was shown to discover heavy-
tailed directions in the input (Triesch, 2007), we wish to extend the model
to multiple neurons. After having solved the bars test in initial explorations
(Butko & Triesch, 2007), we show here that intrinsic plasticity can enforce
sparse coding in the hidden neurons of a generative model, enabling the
learning of realistic feature detectors. Since the intrinsic plasticity param-
eters adapt faster than the weights but slower than the activations, we
investigate short-term adaptation. We show that the model can explain the
TAE with local neuronal adaptation parameters, without the use of lat-
eral interactions. Hence it successfully integrates the fields of unsupervised
learning and explanation of physiological data in terms of optimal coding
on several timescales.

2 Methods

Our model for the development of V1 simple cells is a sparse coding
Helmholtz machine that was previously shown to produce localized edge
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Figure 1: Model architecture and variables. (a) The input x is conveyed by the
bottom-up weights Wbu to the “net input” y of the hidden neurons. The input can
be reconstructed from the hidden neurons’ output z by the top-down weights
Wtd . (b) Left: The transfer function ga ,b(y) computes z given y and depends on
the parameters a and b. Right: The sparseness of the exponential prior density
function fz(z) on z is parameterized by its mean µ.

detectors (Weber, 2001). The first essential property is that it is a genera-
tive model; hence, during learning, the model is tested on whether it can
reconstruct the incoming data from its internal representation via feed-
back weights. The wake-sleep algorithm (Hinton et al., 1995) supplies local
learning rules for both the feedback and feedforward weights and is an
approximation to the generative Helmholtz machine model. The second
essential model ingredient is sparseness of the internal representation. Fol-
lowing Triesch (2007) we enforce sparseness by modifying the simple cells’
transfer function parameters so that the firing rate distribution during pre-
sentation of the data approximates a decaying exponential function.

Hence, there are three groups of variables and associated timescales
being adjusted: (1) neuronal activations adapt completely to a current stim-
ulus and have no memory; (2) transfer function parameters of the hidden
neurons adapt fairly fast but need to sample several occurrences of data
points in order to estimate and adjust the firing rate statistics to be sparse;
and (3) neuronal weights analyze the statistics of the entire data set and
learn slowly.

2.1 Architecture and the Neuron Model. The model architecture and
its variables are shown in Figure 1. An input data point �x is conveyed to the
net activation �y of the hidden units by the bottom-up weight matrix Wbu.
For hidden unit i and inputs j , this gives

yi =
∑

j

wbu
i j x j . (2.1)

The logistic transfer function then conveys yi to a neuronal output zi :

zi = ga ,b(yi ) = 1
1 + exp(−(ai yi + bi ))

. (2.2)
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The transfer function has two modifiable parameters: a scales the input and
resembles a gain, or slope. b shifts the curve and resembles a threshold,
because it determines the point at which the output starts to rise sharply.
The weights are normalized so that

∑
j (w

bu
i j )2 = 1 for each hidden neuron i .

2.2 Sparseness. Given the input distribution over �x and relatively slow
changing weights Wbu, the transfer function parameters are adjusted to
keep the neuronal output zi of each hidden neuron individually in an ap-
proximately exponential regime, as indicated on the right of Figure 1. This
exponential function

fexp(zi ) = 1
µ

e− zi
µ (2.3)

is parameterized by µ, which determines the mean for an exponential de-
fined over the positive half-axis. Exponential spike count distributions were
found in V1 responses to video in anesthetized cats (Baddeley, 1997). They
argue that an exponential rate distribution minimizes metabolic consump-
tion because it maximizes the entropy for a given mean firing rate. As long
as µ is set well below 0.5, we can assume that the cutoff at 1 by the trans-
fer function does not change the shape of the exponential relevantly, and
sparse firing is guaranteed by the shape of the exponential, which has a
Fisher kurtosis of 6. It was argued that distributions with kurtosis larger
than zero are suited for ICA (Bell & Sejnowski, 1996) and that distributions
with large kurtosis produce a sparse code (Olshausen & Field, 1997).

We adjust the parameters a and b to minimize the Kullback-Leibler diver-
gence d( fz‖ fexp) between the hidden neuron’s firing rate distribution fz(zi ),
which depends on a and b, and the desired distribution fexp(zi ). As we
have shown previously (Triesch, 2007), gradient descent yields incremental
update rules:

�ai = −ηa
∂

∂ai
d( fz(zi )‖ fexp(zi )) = ηa

(
1
ai

+ yi − 2yi zi − 1
µ

yi zi + 1
µ

yi z2
i

)

(2.4)

�bi = −ηb
∂

∂bi
d( fz(zi )‖ fexp(zi )) = ηb

(
1 − 2zi − 1

µ
zi + 1

µ
z2

i

)
. (2.5)

2.3 Wake-Sleep Algorithm. The wake-sleep algorithm learns the gen-
erative and recognition weights in two separate, alternating phases. First,
we consider only learning of the generative weights Wtd from the data in a
so-called wake phase. After we obtain the hidden code �z using equations 2.1
and 2.2, the network reconstructs the data, and one obtains the reconstruc-
tion error,

x̂ = �x − Wtd�z . (2.6)
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An error-based Hebbian-like learning rule,

�wtd
ji = ηtd

w x̂ j zi , (2.7)

adjusts Wtd to minimize the reconstruction error, equation 2.6. ηtd
w is the

learning step size. Unlike the recognition weights, the generative weights
Wtd are not normalized. They scale automatically to minimize the error,
equation 2.6, and there are no transfer function parameters on the linear
input units that would adapt.

The recognition weights Wbu are trained to functionally invert the gen-
erative weights in the sleep phase in which no data are present. For this
purpose, “fantasy” vectors z̃ are presented on the hidden units. These are
projected as x̃ = Wtd z̃ to the input units, and the recognition weights per-
form the functional inversion Wbux̃ by attempting to reconstruct the fantasy
vectors. The reconstruction error is

ẑ = z̃ − ga ,b(Wbux̃), (2.8)

using the transfer function, equation 2.2. Again, an error-based Hebbian-
like learning rule,

�wbu
i j = ηbu

w ẑi x̃ j , (2.9)

adjusts Wbu to minimize the reconstruction error, equation 2.8.
The fantasy vectors used in the sleep phase are sparse random activation

patterns with activation values drawn from the exponential distribution,
equation 2.3, independently for each unit.

The generative model Wtd�z is a linear ICA model that generates the
data from sparse, overcomplete latent variables. In contrast, the recogni-
tion model ga ,b(Wbu�x) involves a nonlinear transfer function. Hence, both
models cannot invert each other exactly, so the recognition model only ap-
proximates inference of the latent variables from the data. The nonlinearity
is required as part of the intrinsic plasticity mechanism to create the sparse
latent variables from which the linear generative model is learned. With-
out the sparsifying nonlinearity of the elsewise linear recognition model,
the linear generative model would not learn sparse features. So if one in-
corporated on each hidden neuron the inverse of the nonlinearity into the
generative model by using Wtd g−1

a ,b(�z), then the generative model could in-
vert the recognition model exactly, but that would also cancel the sparsifying
effect of the nonlinearity.

Since the IP parameters a and b take part in transforming the �y into
the �z latent variables, they may be regarded as part of the recognition
model. On the other hand, we adjust them in the wake phase when the
generative weights are learned. We do this because a and b must adapt to
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the data distribution that is available only in the wake phase. They assist in
maximizing the likelihood of the generative model in the weight update,
equation 2.7, by keeping the latent variable distribution stationary over the
course of learning.

2.4 Images. Patches were taken from 62 gray-scale images of natural
scenes of which 14 included some artifacts such as buildings. Preprocess-
ing consisted of filtering the images with a low-pass filter that is described
in frequency space as f · exp(−( f

f0
)4), with f0 = 200 cycles per picture, as

described in Olshausen and Field (1997). By the factor f , which attenu-
ates small frequencies, this filter eliminates large luminance changes and
counterbalances the 1/ f 2 frequency spectrum of natural images (“whiten-
ing”). By its exponential term, which attenuates very high frequencies, it
eliminates noise and sampling artifacts. Olshausen and Field refer to com-
parable response characteristics of retinal ganglion cells. For each filtered
image patch �x shown on the retina, the mean was subtracted.

2.5 Parameters. The mean activation was set to µ = 0.01. The weight
learning rates were ηtd

w = 0.02 and ηbu
w = 0.1. The reason to make ηbu

w larger
than ηtd

w is to compensate for smaller average absolute values of the learning
terms |ẑi | and |x̃ j | in equation 2.9 compared to |x̂ j | and |zi | in equation 2.7.

The intrinsic plasticity parameters used in the simulations were ηa =
ηb = 0.001. Learning is robust against their value. This is because the adap-
tation of a and b to one image patch is done after its processing and thus
has an effect only on the next, randomly selected, image patch.

The network had 16 × 16 input units, matching the size of the gray-scale
image patches, and the hidden layer consisted of 24 × 24 units. The resulting
weights were obtained after 15 million learning steps. Each learning step
consisted of a wake phase at which an image patch was presented, and
computation of equations 2.1, 2.2, 2.6, and 2.7. Then equations 2.4 and 2.5
were computed in the wake phase. Then followed at each learning step
a sleep phase for learning the recognition model via creation of a fantasy
vector and computation of equations 2.8 and 2.9.

2.6 Receptive Field Analysis. In order to quantify the receptive fields,
they were fit with Gabor functions on an elliptical gaussian support. These
Gabors had eight continuous parameters, as described in Ringach (2002):
the orientation, frequency f , and phase of the cosine wave function; the
position of the gaussian envelope along dimensions 1 and 2 of the input
area, its height, and its standard deviations σx, σy. The half-axis along σx was
assumed parallel to the cosine wave; hence, σy was along the wave ridges, or
parallel to the edge that the edge detector would respond to. We minimized
the squared difference between a receptive field (i.e., every weight value)
and its Gabor reconstruction using the simplex method (Press, 1988). In
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Figure 2: Trained weights. (a) Receptive fields. Each small square represents
a row of Wbu with positive weights shown bright and negative weights dark.
(b) Projective fields: columns of Wtd , or rows of (Wtd )T . (c) The difference be-
tween the weights shown in a minus those shown in b after normalizing the
columns of Wtd , just as done to the rows of Wbu during learning. The numbers
below show the minimum and maximum occurring values for each weight
matrix. A quarter of all weights are shown.

order to prevent receptive field center fits to be outside the input area,
the fitting was performed on a larger area with zero padding around the
original input area. All eight parameters were optimized simultaneously by
the simplex method. Since this method easily gets stuck in a local minimum,
16 automated attempts from different initial positions for each receptive
field were made, and the best fit was taken. Neurons that had a bad fit (55
of 576) due to their irregular shape or to the minimization getting stuck in a
local minimum were excluded from the parts of the analysis that depended
on the Gabor fits.

Gabor fitting may result in a tendency to return spatial frequencies that
are too low. First, the discarded “noisy” receptive fields are mainly of high
frequencies. Second, as a general effect of Gabor fitting, the wavelength
of the fitted cosine can be much larger than the receptive field, because
the gaussian envelope will attenuate the surround, allowing the cosine to
have large values outside the receptive field. The wavelength obtained by
a Gabor fit can therefore be much larger than, for example, the dominant
wavelength that would be obtained from a Fourier transform.

3 Results

3.1 Emergence of Feature Detectors. A quarter of all hidden neurons’
receptive fields (RF), randomly selected, are shown in Figure 2a. Most of
them are localized edge detectors. Figure 2b shows the top-down feedback
weights that correspond to the hidden neurons’ projective fields toward the
input neurons. These weights have the same shape as the RF weights with

http://www.mitpressjournals.org/action/showImage?doi=10.1162/neco.2007.02-07-472&iName=master.img-000.jpg&w=311&h=118
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Figure 4: RF shape distributions. (a) Macaque data from Ringach (2002). (b) Our
model. The axes express the RF length along the wave (nx) and width (ny) per
wavelength (see text for details). The model RFs display a large variety of shapes.

a small difference of random structure remaining, as shown in Figure 2c.
Two principal differences remain. First, the feedback weights are larger
here than the feedforward weights. This is because, unlike the feedforward
weights, which are normalized, the feedback weights have to account for
the variance of the data (in our case in the order of 1), which they reconstruct
(see equation 2.6). Smaller input data would have yielded smaller feedback
weights (while increasing in the forward pathway the gain parameters
{a}). Second, the feedback weights should be regarded as sign-reversed,
constituting the negative part of the reconstruction error, equation 2.6. The
experimental results of Wang et al. (2006) support the notion of a V1 to LGN
feedback structure that matches the geometry of the LGN to V1 connections
with a reversed sign.

The receptive fields (RFs) are analyzed in Figures 3 and 4. Their cen-
ters are approximately evenly distributed over the input plane, as seen
in Figure 3a. Receptive field orientations and spatial frequencies vary
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substantially, as can be seen in Figure 3b, while a stronger presence of
the cardinal orientations at 0 and 90 degrees is evident in Figure 3c (solid
line). Data from 2598 cat simple cells (B. Li, Peterson, & Freeman, 2003)
(dotted line) show that there are also more cells coding for the cardinal ori-
entations. Observations that cardinal orientations are physiologically more
finely resolved than oblique orientations have led to the term oblique effect.
The model, however, displays an exaggerated preference to cardinal ori-
entations together with a reduction at nearby orientations (±11.25 degrees
away in Figure 3c). We conjecture that an alignment of high-frequency edge
detectors with the image pixel rows is a reason for this reduction of slightly
slanted orientations. Figure 3b supports this view in that we can see cell clus-
ters at the cardinal orientations near a high frequency of 0.5 cycles per pixel.

The scatter plots in Figure 4 compare the shapes of model RFs with ex-
perimental data from 93 macaque monkey neurons (Ringach, 2002). Given
the wavelength of the cosine T = 1/ f , he defines nx = σx/T and ny = σy/T ,
which give the RF elongations in multiples of the wavelength along the
wave progression and along the wave ridges, respectively. In the model
data in Figure 4b, there is a tendency toward larger ny than nx values, com-
pared with the experimental data in Figure 4a. Hence, the model RFs tend
to be more elongated along the edges that the neurons respond to. The
largest discrepancy to macaque data is the near lack of round, nonoriented
RFs, as they appear near the origin of Figure 4a. Currently, only the model
of Rehn and Sommer (2007) also predicts these shapes, in which sparse-set
coding limits the fraction of active units. Our exponential prior distribution
defines sparse activations but not a sparse set.

We find in Figure 5a that the a values extend more than twofold, while
the b values are within a small interval less than ±4% around their average.
Figure 5b visualizes this, showing that slope variations of the transfer func-
tion are larger than variations of its offset. We believe that the reason for the
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stronger upward bend than the x distribution (kurtosis = 6.8). (b) The latent unit
output zi in comparison with data sampled from an exponential distribution.
Given that yi is approximately exponentially distributed, the logistic transfer
function makes zi deviate from an exponential.

b parameter to be so tightly constrained is that varying b but not a changes
ga ,b(y = 0). The peak of the incoming data is at y = 0, and approximately
half of the inputs y to a neuron are negative (cf. Figure 6a). Hence, varying
ga ,b(y = 0) by varying b changes the mean of the data significantly, while
varying a does much less so. Furthermore, increasing b would involve the
risk that a previously quiet neuron can start to fire.

3.2 Variable Distributions. We found that the hidden variables {z} do
not perfectly approximate an exponential distribution. Figure 6a shows that
a pixel value x (after filtering) approximates a double-exponential distribu-
tion. So does the linear net input y of a hidden unit, but it has a heavier tail
than the pixel distribution, as we expect from the edge-filtering operation by
the weights Wbu. Feeding the y through the logistic transfer function causes
the z distribution in Figure 6b to deviate largely from an exponential, in
being distributed even more sparsely. Negative y are collapsed to near-zero
values smaller than ga ,b(y = 0). Positive y are stretched by the upward bend
of the logistic transfer function for z < 0.5, decreasing smaller inputs more
than larger inputs. In effect, z tends to consist of a small number of large
values and a large number of near-zero values. Hence, the transfer function
renders the latent variables {z} sparse in that IP manages to keep them in a
range where the transfer function has an upward bend.

If the z variables were to be exponentially distributed like the x variables,
then a trivial one-to-one connection, together with a transfer function in a
linear regime, would optimally result from learning to produce this expo-
nential z-distribution. Instead, our model reconstructs the image from the
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components of a much sparser z. Thereby it can extract components from
the data that are more sparse than exponential.

A hierarchical visual system that extracts features across many levels
might also face the problem that a higher level must code more sparsely than
the next lower level, while sparseness cannot increase arbitrarily toward
the highest levels. A speculative solution can be the layered structure of the
cortex in which a feedback layer reconstructs the input using a sparsified
code, while a feedforward layer projects a denser code to the next higher
level. For example, in V1, the backprojecting layer 6 would code sparsely, in
that its input from the LGN (Blasdel & Lund, 1983) could be weaker than the
principal LGN input into layer 4, while the forward-projecting layers 2 and
3 would code more densely, for example, by pooling simple cell responses
into less selective complex cell responses.

3.3 Pattern Adaptation. Previously we have shown that in response to
sudden sensory deprivation, a neuron with intrinsic plasticity would adapt
its parameters in order to maintain firing rate homeostasis (Triesch, 2007).
Here we present a sinusoidal grating stimulus to the trained network. This
continuously activates edge detectors that are responsive to the given ori-
entation, while those perceiving other orientations will be deprived. This
is done for several learning steps during which the phase of the adaptation
grating is varied, so that all neurons coding for that specific orientation
receive stimulation. The intrinsic plasticity parameters a and b are allowed
to adapt as during training. The weight learning rule was not invoked dur-
ing this short adaptation. Note that in the learning rule, only the feedback
weights are learned during presentation of data anyway.

As a response, shown in Figure 7, the parameters a and b decrease
strongly for neurons responsive to the adapting orientation and increase
slightly away from the adapting orientation. The rate of adaptation can be
scaled by ηa and ηb and is open to interpretation, since we have not made a
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quantitative match to real time. One possibility is to account for homeostatic
mechanisms on timescales of approximately 24 hours (Desai, Rutherford,
& Turrigiano, 1999). Here we choose to interpret the neurons’ adaptation
to occur on a timescale of several seconds. On this timescale, Carandini,
Movshon, and Ferster (1998) found an elevation of contrast threshold when
a test grating matched an adapting orientation; the size of the effect dropped
to half this maximal value for test gratings at orientations ±8 degrees away
from the adapting orientation. For test gratings beyond ±20 degrees from
the adapting location, contrast thresholds could decrease. These data match
our observed decrease of gain- and negative-threshold parameters a and b,
respectively, near the adapting orientation and the a and b increases farther
away. This timescale is also relevant for the TAE.

3.4 Tilt Aftereffect. The tilt aftereffect experiment measures how short-
term adaptation to an oriented grating stimulus changes the perceived
orientation of test stimuli of differring orientation. To measure the orienta-
tion perceived by the network, we sum over the activation zn multiplied by
the orientation θn of each unit n that has been obtained from the Gabor fits
(i.e., population vector decoding).1

After adaptation, which is done as above, test gratings are shown to
the network in order to measure whether the perceived orientations have
changed. Perceived orientations are measured for stimuli of all orientations
varied in 1 degree steps from 0 to 180 degrees, and the measured orientations
are compared to those measured before adaptation. The difference between
these perceived orientations is plotted in Figure 8.

The results show that in the vicinity of the adapting stimulus (shown at
0 degrees), the perceived orientation of the test stimulus is tilted away from
the orientation of the adaptation stimulus. All curves in Figure 8 result from
performing 180 adaptation trials varying the orientation of the adaptation
stimulus in 1 degree steps and averaging between these trials. This is done
in order to decrease noise resulting from irregularities in the trained map
and the scatter of a and b that results from their adaptation to the last few
training patterns.

Figure 8a shows that the shape of the TAE as a function of orientation
difference depends on whether a only, b only, or a and b are adapted. If b is
involved in adaptation, then orientations far away from the adapting orien-
tation are affected, yielding an unnaturally wide-reaching effect. Hence, the
results are biologically plausible only if the b parameter does not change on
a short timescale.

1In order to account for the 180 degree periodicity in the orientation, we multiply the
units’ orientations by two and perform the sum as a vector sum in two dimensions. This
yields znet e2 i θnet = ∑

n zn e2 i θn , where θnet is the network orientation response. znet is a
response magnitude that does not interest us further.
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Figure 8: Tilt aftereffect. The x-axis denotes the difference between the orien-
tation of test and adaptation pattern. The y-axis plots the tilt of the perceived
orientation of the test pattern compared to preadaptation perception. It is per-
ceived as tilted away from the orientation of the adaptation pattern. Every curve
is an average over 180 experiments, each with a different adaptation orienta-
tion. (a) If both intrinsic plasticity parameters, a and b, are allowed to adapt
(highest curve), then the model tilt aftereffect is much wider than experimental
data (small circles from Campbell & Maffei, 1971). Similarly, if only b is varied
(wide curve). However, if b is fixed during adaptation (ηb = 0), then the TAE
curve (lower curve) matches the experimental data well; 32 · 180 adaptation
steps were performed. (b) ηb = 0, and the adaptation duration is varied, from
180 to 256 · 180 adaptation steps, doubling from each curve to the next.

If we compare the TAE curve (when only a is adapted) to the decrease of a
in Figure 7, we find that the maximum of the TAE is at the steepest change of
a (judged by visual inspection). The values of both a and b adapt similarly
(see Figure 7); despite this, adaptation of b differs in that it produces a
much wider-ranging TAE (see Figure 8a). This difference in the TAE must
therefore be explained in that first the transfer function reacts differently to
changes of a and b, and then the pooling of the activations that is performed
to compute the perceived orientation leads to different TAE curves.

In Figure 8b it can be seen that the model TAE (where only a is allowed
to adapt) increases approximately logarithmically with longer adaptation
time, as found experimentally (Greenlee & Magnussen, 1987): curve levels
increase linearly while adaptation durations double from curve to curve.
This increase does not saturate, unlike the case in humans (Greenlee &
Magnussen, 1987).

There has been discussion about whether the TAE can be explained
by neuronal fatigue (Carandini, 2000; Crowder et al., 2006; Dragoi et al.,
2000). We tested a fatigue condition by allowing a only to decrease, not
increase, in Figure 9 (solid curve). Conversely, we allowed a to increase, but
not decrease, in Figure 9 (dashed curve). The decreases of a are near the
adapting orientation (see Figure 7), and the maximum of the TAE is close
to the adapting orientation—approximately 8 degrees away from it. The
increases of a are away from the adapting orientation, and the maximum

http://www.mitpressjournals.org/action/showImage?doi=10.1162/neco.2007.02-07-472&iName=master.img-001.jpg&w=311&h=99
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Figure 9: Tilt aftereffect when a is allowed only to decrease (solid curve) and
when a is allowed only to increase (dashed curve). In both cases, b was held
constant. The vertical dotted lines indicate the extrema of the curves, where the
maximum of the TAE would occur.

of the TAE is also shifted farther away, approximately 18 degrees from
the adapting orientation. Hence, quantifying the TAE distinguishes fatigue
(gain decrease at the adapting orientation) from increased excitability (gain
increase away from the adapting orientation). Experimental accounts of the
adaptation and test orientation difference which yields the maximum TAE
are at 8 degrees (Campbell & Maffei, 1971), 10 to 15 degrees (Wenderoth
& Johnstone, 1988), 15 degrees measured with texture edges (Hawley &
Keeble, 2006), 10 to 20 degrees (Paradiso, Shimojo, & Nakayama, 1989), or 20
degrees (Noudoost, Adibi, & Sanayei, 2003). We might explain the observed
differences in that experimental conditions (e.g., contrast of adaptation- and
test stimuli) might have favored a decrease of excitability leading to a TAE
maximum at smaller orientation differences or an increase of excitability
leading to a TAE maximum at larger orientation differences.

4 Discussion

4.1 Robustness of Model. Our model presents an attractive alternative
to previous generative sparse coding and ICA models. It has local learn-
ing rules and accounts for the development of both LGN-V1 feedforward
and feedback weights without the need of a matrix transposition or in-
version. Allowing the neurons’ transfer function parameters a and b to be
modifiable relieves the modeler from exploring their optimal setting and
allows the modeling of more experimental details than models without this
mechanism can account for. This introduces three other parameters: the
mean firing rate µ and the learning rates ηa , ηb for these two parameters.
We find that setting a and b by hand is difficult, because the effect of a is
dependent on the value of b, and vice versa. In contrast, setting µ is intuitive
and directly related to sparseness. The learning rates can be chosen from
within a few orders of magnitude to be effective.
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4.2 Other Forms of Adaptation. Adaptation happens on different
timescales. On timescales of approximately 24 hours, firing rates stabilize
by homeostatic mechanisms (Desai et al., 1999). They exposed cultured cor-
tical pyramidal neurons to activity blockade and found the initial slope of
the f-I curve increased and the threshold reduced after 24 hours. These ef-
fects were not discernible after just 2.5 hours. Moulder, Jiang, Taylor, Olney,
and Mennerick (2006) electrically stimulated hippocampal pyramidal neu-
rons for several hours. This inactivated individual presynaptic glutamate
terminals, revealing a slow, synapse specific form of homeostatic plasticity.

There is also adaptation on a very short timescale. Following an initial
pulse in the white matter, Ramoa and Sur (1996) find suppression of the
response of rat visual cortical neurons to a second pulse. Suppression was
dominant less than 100 ms after the first pulse and was absent in young rats
(<P10), which have not yet developed their inhibitory intracortical circuitry.
This suggests inhibitory mechanisms for this fast timescale.

Fast effects of opposite sign also exist. Repetitive correlated spiking in-
duces rapid long-term potentiation in two connected hippocampal cul-
ture neurons (Zhang & Linden, 2003). In another experiment, cortical
cells’ receptive fields could be expanded into previously unresponsive
regions within minutes after associative costimulation (Eysel, Eyding, &
Schweigart, 1998). Since these effects lasted for hours, synaptic plasticity
might be the underlying mechanism for this effect. Sharpee et al. (2006)
found that V1 neurons adapt their filters to stimulus statistics beyond the
mean and variance. Since this happens over minutes and has a longer
timescale than, for example, the TAE, they suggest that the underlying
mechanisms may be distinct from those of other aftereffects. Future work
should address whether other forms of adaptation can also be incorporated
and explained by a generative model with information maximization.

4.3 Sites of Adaptation. There is early light adaptation based on local
mean intensity in the retina and fast contrast gain control based on the
root-mean-square contrast in the LGN (Bonin, Mante, & Carandini, 2006).
Accordingly, LGN responses are well explained by dividing the receptive
field input by a suppressive local surround field. Evidence that there is
further cortical adaptation comes from the orientation and frequency speci-
ficity of adaptation (Blakemore & Campbell, 1969), whereas LGN cells are
poorly tuned to orientation. LGN neurons, which respond only transiently
to a stimulus, adapt less than cortical neurons do when reexposed to a
stimulus (Ohzawa, Sclar, & Freeman, 1985). Furthermore, adaptation to
oriented gratings and the TAE display interocular transfer (Campbell &
Maffei, 1971), and binocular cells first come into play in V1. Pattern specific
adaptation is uniquely cortical (Carandini et al., 1998).

In higher areas, response reduction following adaptation is reported and
termed a familiarity effect (L. Li, Miller, & Desimone, 1993) or repetition
suppression (James & Gauthier, 2006). In an event-related fMRI experiment,
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after 20 seconds or longer, adaptation to an oriented pattern, the BOLD
signal in V1, V2, V3/VP, V3A, and V4 to a test stimulus decreased at small
angular difference between the adapting and test stimuli and increased at
large angular differences (Fang, Murray, Kersten, & He, 2005). Together
these findings hint at the existence of a mechanism, acting within seconds
and minutes, which aims at keeping a neuron’s firing rate at a constant level.

4.4 Mechanisms of Adaptation. A host of experiments investigate
those mechanisms of adaptation that we think underlie the TAE. Prolonged
viewing of high-contrast gratings raises the detection threshold of a low-
contrast test grating that has similar orientation and frequency (Blakemore
& Campbell, 1969). A substantial reduction in firing rate and a hyperpo-
larization is observed in V1 neurons after a few seconds of stimulation
(Carandini et al., 1998). These changes are localized to the orientation and
spatial frequency of the adapting stimulus. These adaptation effects appear
gradually within a minute, and the decay time course is similar.

Adaptation to gratings of varying contrast is termed contrast gain control,
since contrast response functions shift laterally along a log-contrast axis, im-
plying gain adaptation (Ohzawa et al., 1985). In vivo (Carandini et al., 1998;
Sanchez-Vives, Nowak, & McCormick, 2000) studies find a hyperpolariza-
tion of the membrane potential in V1 cortical cells, which may result from
the activation of Ca2+ and Na+-dependent K+ conductances. This hyperpo-
larization is large (5–10 mV) and long lasting (10–20 seconds) (Carandini,
2000). Hence, an intrinsic cell property contributes to the postadaptation
suppression of activity. This hyperpolarization and a decrease in the spike
response are elicited by either current injections or visual stimuli. Applica-
tion of GABA, which prevents firing of the cell, does not reduce the degree
of adaptation (Vidyasagar, 1990). Congruently, adaptation is not related to
the spiking activity of the cells (Crowder et al., 2006). Consequently, one
may prefer to interpret our model neuron variable z, which is used in the
adaptation terms 2.4 and 2.5, not directly as a firing rate but rather as a
signal, computed at the soma, that is proportional to the rate if firing is not
suppressed by GABA.

As another possible mechanism, shunting inhibition may reduce neu-
ronal gain, as shown in cerebellar cultured granule cells (Mitchell & Silver,
2003) and in neurons of cat primary visual cortex (Borg-Graham, Monier, &
Frégnac, 1998). In a Hodgkin-Huxley-type model neuron, the gain can be
selectively controlled by concerted changes of ionic currents, namely, the
transient outward current IA and the hyperpolarization-activated inward
current IH (Burdakov, 2005). Furthermore, active dendritic spike backprop-
agation may multiplicatively increase gain and be downregulated by den-
dritic inhibition to decrease gain (Mehaffey, Doiron, Maler, & Turner, 2005).

4.5 Network Effects. Our model neurons’ gain changes locally in a
single neuron. However, V1 neurons are interconnected by horizontal
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connections, including inhibitory interneurons. This network may be an
additional source of a neuron’s adaptability.

Pharmacological studies involving neurotransmitters address neuronal
interactions and thereby assess the network’s contribution. For example,
neuronal excitability was increased by depletion of serotonin, and the size
of the TAE was found to be increased (Masini, Antonietti, & Moja, 1990).
Yet it is unclear whether predominantly excitatory or inhibitory channels
were facilitated. An influence of inhibition is implied in a study involving
nomifensine, which potentiates dopaminergic transmission and enhances
the TAE. Haloperidol, which blocks dopaminergic receptors, reduced the
TAE (Gelbtuch, Calvert, Harris, & Phillipson, 1986).

By demonstrating the dependence of the TAE on neuronal interactions,
these studies hint at a network influence on neuronal adaptability.

A network effect is particularly implicated in the tilt illusion (TI), in
which two lines that cross at, say, 15 degrees seem to cross at a larger
angle such as 17 degrees, but the mechanisms seem to be different; for
example, lorazepam (which potentiates the activity of GABA) produced a
dose-related increment in the size of the TI but had no effect on the TAE. By
contrast, nomifensine and haloperidol did not affect the TI while affecting
the TAE. In this study, Gelbtuch et al. (1986) suggest that the differential
effects may reflect their differing actions on two processes: lateral inhibition
(involved in the TI) and adaptation in visual channels (involved in the TAE).
Our model neurons’ local gain changes represent the latter process.

More direct evidence for a network influence on the TAE is that the
orientation tuning curves of single neurons shift during adaptation (Dragoi,
Sharma, Miller, & Sur, 2002). After adaptation, the initial response (56 ms
after stimulus onset) to a test stimulus resembles the unadapted response,
while over the following 24 ms, the tuning curve gradually shifts away
from the adapting stimulus orientation.

Model studies also demonstrate network effects: balanced increases in
background excitation and inhibition decrease gain multiplicatively by in-
creasing current noise and conductance (Chance, Abbott, & Reyes, 2002).
Murphy and Miller (2003) show that multiplicative gain changes arise ro-
bustly from the simple addition of excitation or inhibition alone, provided
the modulating excitation or inhibition is small relative to the peak of the
tuning curve of the driving excitation. Similar to divisive normalization that
is based on neighboring neurons’ responses (Schwartz & Simoncelli, 2001),
such activation-based gain adaptation schemes do not take into account the
stimulus history over tens of seconds, as does the adaptation of intrinsic
plasticity parameters.

4.6 How Local Is Adaptation? Adaptation was found to be a response to
the main region of a cell’s receptive field from which excitatory discharges
are elicited, but not to a stimulus at the surround (Ohzawa et al., 1985).
Adaptation is furthermore similar in all cortical layers, V1 simple cells,
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complex cells, and V2 cells (Crowder et al., 2006), despite the fact that there
are more complex cells as well as stronger long-range lateral connectivity
in supragranular layers. On the other hand, orientation-selective adapta-
tion was most common in areas where orientation preference changes little
over the cortical surface (Crowder et al., 2006). Together this indicates some
influence from the vicinity on adaptation, but makes the influence of long-
range lateral connections unlikely. In an architectural view, local inhibitory
interneurons may be involved in adaptation, but not the long-range hori-
zontal connections in layers 2/3 of V1.

Recently it emerged that cross-orientation suppression, an effect com-
monly attributed to horizontal V1 connections, can be accounted for by the
behavior of LGN cells, together with cortical amplification by threshold.
These conclusions have been made based on the fast response (Smith, Bair,
& Movshon, 2006), because cross-oriented stimuli suppress synaptic inhibi-
tion and excitation (Priebe & Ferster, 2006), and because LGN neurons show
contrast saturation (B. Li, Thompson, Duong, Peterson, & Freeman, 2006).
While these recent studies do not address aftereffects, they point out that
the feedforward visual pathway yields a richer physiology than previously
thought. This view is complemented by our model in that it demonstates
the capability of the forward pathway to produce aftereffects without lateral
influences.

5 Conclusion

We have presented a generative, sparse coding model for the development
of V1 simple cells that differs from standard models in two independent
design principles: the generative framework is implemented by the wake-
sleep algorithm, which provides local learning rules for the bottom-up as
well as the top-down weights, and sparseness is enforced by the intrinsic
plasticity of two transfer function parameters of the hidden units, which
maintain homeostasis of their firing rate. Training results are characterized
by a large variety of receptive field shapes as well as of the gain param-
eters a of individual neurons. Since the sparse hidden representation is
exploited for the learning of feature detectors, the intrinsic plasticity mech-
anism is supposed to adapt on a faster timescale than the weights. For the a
parameter adapting on a timescale of tens of seconds, we find that the tilt
aftereffect can be accounted for. The threshold parameters b are less vari-
able, and their fast adaptation would lead to a tilt aftereffect that is broader
than experimentally observed. Varying b changes the output of neurons
with zero input and hence causes a data-independent change of behavior
with profound potential influence in a network. A possibility remains that
adaptation of b maintains firing rate homeostasis on a timescale of around
24 hours, accounting for the experiments of Desai et al. (1999).

Since gain modulation serves not only adaptation but also other percep-
tual effects such as attention or routing of information, one will expect to
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find several mechanisms for gain modulation acting on distinct time scales.
The simple proposed model does not reproduce all details of these effects,
such as the shift of a neuron’s orientation tuning curve (Dragoi et al., 2002)
or the indirect TAE. The question remains whether lateral effects can be
explained by individual neurons’ adaptation and the spread through fixed
lateral connections, or whether modifiable connections are needed to ex-
plain such effects. Our next step for increasing model complexity will be
to include learned lateral connections, as in Weber (2001), in order to test
whether more visual aftereffects can be accounted for.
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