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Abstract Linear additivity of synaptic input is a pervasive
assumption in computational neuroscience, and previously
Bernander et al. (Journal of Neurophysiology 72:2743–
2753, 1994) point out that the sublinear additivity of a
passive neuronal model can be linearized with voltage-
dependent currents. Here we re-examine this perspective in
light of more recent findings and issues. Based on in vivo
intracellular recordings, three voltage-dependent conduc-
tances seem to be of interest for pyramidal cells of the
forebrain: two of them are amplifying, INaP and Ih; and one
of them is attenuating, IA. Based on particular I-V
characteristics reported in the literature, each of these three
voltage-dependent currents linearizes a particular range of
synaptic excitation. Computational simulations use a steady-
state, one-compartment model. They establish maximal
linear ranges, where supralinear effects—due to adding too
much of any one conductance—limit these ranges. Specific,
carefully selected pairwise combinations of these currents
can linearize larger ranges than either current alone. In terms
of parameters, the steady-state I-V characteristics of each
current are critical. On the other hand, the relationships

between the results here and resting conductance to ground,
synaptic conductance, and number of active synapses are
simple and easily scaled; thus in regard to these three latter
dependences, the results here are easily generalized. Finally,
to improve our understanding of evolved function, the
relative metabolic costs of linearization are quantified. In
one case, there is a clear preference arising from this cost
consideration (a particular Ih, INaP pairing is less costly
compared to a particular IA, INaP pairing that produces an
equivalent, linearized range). However in other cases, a
preference will depend on the required range; but in any
event, the largest linearized range observed here (28 mV),
from a combination of Ih and IA, is significantly more costly
than the 20 mV range that the Ih, INaP pair produces.
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1 Introduction

Dendritic interactions play a key role in defining the
computations performed by a neuron. Judging from the variety
of dendritic morphologies and the diversity of voltage-
dependent channels with various dendritic localizations,
dendrites would seem to perform a variety of computations
(e.g., Polsky et al. 2004; Cook et al. 2007; London and
Häusser 2005). Among this variety, the linear computation is
of particular significance from at least three perspectives.

A linear computation is simplest (McCulloch and Pitts
1943), and therefore of immediate appeal in theoretical and
teaching contexts. Second, as pointed out by Levy and
Morel (2006), in the context of Bayesian statistical
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inferences, linear summation can be optimal. That is, we
argue that a neuron, in adding up its inputs, can be considered
as performing Bayesian inference (Bernardo and Smith 2000)
where the summed input is a summary statistic of a distal
event (Levy et al. 1990). Furthermore, only linear summation
is allowed when forming a complete and sufficient statistic of
fixed dimension, and such sufficient statistics are, by
definition, the only information-optimal summary statistic.
Beyond such theoretical interests is a third, empirical
perspective: some slightly higher order physiological pro-
cesses have been shown to exhibit linear summation. These
include direction-selectivity in simple cells of the cat visual
cortex (e.g., DeAngelis et al. 1993; Jagadeesh et al. 1993;
Ferster 1994; Priebe and Ferster 2005), as well as in the
macaque primary visual cortex (e.g., Carandini et al. 1997).
Although no intracellular data in intact animals seem to be
available, a slice experiment with the most direct bearing
to a linear hypothesis demonstrates this phenomenon in
CA1 pyramidal hippocampal cells (Cash and Yuste 1999;
Gasparini and Magee 2006).

In line with the second perspective is another optimization
issue, which will be affected by linearization of dendritic
excitation. Specifically, the energetic cost of computation is of
current interest (Attwell and Laughlin 2001; Sarpeshkar 1998;
Laughlin and Sejnowski 2003; Levy and Baxter 1996, 2002;
Goldberg et al. 2003; Balasubramanian and Berry 2002;
Vincent and Baddeley 2003; Vincent et al 2005; Attwell and
Gibb 2005). In this regard, quantitative biophysical models
are useful to understand the characteristics of evolved
computation at the cellular and subcellular levels. The
biophysical simulations presented here reveal fundamental
interactions between conductances and the metabolic cost of
linear dendritic processing.

The simplicity of linearization requires a certain degree of
biological complexity, and in this regard the work of
Bernander et al. (1994) is seminal. That presentation
harnesses voltage-dependent conductances for countering
the saturating process of summed synaptic activation.
Specifically, voltage-dependent dendritic conductances, in-
cluding Ca2+ and K+ channels are used to boost sublinear
synaptic summation into linearity. In the time since this work,
there have been substantial developments both in terms of
knowledge of dendritic ion channels and issues germane to
neuronal computation. This increased knowledge is particu-
larly true for the pyramidal neurons of neocortex and
hippocampus. These cells focus our attention and motivate
us to re-examine the linearization problem, the goal being to
fit more recent observations and newer perspectives. Two
types of experimental observations are influential.

First, there has been considerable improvement in our
parametric knowledge of the A-channel since 1994 (Hoffman
et al. 1997; Bekkers 2000). Second, Bernander and colleagues
had to guess at the physiological voltages of interest, but

today we have a much better idea of the physiological voltage
range of forebrain pyramidal neurons under something close
to natural conditions. Since most studies indicate that, in vivo,
a neocortical or hippocampal pyramidal cell will be under
constant synaptic bombardment, it will spend most of its time
depolarized and much of its time near threshold (from an
experimental perspective: Paré et al. 1998, see also Destexhe
et al. 2003; Fee 2000; Léger et al. 2005; Steriade et al. 2001;
however for exceptions see Crochet and Petersen 2006).
Taking such evidence at face value, we attend to neurons
under constant synaptic bombardment presumably spending
much of their time in a range of −62 to −58 mV with thres-
hold around −55 to −52 mV. These values are significantly
hyperpolarized compared to the assumed threshold of the
earlier biophysical work and decreases our interest in the
voltage-activated calcium conductance considered previously.

A voltage range around −55 mV and experimental
observations such as Magee (1999, 2000) focus our main
attention on two particular voltage-dependent conductances:
persistent sodium (NaP) and A-type potassium (A) dendritic
conductances of these pyramidal cells. Previous work (Morel
and Levy 2007) compared the linearization capabilities of the
persistent sodium (NaP) versus the hyperpolarization-
activated mixed cation current (Ih). It was found that there
are significant differences between these conductances with
the persistent sodium being the better linearizing mechanism
over the physiologically relevant voltage-range mentioned
above. Here we briefly return to inquiries using Ih and note
how it can be used in combination with either INaP or IA to
enhance the linear range of either current alone.

To summarize, the main goal of this study is to understand
the constraints on linearized synaptic responses and to gain
some insight into the metabolic cost of linearized excitation. In
what follows, we compare the cost of linearization produced
with INaP, IA, and Ih. The results demonstrate a set of linear
relationships between conductance values, cost, and synaptic
conductance. At the same time, we show that synaptic gain is
constant for any one particular mechanism; likewise the range
of linearization is constant. The calculations are constrained
by recently reported operating ranges of pyramidal neurons
under synaptic bombardment as well as the reported voltage
dependence of IA, INaP, and Ih. The discussion points out how
these calculated metabolic costs can be applied in the
constraint-based approach for understanding evolved function.

2 Methods

A biophysically realistic neuron model is properly com-
posed of a soma and many dendritic compartments. Here
we focus on a single dendritic compartment containing a
variable number of active synapses, a fixed conductance,
and one or two voltage controlled conductances. Figure 1
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presents an equivalent steady-state circuit representation of
this compartment.

In this model, we assume that the conductances of the
non-synaptic dendritic membrane and the synaptic recep-
tors are close together in the sense that the cytoplastic
resistance between them is relatively small and essentially
zero compared to other resistances. The resting non-
synaptic dendritic conductances are collapsed into gd, and
the active synaptic conductances are collapsed into gs ¼P

k gsyn (k ∈ active synapses). These only interact through
their effects on membrane potential Vm. Finally, it is
assumed that synaptic bombardment changes slowly
enough compared to neuronal time constants so that, for
the time scale of interest, local synaptic and dendritic fluxes
are constant, i.e., dIs /dt=0 and dId /dt=0, respectively.

In order to get a better understanding of the interplay
between the different variables, several sets of initial
conditions (such as ionic concentrations inside/outside the
neuron, total passive non-synaptic dendritic conductance, or
quantal synaptic conductance) were studied. We report on
the results from one representative set. Table 1 shows the

values of variables used in parameterizing the model here,
and shows the implied potentials. In this table, T is the
temperature; [x]in/out are ion concentrations outside (out) or
inside (in) the cell; and Vi the physiological reversal
potentials for the synaptic (i=s) and dendritic (i=d) parts
of the systems. The Nernst equilibrium potentials for the
individual ions (ENernst) are included for reference. Also
shown are the permeability ratios for the different conduc-
tance pathways at the reversal potential of each conduc-
tance.

All synapses are assumed to be AMPA-type excitatory
synapses. Each synapse is viewed as being composed of
approximately ten channels, each with a channel conduc-
tance of 10 pS (in line with published work in pyramidal
cells, e.g., Spruston et al. 1995 or Andrasfalvy and Magee
2001), leading to a quantal synaptic conductance of roughly
100 pS (i.e., gsyn≈100 pS). Although a wide range of
quantal conductances are reported for forebrain cortical
excitatory synapses, the results depend on this choice in
only the simplest way (everything scales linearly or is
constant, see Table 5). Thus, the selection of gsyn=100 pS
makes it easy to rescale our results without pencil and
paper. In the hippocampus, activated NMDA receptors do
not make a significant contribution to depolarization and
therefore are not included.

The system is analyzed in steady-state, that is, we
presume activity levels change more slowly than neuronal
time constants (see Hasenstaub et al. 2005 Fig. 2(b), which
shows that the power of input fluctuations falls off
exponentially after 40 Hz).

As a consequence of steady-state, any change in the
total active synaptic conductance (gs) will directly impact
the ionic fluxes of both the non-synaptic dendritic mem-
brane and the synaptic part of the system in producing
membrane potential Vm (see Fig. 1). A physiological
operating range centered around −60 mV is conjectured,
as an approximation of in vivo recordings of somatic
potentials (e.g., Paré et al. 1998 for data under anesthesia
mimicking wakefulness and Fee 2000 for data in awake
animals).

The passive dendritic conductance is treated as a fixed
parameter but is investigated at several values ranging from
gd=6.25 to 50 nS.

 -72mV

Vm Synapses
Vs

~0mV

1/gsyn 1/gsyn

 1/gd  1/gX

Vd VX

Dendrite

Extracellular

Soma

Vsoma
1/gsyn 1/gsyn

Fig. 1 Equivalent circuit representation of a dendritic compartment
under steady-state activation. This analysis is concerned with the
dendritic (i.e. non-synaptic) membrane and synaptic parts of the
system only. The passive conductance is gd with Vd its reversal
potential; the individual synaptic conductance, gsyn, has a reversal
potential of Vs; the optional voltage-activated conductance(s) are
indicated by gX and its reversal potential is VX. The membrane
potential is Vm. Somatic elements are shown for reference only and are
not considered in this study

Variable Value Potential Value Conductance PNa:PK

T 37°C Vd −72 mV Passive dendrite 1:26

[K+]out 4.0 mM Vs 0 mV A-type K+ 0:1

[K+]in 140 mM EK
Nernst −95 mV Persistent Na+ 1:0

[Na+]out 145 mM ENa
Nernst +55 mV Synaptic 1:0.9

[Na+]in 18.5 mM

Table 1 Representative values of
model parameters
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2.1 Passive model of a dendritic compartment

As a benchmark, steady-state voltages and currents are
evaluated for a passive dendritic compartment under
synaptic bombardment. Basic current equations for the
dendritic and synaptic parts of the system are Id ¼
gd Vm gsð Þ � Vdð Þ and Is ¼ gs Vm gsð Þ � Vsð Þ, respectively.
Each current implicitly includes only sodium and potassium

ionic currents whose individual conductances combine to
create either gd or gs. In steady-state, the sum of the total
dendritic and synaptic currents must be zero and therefore
Is þ Id ¼ 0 can easily be solved for the steady-state
membrane potential Vm(gs)

Vm gsð Þ ¼ gsVs þ gdVd

gs þ gd
ð1Þ

Note that the numerator of Eq. (1) can be further
simplified for a synaptic reversal potential of 0 mV.

2.2 Active dendritic conductances as paths to linearization

The passive model is supplemented by active dendritic
conductances to produce a linear range of operation. For the
subthreshold voltage range of interest, the A-type potassi-
um current (IA) and the persistent sodium current (INaP) are
the most relevant and constitute a first step. In order to
better understand the influence of each channel, they are
considered individually and in combination.

Persistent sodium channel A first set of persistent sodium
parameters was obtained from the works of Magistretti and
Alonso (1999) for the inactivation data and Agrawal et al.
(2001) for the activation data, referred to as the INaP1
parameterization. Their experimentally obtained, voltage-
dependent, activation and inactivation curves were fitted
with single Boltzmann functions, each with parameter V1/2

and associated slope factor (see Fig. 2(a)). At any given
voltage, the persistent sodium conductance, gNaP1, is the
product of the appropriate points on the steady-state
activation and inactivation curves scaled by gNaP1, the
maximum available channel conductance. This product has
the form

gNaP1 Vmð Þ ¼ gNaP1
1

1þ e� �0:0488�Vmð Þ=0:010ð Þ

� 1

1þ e �0:0376�Vmð Þ=0:0074ð Þ ð2Þ

where gNaP1 will be adjusted to produce a linear region on
the steady-state membrane potential versus total active
synaptic conductance curve. Because this channel is known
to be homogeneous throughout the neuron, somatic values
are used to represent dendritic channels. This set of
parameters was previously used in Levy and Morel (2006).

A second set of parameters for the persistent sodium
channel was obtained from the work of French et al. (1990)
and is labeled INaP2. Their activation and inactivation
parameters were extracted from experimental somatic
recordings in neurons from the pyramidal cell layer of the
CA1 region and fitted with single Boltzmann functions as
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Fig. 2 Typical functional form of voltage-activated conductances. (a)
The normalized, steady-state, persistent sodium conductance, gNaP1, is
adapted from Magistretti and Alonso (1999) for the inactivation data
and Agrawal et al. (2001) for the activation data (INaP1 parameteriza-
tion). The dashed line represents the Boltzmann fit of inactivation
data, the dashed-dotted line is the equivalent for the activation data,
and the solid line is the product of the inactivation and activation
curves. (b) The normalized, steady-state, A-type potassium conduc-
tance, gA1, is based on the work of Hoffman et al. (1997) (IA1
parameterization). The dashed line represents the Boltzmann fit to
inactivation data, the dashed-dotted line is the equivalent for
activation, and the solid line is the product of inactivation and
activation curves
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above. The resulting persistent sodium conductance has the
same form as Eq. (2) with different parameters. See
Appendix B for details of both sets of parameters used.

This channel is assumed to be entirely sodium ion
specific (Magistretti and Alonso 1999) and obeying the
single ion current equation

INaP ¼ gNaP Vm � ENa
Nernst

� � ð3Þ

where ENa
Nernst is the Nernst sodium reversal potential, given

in Table 1. Note that this parameterization is consistent with
that used by Vervaeke et al. (2006) and therefore similar
results could be obtained from their choice of values.

A-type potassium channel A first set of activation and
inactivation curves obtained from Hoffman et al. (1997),
referred as the IA1 parameterization, is used to model this
channel. Experimentally obtained activation and inactiva-
tion curves (>100 μm from the soma) fitted with single
Boltzmann functions in Hoffman et al. (1997) are used to
obtain total conductance gA1. This resulted in the solid line
of Fig. 2(b), which was then scaled by gA1, the maximum
available conductance, i.e.,

gA1 Vmð Þ ¼ gA1
1

1þ e� �0:056�Vmð Þ=0:008ð Þ

� 1

1þ e �0:001�Vmð Þ=0:015ð Þ ð4Þ

where gA1 will be adjusted to produce a linear region on the
steady-state membrane potential vs. total active synaptic
conductance curve. Note that very large values of gA1 can
be expected because of the extremely low probability of
channel activation (less than 0.5%) of the available
conductance (Fig. 2(b)). This set of parameters was
previously used in Levy and Morel (2006).

For comparison, activation and inactivation parameters
from Bekkers (2000) were also used to parameterize this
potassium channel (>250 μm from the soma). The total
conductance has the same form as Eq. (4) with different
parameters and this parameterization is labeled IA2. See
Appendix B for details of both sets of parameters used.

Unlike the sodium channel, this channel is not assumed
to be entirely potassium ion specific although it still obeys
the single ion current equation. Equations for this channel
are similar to that of the persistent sodium channel, i.e.,
Eq. (3), after substituting Na+ for K+ and gNaP for gA.

Hyperpolarization activated cation channel The parameters
for this non-inactivating, slowly deactivating, mixed cation
inward current were obtained from the work of Magee
(1998) on dendrites of CA1 pyramidal cells. As with the
other channels, the conductance gh is the product of the

steady-state activation curve (Boltzmann fit with voltage of
half maximal activation V1/2=−90 mV and slope factor k=
8.5 mV) with the maximum available conductance gh. See
Morel and Levy (2007) for details. The reversal potential
for this channel is Vh=+1 mV.

Note that when Ih is included, a dendritic rest potential
of Vd=−80 mV is used, compared with −72 mV for the
other calculations in this paper. This more hyperpolarized
rest potential highlights Ih’s contributions, which are
stronger at lower membrane potentials.

These dendritic currents were added to the passive
system described in the previous section. The sum of the
currents therefore becomes

Id Vm; gdð ÞþIs Vm; gsð Þ þ INaP Vm; gNaPð Þ þ IA Vm; gAð Þ
þIh Vm; ghÞ ¼ 0:ð

ð5Þ
Due to the functional form of the active conductances

(e.g., Eqs. (2) and (4)), there is no longer a straightforward
analytical solution for the steady-state membrane potential
Vm. Numerical simulations are therefore employed.

2.3 Goldman–Hodgkin–Katz formalism for calculation
of ion fluxes

Because the Goldman–Hodgkin–Katz (GHK) model of
membrane voltage (Goldman 1943; Hodgkin and Katz
1949; Hodgkin and Huxley 1952) is more accurate than the
Nernst-potential based calculations in the case of multiple
permeating ionic species and a Vm sufficiently far from
zero, it is the model of choice for calculating ion fluxes.

As noted before, only Na+ and K+ ions are explicitly
included in each part (dendritic membrane and synapses) of
the dendritic compartment. Therefore, the GHK ionic
current equations (similar to those of Hodgkin and Katz
1949, Eqs. (2·3) and (2·4)) are

INa ¼ PNa
F2Vm

RT

Naþ½ �in � Naþ½ �oute
�VmF
RTð Þ

1� e
�VmF
RTð Þ ð6Þ

IK ¼ PK
F2Vm

RT

Kþ½ �in� Kþ½ �oute
�VmF
RTð Þ

1� e
�VmF
RTð Þ ð7Þ

Here [x]in, [x]out are ion concentrations inside and
outside the cell respectively; F is Faraday’s constant; R is
the gas constant; T is the temperature; and Px the ionic
permeability of species x. For the system under study, it is
assumed that the ratio of permeabilities PNa/PK is different
for the dendritic membrane and the synapses. Consequent-
ly, there exists one reversal (GHK) potential for the
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dendritic membrane part of the system, Vd, and another for
the synapses, Vs (see Table 1).

The value of PK, or even the ratio PNa/PK, is not directly
available for the conductances used here (and most any other
conductance). As is typical (e.g., Hodgkin and Huxley
1952), we use the GHK equation conductance and reversal
potential measurement to infer the necessary permeabilities.
We convert the usual (Hodgkin and Katz 1949) development
to chord conductance and go one step further by assuming
our system is at a steady-state and not necessarily at its
reversal potential. That is, average synaptic bombardment is
maintained long enough to charge the membrane capacitance
in our simplified dendritic compartment.

The chord conductances, gi ¼ Ii= Vm � Við Þ where Id ¼
IKd þ INad for the dendrite and Is ¼ IKs þ INas for the
synapses, are therefore inverted and solved for permeabil-
ities PKi such that

PKi ¼
RTgi
F2Vm

�
Vm � Við Þ 1� e

�VmF
RT

� �
Kþ½ �in� Kþ½ �oute

�VmF
RT þ PNa

PK

h i
i

Naþ½ �in� Naþ½ �oute
�VmF
RTð Þ� �
ð8Þ

where PNa
PK

h i
i
and Vi are, respectively, the ratio of perme-

abilities and reversal potential of system i (i ∈ {dendrite,
synapse}). For the synaptic subsystem, gi is replaced by gs,
a function of the number of active synapses, while gi is
assigned the value of gd for the non-synaptic dendritic
membrane. After each substitution, the appropriate form of
PKi obtained from Eq. (8) can be inserted into the current
Eqs. (6) and (7), with PNaPi related to PKi via ratios [PNa/PK]i.
The results report the total potassium current versus total
active synaptic conductance where the total potassium current
uses separately Eq. (7) for the dendrite and the synapses.

The steady-state calculations yield a simple mapping
between synaptic conductance and membrane potential
when solving Eq. (1). When one or more voltage-activated
conductances are involved, the appropriate version of Eq.
(5) is then solved numerically using MATLAB. Sweeps over
values of gA and/or gNaP were performed to discover the
greatest voltage range (as determined initially by visual
inspection) of linear synaptic response. This maximal range
(as a function of total synaptic conductance) is then
characterized by the average single-synapse depolarization
within this range. Arbitrarily, we define the limits of each
range as a variation of single synapse depolarization
of ±2% around the average value. Using the computed
solutions for each equation, the different ranges of
linearizable synaptic conductances can in turn be trans-
lated into corresponding ranges of steady-state membrane
potential.
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Fig. 3 Linearizing effect of three voltage-activated conductances for
gd=25 nS (Vd=−72 mV). (a) Voltage of the systems as a function of
steady-state activation. The dotted line represents a system with a
passive dendrite only, the dashed line indicates the passive system
with the addition of an A-type K+ current (IA1 parameterization), the
solid line shows the passive system plus a persistent Na+ dendritic
channel (INaP1 parameterization), and the dashed-dotted line represents
the passive system with a persistent Na+ channel (INaP2 parameteri-
zation). It can be seen that INaP’s main effect is to further depolarize
the system compared to the passive only level. In contrast, IA
hyperpolarizes the system compared to the passive level. Values of
gA and gNaP are given in parentheses for each curve in the legend.
Interval markers at the bottom of each graph indicate the ranges of
linearization: solid line for INaP1-enhanced system, dashed-dotted for
INaP2-enhanced system, and dashed line for a system with IA1. (b)
Contribution to the depolarization of the steady-state membrane
potential by each additional active synapse. Note that the regions of
constant contribution are the linearized ones and are indicated by
horizontal lines above the abscissa: i.e., 0.5–5 nS for the system with
INaP1, 2.8–5.8 nS for the system with INaP2, and 13.7–23.9 nS when
IA1 is present. Legend is the same as for graph (a)
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2.4 Energy cost of ionic currents

In the course of steady-state synaptic bombardment, the
cost of dendritic computation arises from the cost of
maintaining the ion gradients. Such maintenance depends
on the Na+/K+ ATPase pump.

One cycle of this ionic pump consumes one ATP
molecule and pumps out three sodium ions while two
potassium ions are brought in. In the steady-state, Na+ and
K+ fluxes are equal. This imbalance between fluxes and
pump is problematic in terms of specification of its
resolution. However, its generic resolution is straight
forward for sodium ions as they are used to power a variety
of other pumps. Additional, constantly present, metabolic
fluxes may explain the third Na+. Such sodium dependent
metabolic transport includes HCO3

−, glucose, glutamate,
and Ca2+. Thus, it is our position that either Na+ or K+

steady-state fluxes are suitable for measuring the metabolic
energy needs.

We understand that not everyone agrees with the fate of
the third Na+ that is pumped per ATP (e.g., Attwell and
Laughlin 2001). Fortunately, alternative formulations do
not change the fundamental relationships here. That is, one
can rescale the energy consumed by a constant consistent
with one’s personal theory of the fate of the third Na+.

3 Results

3.1 General aspects of linearization

In the absence of voltage-dependent conductances, increas-
ing levels of synaptically produced depolarization lead to a
progressively weaker contribution by each additional,

active synapse. However, judiciously including either IA
or INaP, or a combination of both, linearizes this sublinear
effect; unfortunately this linear range is limited.

Figure 3(a) illustrates the progressive depolarization of
the steady-state membrane potential as the number of active
synapses increases for four models: the passive dendrite
model (dotted line), the passive model enhanced by two
different parameterizations of INaP (see Section 2, the solid
line for INaP1, the dashed-dotted line for INaP2), and the
passive model enhanced by IA1 (dashed line). As a function
of total active synaptic conductance, the INaP-enhanced
models ride above the passive model while the IA1-
enhanced model sits below the passive-model. The linear-
izing amplifications for INaP occur, roughly, between
−69 mV and −55 mV (INaP1 model) or −66 mV and

Fig. 4 Judiciously combining NaP- and A-conductances produces
intermediate ranges of linearization which are wider than the range for
NaP alone. (a) The linear range produced by this blend (passive plus
INaP1 and IA1) of conductances is slightly longer than that of the
system with persistent sodium only (8 nS in length as indicated by the
dashed-dotted interval marker) although not longer than the A-type
potassium-only results. Depolarization per additional active synapse
for the passive only system (gd=25 nS, Vd=−72 mV) is shown by the
dotted line. The passive plus INaP1 only (gNaP1 ¼ 25 nS) is the solid
line and the IA1-enhanced system (gA1 ¼ 1250 nS) is represented by
the dashed line. The dashed-dotted line represents a system where
both active conductances have been added (gNaP1 ¼ 17:5 nS and
gA1 ¼ 900 nS). Linear ranges are indicated by their respective
interval makers at the bottom of the graph. (b) Another example of
active conductances (INaP2 and IA2) combined to form a different
linear range. Again the combined linear range is located between the
linear ranges produced by using individual conductances. The length
of the range is also longer, in terms of total active synaptic
conductance, 0–6.1 nS, and steady-state membrane potential,
15.4 mV (as indicated by the dashed interval marker), than the
ranges produced by individual conductances. See Section 2 and Fig. 2
for voltage dependencies

0  5 10 15 20 25 30
0

50

100

150

200

250

300

350

Total active synaptic conductance (nS)

∆V
 p

er
 a

ct
iv

e 
sy

na
ps

e 
(µ

V
)

Passive only  g
d
=25 nS, V

d
=–72mV

Passive + I
NaP1

(25nS)

Passive + I
A1

(1250nS)

Passive+I
NaP1

(17.5nS)+I
A1

(900nS)

–54.6mV–69mV –45.9mV–56.3mV

–47.6mV–59.4mV

0 5 10 15
50

100

150

200

250

300

350

Total active synaptic conductance (nS)

∆V
 p

er
 a

ct
iv

e 
sy

na
ps

e 
(µ

V
)

Passive only  g
d
=25nS, V

d
=–72mV

Passive + I
NaP2

(5.65 nS)

Passive + I
A2

(995nS)

Passive+I
NaP2

(5nS)+I
A2

(415nS)

–70.7mV

–55.6mV–71mV

–64.3mV

–66.1mV –55.5mV

(a)

(b)
b

J Comput Neurosci



−55 mV (INaP2 model) while the linearization produced by
IA1 lies between −56 mV and −45 mV.

These linear ranges are easier to see in Fig. 3(b). This
figure shows the depolarization caused by adding one more
active synapse (100 pS) as a function of the number of
active synapses. As shown in Fig. 3(b), the gA conductance,
compared to gNaP, is better suited for linearizing under
heavy synaptic bombardment. However, under such heavy
bombardment, the depolarization per 100 pS synapse is
necessarily lower. The models with the persistent sodium
channel are linear for ranges between 0.5 and 5.8 nS of
total synaptic conductance. In this range, a single synaptic
event is 320 μV (INaP1 model) or 274 μV (INaP2 model). A
much higher, linearized conductance range characterizes the
IA1-enhanced model. Specifically, that range is 13.7 to
24 nS. The wider range using gA is accompanied by smaller
synaptic events (100 μV).

Figure 3(b) also shows, by comparison with the simple
passive model, that INaP is amplifying single synaptic
events. In contrast, IA works by de-attenuating. The net
result, compared to the passive model, is smaller synaptic
responses at lower excitation and larger synaptic responses
at higher excitation.

By combining INaP and IA many different linearizing
ranges can be produced. Figure 4(a) illustrates one such
combination where (INaP1 gNaP1 ¼ 17:5 nSð Þ) and (IA1
gA1 ¼ 900 nSð Þ) are combined with the passive system. For
this combination, the linearized voltage range is −59 to
−47 mV. In this range, the depolarization by one, 100 pS

synapse is 145 μV. In this case, compared to INaP1 alone, the
linear range handles almost twice the total synaptic conduc-
tance and is shifted down and to the right under the influence
of the additional potassium conductance. Other combinations
of gNaP1 and gA1 shift the position of the linearized
range. Figure 4(b) illustrates the combination of (INaP2
gNaP2 ¼ 5 nSð Þ) and IA2 gA2 ¼ 415 nSð Þ. In this instance,
the linearized voltage range is −71 to −55 mV, and in this
range, the depolarization by one, 100 pS synapse is 256 μV.

After examining the metabolic costs, more details will be
provided relating conductance values to several of the
parameters.

3.2 Linearizing ranges are constrained

The linearized ranges cannot be arbitrarily extended. There
are unavoidable interactions between baseline conductance
gd, and maximum useful channel conductances gNaP and gA;
these interactions constrain the linearizing ranges. Obviously,
too little gNaP (or too little gA) will leave the original regime
sublinear; on the other hand, too much gNaP (or too much
gA) defeats linearity by producing supralinear effects. Thus
the ranges of linearization are limited, and such limitations
are solely related to the value of gd when the voltage
dependencies and driving batteries are constant. Figure 5
compares linear and supralinear examples by plotting the
voltage of an additional, single synaptic event as a function
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of total active synaptic conductance. A passive dendritic
conductance of 25 nS combined with gNaP1 ¼ 25 nS
produces a linear range of 4.5 nS (0.5 to 5 nS). However,
increasing the value of gNaP1 to 30 nS decreases the linear
range to 2 nS. In the IA1-augmented system, a gA1 value of
1,250 nS produces a linearized range of 10.2 nS (13.7 to
23.9 nS of total active synaptic conductance). However,
increasing the value of gA1 to 1,750 nS decreases the length
of the range to 7.1 nS. Linearizing combinations of IA and
INaP are similarly restricted (data not shown).

3.3 Metabolic cost

Linearizing synaptic excitation has its metabolic costs. The
graph of Fig. 6 illustrates the costs of adding either IA or
INaP where cost is quantified as total potassium current
(sum of dendritic and synaptic currents, see Section 2).

In the case of the INaP1-enhanced model, the additional
cost seems quite modest. For example, at the extreme upper
end of the linear range (gs=5 nS), the metabolic cost is
11.4% higher (0.85 nA with INaP1 versus 0.76 nA for
passive only); at the other end of the range (gs=0.5 nS), the
presence of INaP increases cost by 6.2% (0.45 nAwith INaP1
versus 0.43 nA for passive only).

In the case of adding only IA to the passive system, clear
intuition is difficult because decreasing conductance leads to
less flux but the baseline polarization of the linear range is
more costly. Calculations resolve the confusion. Due to the
high baseline fluxes, the IA1-augmented system is consis-
tently more expensive when compared to the passive system.
Even at the upper end of its linear range (gs=24 nS), with its
rate of cost-increase still decreasing, the large baseline
current makes this system 29% more costly that the passive
system (1.97 nA with IA1 versus 1.52 nA for passive only,
see Fig. 6). Unfortunately, the costly baseline conductance
seems inevitable since its presence is necessary if the IA1-
enhanced model is to turn off an appropriate amount of
conductance. Tables 2 and 3 present results for selected
values of gd to facilitate comparisons between systems.

Although it would appear that IA augmented systems are
consistently more costly, there are other ways to compare
any two systems. For example, when producing the same
amount of depolarization-per-additional-active-synapse, the
difference in the total potassium current does not always
favor the same system as described above. That is, the
model enhanced by INaP1 costs 0.51±0.12 nA when the
linear range is set to produce 400 μV synaptic depolariza-
tions (which requires gd=21.8 nS with 24 active synapses,

Table 2 Characteristics of linear regions obtained from systems incorporating persistent sodium conductances for selected values of gd

gd
(input resistance at rest)

6.25nS
(160MΩ)

12.5nS
(80MΩ)

25nS
(40MΩ)

50nS
(20MΩ)

Passive ΔV per 100 pS synapse (for first active synapse) 1132 μV 570 μV 286 μV 142 μV

INaP1 model

gNaP1 (to linearize) 6.25 nS 12.5 nS 25 nS 50 nS

Linear range characteristics:

Voltage −61.8±7.2 mV −61.8±7.2 mV −61.8±7.2 mV −61.8±7.2 mV

Synaptic gain 1.37±0.18 1.37±0.18 1.37±0.18 1.37±0.18

Total synaptic conductance 0.65±0.55 nS 1.3±1.1 nS 2.75±2.25 nS 5.5±4.5 nS

# active synapses (100 pS/syn) 6.8±5 13.7±11.2 27.5±22.5 55±45

ΔV per 100 pS synapse 1280±25 μV 640±12 μV 320±6 μV 160±3 μV

Cost (total IKþ ) 0.16±0.05 nA 0.32±0.09 nA 0.65±0.19 nA 1.30±0.39 nA

INaP2 model

gNaP2 (to linearize) 1.41 nS 2.82 nS 5.65 nS 11.3 nS

Linear range characteristics:

Voltage −60.8±5.3 mV −60.8±5.3 mV −60.8±5.3 mV −60.8±5.3 mV

Synaptic gain 1.27±0.15 1.27±0.15 1.27±0.15 1.27±0.15

Total synaptic conductance 1.07±0.37 nS 2.15±0.75 nS 4.3±1.5 nS 8.6±3 nS

# active synapses (100 pS/syn) 10.7±3.7 21.5±7.5 43±15 86±30

ΔV per 100 pS synapse 1096±22 μV 548±11 μV 274±5.5 μV 137±2.7 μV

Cost (total IKþ ) 0.17±0.03 nA 0.35±0.07 nA 0.70±0.15 nA 1.40±0.30 nA
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not shown). In contrast, for the IA1-enhanced model that
also produces 400 μV depolarizations (at gd=6.25 nS with
47 active synapses), the costs are 0.44±0.05 nA over its
linear region. This represents a 15% (mid-range) increase
from the IA1 to the INaP1 system, with the IA1-enhanced
system clearly ahead.

Yet another interesting comparison is one in which the
number of active synapses is the same across systems but
gd is different for the two systems. For example, if we
compare costs for two of the augmented systems when 55
synapses are active in the center of each linear range, the
IA1-enhanced system is again the least expensive (0.51 nA

Table 3 Characteristics of linear regions obtained from systems incorporating A-type potassium conductances for selected values of gd

gd
(input resistance at rest)

6.25nS
(160MΩ)

12.5nS
(80MΩ)

25nS
(40MΩ)

50nS
(20MΩ)

Passive ΔV per 100 pS synapse (for first active synapse) 1132 μV 570 μV 286 μV 142 μV

IA1 model

gA1 (to linearize) 312.5 nS 625 nS 1250 nS 2500 nS

Linear range characteristics:

Voltage −51.1±5.2 mV −51.1±5.2 mV −51.1±5.2 mV −51.1±5.2 mV

Synaptic gain 1.07±0.24 1.07±0.24 1.07±0.24 1.07±0.24

Total synaptic conductance 4.7±1.2 nS 9.4±2.5 nS 18.8±5.1 nS 37.7±10 nS

# active synapses (100 pS/syn) 47±12 94±25 188±51 377±100

ΔV per 100 pS synapse 400±8 μV 200±4 μV 100±2 μV 50±1 μV

Cost (total IK+) 0.44±0.05 nA 0.88±0.10 nA 1.76±0.21 nA 3.5±0.42 nA

IA2 model

gA2 (to linearize) 247.5 nS 495 nS 995 nS 1980 nS

Linear range characteristics:

Voltage −67.5±3.2 mV −67.5±3.2 mV −67.5±3.2 mV −67.5±3.2 mV

Synaptic gain (attenuation) 0.81±0.08 0.81±0.08 0.81±0.08 0.81±0.08

Total synaptic conductance 0.3±0.3 nS 0.7±0.7 nS 1.5±1.5 nS 3.1±3.1 nS

# active synapses (100 pS/syn) 3.8±3.8 7.7±7.7 15.5±15.5 31±31

ΔV per 100 pS synapse 840±16 μV 420±8.4 μV 210±4.2 μV 105±2.1 μV

Cost (total IKþ ) 0.14±0.02 nA 0.29±0.04 nA 0.59±0.09 nA 1.19±0.19 nA

Table 4 Characteristics of linear regions obtained from systems incorporating both persistent sodium and A-type potassium conductances for
selected values of gd

INap INaP1 INaP2 INaP1 INaP2
IA IA1 IA1 IA2 IA2

gd 25 nS 25 nS 25 nS 25 nS

gNaP and gA (to linearize) 17.5 and 900 nS 5 and 900 nS 15 and 580 nS 5 and 415 nS

Linear range characteristics:

Voltage −53.5±5.9 mV −56.8±3.9 mV −65.3±5.2 mV −63.3±7.7 mV

Synaptic gain 1.08±0.21 0.99±0.13 1.03±0.13 1.12±0.21

Total synaptic conductance 11.7±4 nS 10.1±2.6 nS 2±2 nS 3±3 nS

# active synapses (100 pS/syn) 117±40 101±26 20±20 30±30

ΔV per 100 pS synapse 145±2.9 μV 145±2.9 μV 256±5.1 μV 256±5.1 μV

Cost (total IKþ ) 1.36±0.23 nA 1.28±0.18 nA 0.61±0.14 nA 0.65±0.22 nA
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with IA1 at gd=7.3 nS versus the 1.16 nA with INaP1 with
gd=50 nS). Thus if gd is quite small, the IA model is much
more efficient than the INaP system. This suggests an IA
advantage at more distal locations.

3.4 Generalizing the results

This section and the accompanying tables will help the
reader who wants to apply linearizations at different rest
conductances (for example, the conductance to ground will
vary across the dendritic axis). In sequence, Tables 2, 3,
and 4 present the interactions with gd for NaP, A, and four
combinations of NaP and A. Finally, Table 5 abstracts the
constants of the linear dependencies covered in the
preceding three tables.

Once the voltage-dependent conductances are specified,
the two parameters unaffected by variations of gd are: a) the
linearized voltage range and b) the synaptic gain (defined as
ΔVactive/ΔVpassive). For the INaP-enhanced system, the
voltage range of linear synaptic activity is −61.8±7.2 mV
(INaP1 parameterization) while for the system containing
IA1, it is −51.1±5.2 mV. The relationship also holds when
more than one voltage-activated conductance is present
(data not shown). Equally noteworthy is the fact that the
synaptic gain remains constant across varying values of gd.
Taking INaP1 as an example, there is a constant synaptic
gain of 1.37±0.18 across the linear range while for IA1 the
constant synaptic gain is 1.07±0.24.

As opposed to the two parameters that do not change
with gd, in each linearized range four parameters are
linearly related to gd: (1) the total synaptic conductance in
the linear range; or equivalently, (2) the number of active
synapses of fixed conductance in the linear range; (3) the
depolarization produced by one more active synapse; and
(4) the metabolic cost of one more active synapse.

Tables 2 and 3 document that, as the value of gd
increases, the total synaptic conductance characterizing the
linear region proportionally increases. For example, in the
case of the system incorporating INaP1, the conductance
range changes from 0.65±0.55 nS at gd=6.25 nS to 5.5±
4.5 nS at gd=50 nS. It can be noted that an 8-fold increase
in gd leads to a linear region that is 8 times longer (~1.1 ns

to 9.0 ns). Similarly, in the IA1-augmented system, the
conductance of the linearized range changes from 4.7±
1.2 nS (gd=6.25 nS) to 37.7±10 nS (gd=50 nS). Again the
linear relationship between the value of gd and the length of
the linear region is apparent (~2.4 to 20 nS).

While the number of 100 pS active synapses in the linear
region is proportional to gd, the depolarization produced by
a single synaptic event over the same range must, for
consistency, be inversely proportional to the value of gd
(see Appendix A for additional details). Indeed, in the INaP1-
enhanced system, the ΔV per additional synapse is 1,280±
25 μV at gd=6.25 nS with 6.8±5 active 100 pS-synapses
versus 160±3 μV (55±45 active synapses) when gd=50 nS.
These linear relationships can be generalized in Table 5.

Although not shown, similar relationships can be derived
in models using more than one conductance (e.g., using the
different values given in Table 4).

Table 5 summarizes linear relationships relative to gd
and synaptic conductance gsyn. The first row of Table 5
reports the scaling constants that produce linearization for
the various conductances as a function of gd. For example,
gNaP1=gd is one and gA1=gd is fifty. The second row shows
the number of active synapses at the center of the linear
range as a function of gd and gsyn. For example, with INaP1
alone, the number of active synapses in midrange is
0:11� gd

�
gsyn

� �
. Likewise, at the center of the linear

range, as seen in row three, ΔV per additional synapse is
equal to gsyn

�
gd

� �� 80 mV.
Due to the direct relationship between gd and gNaP or gA

(row one), varying gd also affects the metabolic cost.
Specifically, since gd also fixes the total synaptic conduc-
tance in midrange, increasing gd causes proportionate
increases in current. For example, for INaP1 the cost at the
center of the linear range is gd×26 mV while for the IA
enhanced model (IA1), that cost is gd×70 mV.

3.5 Comparison with the hyperpolarization activated
current

Previously, we examined the contributions of INaP and Ih
(Morel and Levy 2007). At the perspicacious suggestion of
a reviewer, we reconsider models with Ih.

Table 5 Linear relationships between some of the variables in the model

Conductance: NaP A

Parameterization: INaP1 INaP2 IA1 IA2

gX=gd to linearize 1 0.22 50 39.6

# of active synapses in center of linear range 0:11� gd
gsyn

0:17� gd
gsyn

0:75� gd
gsyn

0:06� gd
gsyn

ΔVsyn in linear range
gsyn
gd

� 80 mV gsyn
gd

� 68:5 mV gsyn
gd

� 25 mV gsyn
gd

� 52:5 mV

Cost in center of linear range (K+ current) gd×26 mV gd×28 mV gd×70 mV gd×23 mV
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The gA and gh conductances can be combined to produce,
what is here, the greatest observed linear range. As can be
seen in Fig. 7, this combination (40 nS of gh and 1,250 nS of
gA1) implies a linearized range from the rest value of
−71.8 mV (0 active synapses) all the way to a depolarization
value of −43.8 mV. This latter value corresponds to 290 active
synapses. One penalty for such a long range is a small
synaptic event. Assuming a synaptic event of 100 pS, each
synapse contributes only 96 μV of depolarization at the
dendrite (Fig. 7(b)), and presumably less at the soma. Of
course, increasing the individual synaptic event conductance
will proportionally increase the individual depolarization while
increasing the number of active synapses in the linear range.

This mixed cation conductance, Ih, can be used in
combination with INaP to extend the linearization range of
INaP2 alone in much the same manner that IA can be
combined with an INaP (Fig. 8). Indeed, from the
perspective of the length of the linear range, Ih and IA2
seem equally good (20.5 mV vs. 19.2 mV) when combined
with INaP2 (whose linear range alone is 10.6 mV; see
Fig. 8(b) and Table 4 for details). However, the costs of
these linearizations provide further ground for choosing a
particular combination. As shown in Fig. 8(c), Ih combined
with INaP2 is less expensive than IA2 plus INaP2. Therefore,
given their similar voltage ranges, the Ih combination
should be preferred.

A similar comparison between the Ih plus IA1 model
versus the Ih plus INaP2 model is problematic because the
desirable longer range accompanies an undesirable increase
of metabolic costs. Comparing across Figs. 7(c) and 8(c),
the 28 mV linearized voltage range of Fig. 7(c) is much
more costly. This longer range of Ih plus IA1 costs 80%
more at zero active synapses, and when both systems are
depolarized to −55.8 mV, the Ih plus IA1 costs 60% more
than the Ih plus INaP2 system.

4 Discussions

The non-synaptic dendritic membrane of neurons contains
many voltage-activated conductances, although their role in

Fig. 7 Combining Ih with IA1 produces the longest linear range. (a)
Voltage of the systems as a function of steady-state activation. The
dotted line represents a system with a passive dendrite only (gd=
25 nS, Vd=−80 mV), the dashed line indicates the passive system with
the addition of an A-type K+ current (IA1 parameterization), and the
solid line represents a system where two active conductances have
been added (gA1 ¼ 1250 nS and gh ¼ 40 nS). (b) Contribution to the
depolarization of the steady-state membrane potential by each
additional active synapse. (c) The effect of Ih on IA1-alone costs are
mixed. Addition of Ih to IA1 results in lower costs under heavy
bombardment (ca. −57 to −44 mV), but at the lowest level of
excitation, adding Ih almost doubles the rest cost. Parameterization for
Ih is from Magee (1998), see Section 2 for details
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synaptic integration is still subject to much discussion (see,
for example, Johnston et al. 1996; Yuste and Tank 1996;
Magee et al. 1998; Magee 2000; Gulledge et al. 2005 for
reviews). The various positions taken in theses articles are
not necessarily incompatible. For example the simple,
single compartment, steady-state linearization model con-
sidered here is consistent with other interpretations. In
Magee and Cook (2000), there is the report of increasing
synaptic conductance as distance from the cell body
increases. They also observe that gA grows from proximal
to distal loci. Their interpretation of equalizing synaptic
events occurring up and down the dendritic axis is
consistent with our linearizing perspective. Moreover, their
observation of increasing gA with distance from the soma is
predicted by the linearization perspective, particularly when
synaptic depolarization is larger at more distal locations. In
order for linearization to extend up the dendrite, and if there
is to be stronger synapses distally, the range of linearization
must extend in the depolarizing direction. This requirement
fits well with observations (see Hoffman et al. 1997 or
Bekkers 2000) that IA channel density increases with
distance from the soma and the observations here. Similar-
ly, the observations here make sense of the higher
concentrations of NaP channels near the soma (Colbert
and Johnston 1996). The NaP channels bring with them
smaller but less expensive linear ranges.

It seems that linearization will always increase metabolic
energy costs. However, the precise costs depend on the
conductances used to amplify and/or attenuate successive
synaptic inputs into a linear regime. Moreover, it also
seems that longer ranges are more costly (compare Fig. 7(c)
vs. Fig. 8(c) as mentioned in Section 3). Thus, an obvious
prediction is that Nature is judicious in constructing linear
ranges, using no more range than is needed at any point
along the dendritic axis. In particular, as just noted above,
smaller ranges will be used at more proximal locations and
longer ranges more distally.

The linearizing conjecture is not the only possible reason
for the NaP conductance. Vervaeke et al. (2006) conjecture,
and supported with in vitro measurements, a role for NaP in
controlling oscillatory responses of CA1 pyramidal neurons.
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Fig. 8 The combination of the gh and gNaP2 conductances is less
costly than gA2 plus gNaP2 for similar linear ranges. (a) Voltage of the
systems as a function of steady-state activation. The dotted line
represents a system with a passive dendrite only (gd=25 nS, Vd=
−80 mV), the solid line shows the passive system plus INaP2 and IA2,
and the dashed line represents the passive system with INaP2 and Ih.
(b) The addition of either Ih or IA2 extends INaP2’s linear range by
more than 10 mV. The dashed-dotted line indicates the passive system
with the addition of the persistent Na+ current (INaP2 parameteriza-
tion). (c) Although the extended ranges are comparable, the
combination with Ih is less costly. Note that in graphs (a) and (b)
the Passive plus INaP2 line has been omitted for clarity. Parameteri-
zation for Ih is from Magee (1998), see Section 2 for details

R

J Comput Neurosci



Our results in no way contradict this hypothesis. However,
one is lead to wonder if both mechanisms can exist together.
To answer the compatibility question requires a more
sophisticated model than used here. Specifically, a more
dynamic and accurate biophysical model needs to be used.

Such dynamic models, including more biophysical and
anatomical details, will be investigated in further research. In
addition, such models will also provide a platform to re-
evaluate the steady-state assumption here and to determine the
effective range of its validity relative to neuronal time constants.

From a larger perspective, our goal is to understand the
evolved biophysics of neurons through the lens of con-
strained optimizations. A most promising set of constraints
combines information and metabolic energy calculations.
For example, these measurements of information rate and
energy rate can be combined to form time-independent
ratios with units that are directly proportional to bits-per-
joule, or equivalently, through a constant, bits-per-mole-of-
ATP. In this regard the results here will be of substantial
relevance. Indeed, if future calculations of dendritic
information costs are as parametrically sensitive as previous
ones (e.g., see the rather flat, but concave function that is
maximized in Levy and Baxter 1996), even small energy
differences, such as shown in Fig. 6 comparing the passive
model to INaP models, will matter.

Linearization of dendritic excitation is an important part of
this optimization approach. When extracting information, the
Bayesian approach is optimal because it is, up to equivalence,
the only approach that is fully and logically consistent as well
as neurally plausible under one particular approach. That
approach is the use of sufficient statistics of fixed dimension
(ideas discussed in Levy et al. 1990 and further elaborated on
in Levy and Morel 2006). Such statistics maintain a
relatively low dimension (e.g., unidimensional corresponding
to a neuron's somatic depolarization) and are guaranteed to
use all available information. In the same vein, it is
important to realize, even without a calculation but depen-
dent on theorems of statistical probability theory (Bernando
and Smith 2000), that such a guarantee is itself an
optimization! More to the point here, it is also known that
sufficient statistics of fixed dimension can only be built by
linear summation, and such statistics are equivalent in
information to the predicted probability distribution itself.

Simple optimizations (calculations not shown) using the
data here fail to produce interesting results. Essentially very
low, non-physiological rates of excitation produce the most
bits/joule. Apparently to use the data here to produce a
sensible bits/joule optimization of dendritic function will
require further considerations. These considerations include
a prior probability distribution and various potential sources
of randomness, e.g., failure rates, variability of individual
synaptic events, and band-limited thermal noise. Neverthe-
less, without the data here, the justification of such
calculation and the assumed range of the postsynaptic
excitation variable would be substantially weakened.

In conclusion, as recognized by Bernander et al. (1994),
it is a curious fact that microscopic complexity in Nature
can lead to theoretical simplicity. Here we have investigated
the specific examples where the great complexity inherent
in channels whose net conductance depends on nonlinear
activation and inactivation curves can be used to linearize a
particular dendritic computation.

This approach, and others like it, will lead to the
appropriate functional interpretations that make sense of
the zoo of voltage-dependent channels found in dendrites.
Each sufficiently well developed perspective of dendritic
function will bring with it sufficient constraints for experi-
mental tests. That is, with the appropriate set of constraints,
we can anticipate strong, testable hypotheses from each
biophysical model. Of course there will not be one
universally correct dendritic model: dendrites of different
cell types will perform different functions; different den-
drites on the same cell will perform different functions; and
it even seems likely that the same dendrite might
perform different functions depending on variables such
as stage of awakeness, sleep, or attentional considerations.
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Appendix A

The relationships of Table 5 are made more transparent by a
few equations. Using the NaP-enhanced system as an ex-
ample, the basic current equations (d = dendrite, s = synapses,
and NaP = persistent sodium) and their derivatives are

Id ¼ gd Vm gsð Þ � Vdð Þ; dId
dgs

¼ gd
dVm
dgs

;

Is ¼ gs Vm gsð Þ � Vsð Þ; dIs
dgs

¼ Vm gsð Þ � Vs þ gd
dVm
dgs

;

INaP ¼ gNaP Vmð Þ Vm gsð Þ � VNernst
Na

� �
¼ gNaP f Vmð Þ Vm gsð Þ � VNernst

Na

� �
dINaP
dgs

¼ gNaP Vm gsð Þ � VNernst
Na

� � df Vmð Þ
dVm

dVm
dgs

þ gNaP f Vmð Þ dVm
dgs

:
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Remembering that, in steady-state, the sum of the
currents is zero (i.e., Is+INaP+Id=0), the derivatives can
also be combined and df Vmð Þ

dVm
solved for such that

df Vmð Þ
dVm

¼ �
gd

dVm
dgs

þ Vm gsð Þ � Vs þ gs
dVm
dgs

þ gNaP f Vmð Þ dVm
dgs

gNaP Vm gsð Þ � VNernst
Na

� �
dVm
dgs

" #

ð9Þ

Let Vs=0 and, in the linear range, let dVm gsð Þ
dgs

= constant =
K. Rearranging Eq. (9) gives

df Vmð Þ
dVm

gNaP Vm gsð Þ � VNernst
Na

� �
K

¼ � gdK þ Vm gsð Þ þ gsK þ gNaP f Vmð ÞK½ �:

Taking the derivative with respect to Vm of both sides of
this equation sets up the ordinary differential equation

d2f Vmð Þ
dV 2

m

Vm gsð Þ � VNernst
Na

� �þ 2
df Vmð Þ
dVm

þ 2

gNaPK
¼ 0;

which can be solved for f(Vm). That is,

f Vmð Þ ¼ � 1

gNapK
Vm gsð Þ þ C1gNaPK þ VNernst

Na

� �2
Vm gsð Þ � VNernst

Na

" #
þ C2;

ð10Þ

where C1 and C2 are constants. Finally, Eq. (10) and its
derivative df(Vm)/dVm can be substituted back into Eq. (9)
which can then be solved for Vm in the linear range.

Vm ¼ VNernst
Na þ gd þ gs þ C2gNaPð ÞK or; equivalently;

K ¼ dVm

dgs

����
����
cst

¼ Vm gsð Þ � VNernst
Na

gd þ gs þ C2gNaP
;

where C2 is a constant whose value is independent of gs and
Vm. The last equation shows that, in the linear range, since
Vm changes linearly with gs, the numerator is a linear
function of gs. This implies that the denominator also
changes linearly (i.e., if gs is doubled so must gd and gNaP)
to maintain dVm(gs)/dgs = constant. The inverse relationship
between dVm(gs)/dgs and gd or gs or gNaP is also apparent in
the last equation. Equivalent equations can be derived for a
system which includes IA.

Table 6 Parameters of active dendritic conductances

Activation Inactivation

V1/2 k V1/2 k

Persistent Sodium

Agrawal et al. 2001 −37.6 mV 7.4 mV EC layer V, soma

Magistretti and Alonso 1999 −48.8 mV −10 mV EC layer II, soma

French et al., 1990 −49 mV 5 mV −49 mV −9 mV CA1, soma

A-type Potassium

Hoffman et al. 1997: <100 μm 11 mV 18 mV −56 mV −8 mV CA1

>100 μm −1 mV 15 mV −56 mV −8 mV Vrev=−80 mV

Bekkers 2000: <250 μm −24.5 mV 16.9 mV −72.3 mV 5.9 mV Neocortex layer V

>250 μm −22.9 mV 16.2 mV −83.1 mV 6.5 mV Vrev=−66 mV
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