
J Comput Neurosci
DOI 10.1007/s10827-008-0131-5

Spiking neural network simulation: numerical integration
with the Parker-Sochacki method

Robert D. Stewart · Wyeth Bair

Received: 21 July 2008 / Revised: 19 November 2008 / Accepted: 25 November 2008
© The Author(s) 2009. This article is published with open access at Springerlink.com

Abstract Mathematical neuronal models are normally
expressed using differential equations. The Parker-
Sochacki method is a new technique for the numeri-
cal integration of differential equations applicable to
many neuronal models. Using this method, the so-
lution order can be adapted according to the local
conditions at each time step, enabling adaptive error
control without changing the integration timestep. The
method has been limited to polynomial equations, but
we present division and power operations that expand
its scope. We apply the Parker-Sochacki method to
the Izhikevich ‘simple’ model and a Hodgkin-Huxley
type neuron, comparing the results with those ob-
tained using the Runge-Kutta and Bulirsch-Stoer meth-
ods. Benchmark simulations demonstrate an improved
speed/accuracy trade-off for the method relative to
these established techniques.

Keywords Parker-Sochacki · Spiking neural network ·
Numerical integration · Izhikevich · Hodgkin-Huxley

1 Introduction

Spiking neural network simulations are a flexible and
powerful method for investigating the behaviour of
neuronal systems. Spiking neuron models can be de-
scribed mathematically as hybrid systems (Brette et al.

Action Editor: Upinder Bhalla

R. D. Stewart (B) · W. Bair
Department of Physiology, Anatomy and Genetics,
University of Oxford, Oxford, OX1 3PT, UK
e-mail: Robert.Stewart@pharm.ox.ac.uk

2007), with continuous evolution of the state variables
punctuated by discrete synaptic and/or firing events.
The continuous part of the system is generally de-
scribed by a set of differential equations, and running a
simulation involves repeatedly solving these equations
using analytical or numerical integration methods.

The Parker-Sochacki (PS) method is a new tech-
nique for numerically integrating differential equa-
tions. PS computes iterative Talyor series expansions,
enabling extraordinary integration accuracy in practical
simulation time. The method is broadly applicable in
computational modelling but has so far been largely
overlooked in the biological sciences.

In this article, we explore the Parker-Sochacki
method by applying it to two neuronal models: the
Izhikevich ‘simple’ model (Izhikevich 2003), and a
Hodgkin-Huxley neuron described in Brette et al.
(2007). Benchmark simulations based on those estab-
lished in Brette et al. (2007) are employed to compare
the PS method with the established Runge-Kutta and
Bulirsch-Stoer methods.

2 The Parker-Sochacki method

Most neuronal models can be expressed as initial value
ordinary differential equations (ODEs) of the form

y′(t) = f (t, y); y(t0) = y0. (1)

Picard’s method of successive approximations was
designed to prove the existence of solutions to such

J Comput Neurosci

equations. The method uses an equivalent integral form
for Eq. (1)

y(t) = y0 +
∫ t

t0
f (s, y(s)) ds, (2)

whose solution can be obtained as the limit of a se-
quence of functions yn(t) given by the following recur-
rence relation

yn+1(t) = y0 +
∫ t

t0
f (s, yn(s)) ds. (3)

Provided f(t,y) satisfies the Lipschitz condition lo-
cally, this sequence is guaranteed to converge locally
to y. However, the iterates become increasingly hard to
compute, limiting the practicality of the method in this
general form.

Parker and Sochacki (1996), considered a form of
Eq. (1), with t0 = 0 and polynomial f . Note that the
first condition is insignificant, since systems of the form
of Eq. (1) can always be translated to the origin with a
change of independent variable t → t + t0. Parker and
Sochacki showed that polynomial f resulted in Picard
iterates that were also polynomial. Furthermore, if yn(t)
is truncated to degree n at each iteration, then the n-
th Picard iterate is identical to the degree n Maclaurin
Polynomial for y(t). Using a truncated Picard iteration
to compute the Maclaurin series for a polynomial ODE
was termed the Modified Picard Method in Parker
and Sochacki (1996), but we follow Rudmin (1998) in
calling it the Parker-Sochacki method.

For a system of ODEs with all polynomial right
hand sides, the PS method can be used to compute
the Maclaurin series for each variable to any degree
desired, thus enabling arbitrarily accurate solutions for
the ODE system within the regions of convergence of
the series approximations. Parker and Sochacki (1996)
went on to demonstrate that a broad class of analyti-
cal ODEs can be converted into polynomial form via
variable substitutions, thus rendering them solvable via
the PS method. The method was subsequently extended
to partial differential equations (Parker and Sochacki
2000).

Rudmin (1998) established the practical utility of the
PS method by using it to solve the N-body problem
in celestial mechanics. Pruett et al. (2003) developed
an adaptive time-stepping version of the method for
the same problem. Carothers et al. (2005) built on
the algorithmic work of Rudmin to derive an efficient,
algebraic PS method using Cauchy products to solve for
higher order terms.

2.1 Application

To apply the PS method to a polynomial ODE system,
we first define Maclaurin series for each model variable

y(t) =
∞∑

p=0

yptp, (4)

with y0 = y(0), y1 = y′(0), y2 = y′′(0)

2! and so on. Now,
because the Maclaurin series is polynomial, we can
write down a series for the first derivative in terms of
the original series

y′(t) =
∞∑

p=0

y′
ptp =

∞∑
p=0

(p + 1)y(p+1)tp. (5)

Equating terms, we have y′
p = (p + 1)y(p+1). Rear-

ranging for coefficients in the original series, we arrive
at a relation that lies at the heart of the PS method

yp+1 = y′
p/(p + 1). (6)

The basis of the method is to use the model differen-
tial equations to replace y′

p with an expression in terms
of the model variables. This is best illustrated through
examples.

Example 1 Consider the linear system

y′ = y + z; y(0) = 0,

z′ = −y + z; z(0) = 1,
(7)

Here, y′
p = yp + zp, z′

p = −yp + zp and the PS solution
is

yp+1 = (yp + zp)/(p + 1),

zp+1 = (−yp + zp)/(p + 1).
(8)

Thus, each coefficient of the Maclaurin series can be
computed using the previous coefficients and we can
easily obtain solutions of arbitrary order. This is the
general principle of the PS method.

Example 2 To demonstrate how to handle constants
and higher order terms, we consider

y′ = y2 + 1; y(0) = 1. (9)

The series for y and y′ are as defined above, but an
additional series is also defined for y2.

y2(t) =
∞∑

p=0

(
y2

)
p tp, (10)

J Comput Neurosci

with coefficients generated using Cauchy products,

(
y2

)
p =

p∑
j=0

y jyp− j. (11)

Since we can obtain the value of y2 given y, we refer
to y2 as a derived variable, while y is a basic variable.
The PS solution to Eq. (9) is given by

y1 = (
y2

)
0 + 1,

yp+1 = (
y2

)
p /(p + 1),

(12)

with p ≥ 1 and
(
y2

)
p given by Eq. (11). Note that the

constant term appears in the initial step but not in the
subsequent iterations.

2.2 Simulations

In numerical simulations, the PS method is applied at
each time step to solve for the system variables using
initial conditions given by the solution at the previous
time step. Thus, for a step size Δt, the variables are
updated using truncated series approximations (up to
order n), as follows:

y(t + Δt) = y(t) +
n∑

p=1

yp(Δt)p. (13)

In a “clock-driven” simulation with fixed time step,
it is always possible to rescale the system such that the
effective step size becomes equal to one. Thus,

y(t + 1) = y(t) +
n∑

p=1

yp. (14)

2.3 Adaptive order processing

One of the advantages of the Parker-Sochacki method
is that the order of the Maclaurin series approximations
depends only on the number of iterations, and can
therefore be adapted according to the local conditions
at each time step (Pruett et al. 2003; Carothers et al.
2005).

The PS solution is a sum over terms yp(Δt)p, which
approximate the local truncation error for variable y
on iteration p. However, with floating point numbers,
rounding means that the actual change in solution
at each iteration will only be approximately equal to
yp(Δt)p. Taking this into account, we apply adaptive
error control by incrementally calculating the solution
and halting the iterations when the absolute changes
in value of all variables are less than or equal to some
error tolerance value, ε.

2.4 Variable substitutions

Equations containing exponential and trigonometric
functions can often be converted into a form solvable
by PS via the substitution of variables (Parker and
Sochacki 1996, 2000; Carothers et al. 2005). We illus-
trate the method using a simple example relevant to
neuronal modelling.

Example 3 Consider the system

y′ = z; y(0) = 1,

z′ = exp(y); z(0) = 1.
(15)

In order to transform the system, we let x = exp(y).
Like y2 in Example 3, x here is a derived variable, while
y and z are basic variables. Since the derivative of an
exponential function is equal to the function itself, x′ =
y′x, and the system can be rewritten:

y′ = z; y(0) = 1,

z′ = x; z(0) = 1,

x′ = zx; x(0) = e.

(16)

2.5 Power series operations

Application of the Parker-Sochacki method can be
viewed in terms of power series operations, and the
examples above demonstrate all of the operations
required to solve any polynomial system of ODEs.
Addition and subtraction operations are applied in
term-wise fashion, while the Cauchy product performs
multiplication. Since integer powers can be obtained us-
ing multiplication (y3 = y2 y, y4 = y2 y2 etc.), addition,
subtraction and multiplication operations are sufficient
to solve polynomial equations.

Knuth (1997) describes further power series oper-
ations that can be used to apply the Parker-Sochacki
method to non-polynomial equations. First, we con-
sider division. If we take two variables x, y, expressed
as power series, and define a new variable to represent
the quotient z = x/y, then using the Cauchy product we
can write

xp =
p∑

j=0

y jzp− j. (17)

By rearrangement, we have (for y0 �= 0):

zp =
⎛
⎝xp −

p−1∑
j=0

z jyp− j

⎞
⎠ /y0. (18)

Just as the Cauchy product permits variable multipli-
cation in ODEs solvable by the PS method, this formula

J Comput Neurosci

adds division to the list of permissible operations. Thus,
the ODEs need not be strictly polynomial as suggested
in prior works. Rather, PS can be applied to any equa-
tion composed only of numbers, variables, and the four
basic arithmetic operations (addition, subtraction, mul-
tiplication and division), with higher powers handled
through iterative multiplication.

Alternatively, Knuth (1997) presents a formula, due
to Euler, for raising series to powers directly. We con-
sider only positive integer powers here. Briefly, if y0 =
1, then the coefficients of z = yα are given by z0 = 1
and (for p > 0)

zp =
p∑

j=1

((α + 1) j/p − 1)y jzp− j. (19)

For series with y0 �= 1, z0 = (y0)
α and (for p > 0)

zp = 1

y0

p∑
j=1

((α + 1) j/p − 1)y jzp− j. (20)

If the ((α + 1) j/p − 1) terms are pre-calculated, this
method uses 2p multiplications and a single division
to calculate the p-th coefficient. Thus, Euler’s power
method can provide a computational saving over it-
erative multiplication only if more than two Cauchy
products are required to calculate the power, i.e. α > 4.

As presented, both division and general power op-
erations run the risk of encountering division by zero.
We will return to the issue of division by zero in
quotient calculations in the context of the Hodgkin-
Huxley neuron model in Section 4. For Euler’s power
method, we can circumvent the issue. If ym is the first
non-zero coefficient in y, we define a new series x,
with xp = yp+m. Next, we take w = xα and calculate the
coefficients using Eq. (20). The series z has a number of
leading zeros equal to the number of leading zeros in y,
multiplied by the power (mα). Finally, zp+mα = wp.

The presented methods for performing power series
division and power operations are not new (though we
are not aware of a prior description of the technique
for handling leading zeros in the power calculations).
However, their incorporation into the Parker-Sochacki
method is both novel and powerful, significantly ex-
panding the method’s scope.

3 The Izhikevich model

The Izhikevich model (Izhikevich 2003, 2007) is a two
variable, phenomenological neuron model, featuring a
quadratic membrane potential, v, and a linear recovery
variable, u. The model is interesting because it has sim-

ple equations yet is capable of a rich dynamic repertoire
(Izhikevich 2004, 2007). The model can act as either
an integrator or a resonator and can exhibit adaptation
or support bursting. Indeed, this is claimed to be the
simplest model capable of spiking, bursting, and being
either an integrator or a resonator (Izhikevich 2007).

Subthreshold behaviour and the upstroke of the ac-
tion potential can be represented as follows:

Cv′ = kv(v − vt) − u + I,

u′ = a(bv − u),
(21)

where v is the membrane potential minus the resting
potential vrest (v = 0 at rest), vt is the threshold po-
tential, C is the membrane capacitance, a is the rate
constant of the recovery variable, k and b are scaling
constants, and I is the total (inward) input current from
sources other than v and u. Assuming the threshold po-
tential is greater than the resting potential (vt > 0), then
when v > vt, the quadratic expression in Eq. (21) will be
positive, and v will tend to escape towards infinity. This
escape process models the action potential upstroke.
The action potential downstroke is modelled using an
instantaneous reset of the membrane potential, plus a
stepping of the recovery variable:

if v ≥ vmax then v ← vreset, u ← u + ustep, (22)

where vmax is the action potential peak, vreset is the post-
spike reset potential, and ustep is used to model post-
spike adaptation effects. Spike times are taken as the
times when Eq. (22) is applied.

In our benchmark network simulations, synaptic in-
teractions were modelled using a conductance-based
formalism (Vogels and Abbott 2005; Brette et al. 2007).
With the addition of fast excitatory (η) and inhibitory
(γ) conductance-based synaptic currents, Eq. (21) be-
comes

Cv′ = kv(v − vt) − u − η(v − Eη) − γ (v − Eγ) + I,

u′ = a(bv − u), (23)

where η and γ are the total excitatory/inhibitory con-
ductances, and Eη, Eγ are corresponding reversal
potentials. The conductance values are stepped by
incoming synaptic events of matching type, and decay
exponentially with time

η′ = −ληη,

γ ′ = −λγ γ,
(24)

where the λ parameters are decay rate constants.

J Comput Neurosci

3.1 The Parker-Sochacki solution

In this section, we develop an efficient PS solution for
the Izhikevich model system Eqs. (22), (23), (24). Most
calculations in the PS method require a fixed number of
floating point operations at each iteration, but Cauchy
products require a number of operations that scales
linearly with the number of iterations. Consequently,
we seek to minimise the use of Cauchy products in
designing an efficient algorithm.

A straightforward solution based on Eq. (23) would
require three Cauchy products: one to compute kv2,
one for ηv, and another for γ v. Noting that these prod-
ucts contain the common factor v, we rearrange the
membrane equation such that only one Cauchy product
is required

v′ = (χv + Eηη + Eγ γ − u + I)/C, (25)

where χ = kv − η − γ − kvt. Thus, χ0 = kv0 − η0 −
γ0 − kvt and (for p > 0) χp = kvp − ηp − γp. Then the
term χv is given by a Cauchy product:

(χv)p =
p∑

j=0

χ jvp− j. (26)

Using this construction, an efficient Parker-Sochacki
solution for the Izhikevich model can be written down
as:

v1 = (
(χv)0 + Eηη0 + Eγ γ0 − u0 + I

)
/C,

vp+1 = (
(χv)p + Eηηp + Eγ γp − up

)
/(C(p + 1)),

up+1 = a(bvp − up)/(p + 1), (27)

ηp+1 = −ληη/(p + 1),

γp+1 = −λγ γ /(p + 1).

We can pre-calculate 1/C, 1/(p + 1) and 1/C(p + 1)

and solve using only add, subtract and multiply floating
point operations.

3.2 Calculating exact spike times

In clock-driven simulations, spike times are normally
restricted to discrete time samples, offering limited
spike timing accuracy despite accurate integration. Fur-
thermore, Eq. (22) implies that discretisation of spike
times will dramatically affect the subsequent accuracy
of the solution. Specifically, the membrane potential

increases rapidly during an action potential upstroke
and, because of the voltage-dependence of the recovery
variable, spike timing discretisation will tend to result in
significant errors in the values of both v and u prior to
the application of Eq. (22). When Eq. (22) is applied,
v is reset to a fixed value regardless of its prior state,
but u is stepped and thus depends on its prior value.
Thus, errors in the value of u are propagated through
to the post-spike state. This propagation of errors can
be minimised by applying Eq. (22) at the correct times.

We now show how to calculate precise spike times
for the Izhikevich model despite using large time steps
in simulation. To establish our method, we note the
following:

1. The Maclaurin series solution for v(t) is a
polynomial.

2. Via a shift in v0, locating a voltage threshold
crossing can be posed as a polynomial root-finding
problem.

3. Having found a supra-threshold voltage value at
a discrete time point, we know that the threshold
crossing must have occurred during the preceding
time step.

4. Because of the escape process used to model the ac-
tion potential upstroke, the membrane voltage will
be monotonically increasing close to the threshold
crossing/root.

Given these conditions, it is clear that we can efficiently
solve this root finding problem using the Newton-
Raphson method with pre-calculated polynomial
coefficients.

For original step size Δt = Δt1, this root-finding
process returns a value Δtpre, in (0, Δt1], reflecting the
spike time within the local time step, and we solve for u,
η, γ at t + Δtpre. Next, Eq. (22) is applied to model the
action potential downstroke and post-spike adaptation
effects. Finally, an additional time step is run using the
post-spike variable values as initial conditions and a
step size Δtpost = Δt1 − Δtpre. This returns the solution
to time t + Δt1.

Figure 1 illustrates the application of this algorithm
to a single neuron under constant current injection,
with fixed time step (Δt1 = 0.5 ms). In Fig. 1(a), the cell
fires four times in 100 ms, with spike-rate adaptation
due to the recovery variable. Figure 1(b) zooms in on
the first spike, where a peak voltage crossing occurs be-
tween the 19.5 ms and 20 ms time samples. Figure 1(c)
illustrates the use of the Newton-Raphson method to
find the exact spike time, and the post-spike reduced
step up to 20 ms is depicted in Fig. 1(d).

J Comput Neurosci

-60

-40

-20

0

20

40
M

em
br

an
e

po
te

nt
ia

l (
m

V
)

20 40 60 80 1000

0

50

100

u

Time (ms)

0

20

40

60

M
em

br
an

e
po

te
nt

ia
l (

m
V

)

Voltage trace
Peak potential

19 19.5 20

-20

-10

0

Time (ms)

u

(a) (b)

19.6 19.7
-2

-1

0

1

2

v
-

v m
ax

 (
m

V
)

Time (ms)

Voltage trace
Peak potential
NR Step 1
NR Step 2
NR Step 3
NR Step 4
NR Step 5 -50

0

50

M
em

br
an

e
po

te
nt

ia
l (

m
V

)

19 19.5 20
-20

0

20

40

60

80

Time (ms)

u

 t post t pre

(c) (d)

∇∇

Fig. 1 Calculating exact spike times for the Izhikevich neuron.
(a) Membrane potential (top) and recovery variable (bottom)
traces over 100 ms under current injection. The true membrane
potential is recovered using v + vrest. (b) Twentieth millisecond
of simulation using 0.5 ms standard time steps. A peak voltage
threshold crossing is detected after solving for v on the sec-
ond step shown. (c) Locating the threshold crossing using the
Newton-Raphson (NR) method for root-finding. First, vmax is
subtracted from v so that the threshold crossing becomes a root

of the polynomial. Next, the Newton-Raphson method finds the
root through iterative refinement. The results after steps 3–5 of
this process are all contained within the circle used to plot the
result from step 2, and convergence is obtained after 5 steps.
(d) Post-spike reset and continuation. First, we solve for u at
the spike time (around 19.64 ms). Next, Eq. (22) is applied to
update the post-spike values of v and u. Finally, we integrate over
a reduced time step (Δt = Δtpost) to arrive at the correct solution
at the 20 ms time point

3.3 An adaptive order algorithm

With adaptive order processing, the complete algo-
rithm for one Izhikevich neuron over a single time step
is as follows:

1. Run Eq. (27) to order n where error checking
succeeds

2. Use Eq. (13) to get a new value for v
3. If v ≥ vmax

(a) v0 ← v0 − vmax

(b) Apply the Newton-Raphson method to find
(Δtpre)

(c) u(t + Δtpre) = u(t) + ∑n
p=1 up(Δtpre)

p

(d) η(t + Δtpre) = η(t)(e−ληΔtpre)

(e) γ (t + Δtpre) = γ (t)(e−λγ Δtpre)

(f) v ← vreset, u ← u + ustep

(g) Run a reduced time step with Δtpost = Δt1 −
Δtpre

4. Else

(a) update u, η, γ using Eq. (13), or Eq. (14) with
rescaling

This algorithm omits synaptic events. We have devel-
oped a system for scheduling and delivering events at
arbitrary, continuous time points despite using a fixed

J Comput Neurosci

global time step, Δtg. Provided that synaptic transmis-
sion delays are always longer than Δtg, we can calculate
in advance whether a neuron receives any synaptic
events during the time interval [t, t + Δtg] (Morrison
et al. 2007). If events are to be delivered, we move
through the global step via local substeps separated
by synaptic events, with each substep being processed
using the algorithm presented above.

4 A Hodgkin-Huxley model

The Hodgkin and Huxley (1952) (HH) model of the
squid giant axon has been arguably the most influential
work in the field of computational neuroscience, and
their conductance-based modelling framework remains
widely employed. HH model equations are more com-
plex than those of the Izhikevich neuron, and they are
not generally expressed in a form to which the Parker-
Sochacki method can be directly applied. In this sec-
tion, we show how to apply the power series operations
and variable substitutions described in Sections 2.5 and
2.4, to produce a PS solution algorithm.

The particular HH model neuron considered here
was described in Brette et al. (2007), as a modification
of a hippocampal cell model described by Traub and
Miles (1991). With conductance-based synapses, the
equations are,

Cv′ = −gL(v − EL) − ḡKn4(v − EK)

− ḡNam3h(v − ENa)

− η(v − Eη) − γ (v − Eγ) + I,

n′ = αn(v)(1 − n) − βn(v)n,

m′ = αm(v)(1 − m) − βm(v)m,

h′ = αh(v)(1 − h) − βh(v)h,

η′ = −ληη,

γ ′ = −λγ γ,

(28)

where v is the membrane potential (in mV), n, m, h
are gating variables for the voltage-gated sodium (m, h)
and potassium (n) currents, and η and γ are excitatory
and inhibitory synaptic conductances, respectively. The
gating variables evolve according to voltage-dependent
rate constants,

αn = 0.032(vt + 15 − v)/
[
exp((vt + 15 − v)/5) − 1

]
,

(29)

βn = 0.5 exp((vt + 10 − v)/40)], (30)

αm = 0.32(vt + 13 − v)/
[
exp((vt + 13 − v)/4) − 1

]
,

(31)

βm = 0.28(v − (vt + 40))/
[
exp((v − (vt + 40))/5) − 1

]
,

(32)

αh = 0.128 exp((vt + 17 − v)/18), (33)

βh = 4/
[
1 + exp((vt + 40 − v)/5)

]
, (34)

where vt = −63mV sets the threshold (Brette et al.
2007).

4.1 The Parker-Sochacki solution

Since Eqs. (29)–(34) feature exponential functions,
variable substitutions are required before PS can be
applied. First, we let a = βn and b = αh. As described
in Section 2.4, the new equations are as follows:

a′ = −v′a/40, (35)

b ′ = −v′b/18. (36)

Equation (34) takes the form of a Boltzmann func-
tion. Now, letting c = exp((vt + 40 − v)/5), we can
write

c′ = −v′c/5. (37)

Applying this substitution, we have βh = 4/(c + 1),
and h′ = b(1 − h) − 4h/(c + 1). Carothers et al. (2005)
showed that the substitution z = 1/y yields an equation
of the form z′ = −y′z2, and this substitution can be
employed to convert βh, and hence h′, into polynomial
form. However, a simpler solution is obtained via series
division using Eq. (18). In this application, we let d =
h/(c + 1), and use

dp =
⎛
⎝hp −

p−1∑
j=0

d jcp− j

⎞
⎠ /(c0 + 1). (38)

Then, h′ = b(1 − h) − 4d. Note, there is no danger of
encountering division by zero here since the denomi-
nator in Eq. (38) is of the form (exp(x) + 1), which is
always positive.

J Comput Neurosci

Equations (29), (31), (32) can all be written in
the form x/(exp(x)−1), multiplied by some scaling
constant. As with (34), we begin here by substitut-
ing for the exponential terms in the denominators
of these equations. Thus, letting e = exp((vt + 15 −
v)/5), f = exp((vt + 13 − v)/4), and g = exp((v − (vt +
40))/5), we have

e′ = −v′e/5, (39)

f ′ = −v′ f/4, (40)

g′ = v′g/5. (41)

Next we introduce variables for the quotient terms.
Thus, q = (vt + 15 − v)/(e − 1), r = (vt + 13 − v)/(f −
1), s = (v − (vt + 40))/(g − 1), with coefficients given
by:

qp =
⎛
⎝−vp −

p−1∑
j=0

q jep− j

⎞
⎠ /(e0 − 1), (42)

rp =
⎛
⎝−vp −

p−1∑
j=0

r j fp− j

⎞
⎠ /(f0 − 1), (43)

sp =
⎛
⎝vp −

p−1∑
j=0

s jgp− j

⎞
⎠ /(g0 − 1), (44)

yielding αn =0.032q, αm =0.32r, and βm =0.28s. There
is a danger of division by zero here since the denom-
inators in Eqs. (42)–(44) follow (exp(x) − 1), which
equals zero when x = 0. Furthermore, this condition is
encountered within the normal voltage range for the
model neuron. In examining the stability of the PS
method around these singular points, we found that
the Taylor series expansions diverged, causing the PS
method to fail. To examine whether this problem was
specific to the series division operation, an alternative
formulation was testing using substitutions of the form
z = 1/x, z′ = −x′z2 (Carothers et al. 2005). The same
failures were observed here. To solve this problem,
code was added to first detect series divergence and
then substitute in an alternative integration method to
repeat the failed step. This system was used in the HH
model benchmarking simulations in Section 5.2.

As for the Izhikevich model, we simplify the mem-
brane potential equation by grouping all the terms
multiplied by v, and defining χ = −gL − ḡKn4 −
ḡNam3h − η−γ . Thus, χ0 =−gL− ḡK(n4)0− ḡNa(m3h)0−

η0−γ0 and (for p > 0) χp = −ḡK(n4)p − ḡNa(m3h)p −
ηp − γp. Similarly, ψ = −(αn + βn) = −(0.032q + a),
ξ = −(αm + βm) = −(0.32r + 0.28s).

Equation (28) can now be re-written as:

v′ = (
χv + gL EL + ḡKn4 EK + ḡNam3hENa

+ηEη + γ Eγ + I
)
/C, (45)

n′ = ψn + 0.032q, (46)

m′ = ξm + 0.32r, (47)

h′ = b − bh − 4d. (48)

The complete PS solution is listed below. Since no
powers greater than four are calculated, Cauchy prod-
ucts are used rather than the Euler power operation.
Cauchy products will comprise the major computa-
tional cost of the solution method, especially in cases
where a high-order solution is required. Equation (50)
uses one Cauchy product to obtain (χv)p. Two Cauchy
products are needed to obtain (n4)p (via an interme-
diate n2 term). Three Cauchy products are needed for
(m3h)p, via intermediate m2 and m3 terms. Equations
(51) to (65) each require one Cauchy product to solve
(in slightly modified form for the quotient variables).
Thus, a total of 19 Cauchy products are required at each
iteration to solve this HH model using the PS method.

v1 = (
(χv)0 + gL EL + ḡK

(
n4

)
0 EK + ḡNa

(
m3h

)
0 ENa

+η0 Eη + γ0 Eγ + I
)
/C, (49)

vp+1 =
(
(χv)p + ḡK

(
n4

)
p EK + ḡNa

(
m3h

)
p ENa

+ ηp Eη + γp Eγ

)
/(C(p + 1)), (50)

np+1 = (
(ψn)p + 0.032qp

)
/(p + 1), (51)

mp+1 = (
(ξm)p + 0.32rp

)
/(p + 1), (52)

hp+1 = (
b p − (bh)p − 4dp

)
/(p + 1), (53)

ηp+1 = (− ληηp
)
/(p + 1), (54)

γp+1 = (− λγ γp
)
/(p + 1), (55)

J Comput Neurosci

ap+1 = (− (v′a)p/40
)
/(p + 1), (56)

b p+1 = (− (v′b)p/18
)
/(p + 1), (57)

cp+1 = (− (v′c)p/5
)
/(p + 1), (58)

dp+1 =
⎛
⎝hp+1 −

p+1∑
j=1

c jdp− j

⎞
⎠ /(c0 + 1), (59)

ep+1 = (− (v′e)p/5
)
/(p + 1), (60)

fp+1 = (− (v′ f)p/4
)
/(p + 1), (61)

gp+1 = (− (v′g)p/5
)
/(p + 1), (62)

qp+1 =
⎛
⎝−vp+1 −

p+1∑
j=1

e jqp− j

⎞
⎠ /(e0 + 1), (63)

rp+1 =
⎛
⎝−vp+1 −

p+1∑
j=1

f jrp− j

⎞
⎠ /(f0 + 1), (64)

sp+1 =
⎛
⎝−vp+1 −

p+1∑
j=1

g jsp− j

⎞
⎠ /(g0 + 1). (65)

With adaptive order processing, the complete algo-
rithm for one HH neuron over a single time step is:

1. Run Eqs. (49)–(65) until error checking succeeds
2. Update variables using Eq. (13), or Eq. (14) with

rescaling

For the non-power derived variables (a − s), we have
the option of either updating using Eq. (13) or Eq. (14),
or using the definition of the variable to recalculate its
value at each step. For example, for the variable c, we
can use

c(t + Δt) = c(t) +
n∑

p=1

cp(Δt)p,

or

c(t + Δt) = exp((vt + 40 − v(t + Δt))/5).

Using the latter method, the variable is guaranteed
to match its definition at each time step. We term
this method tethering, and any variable so updated a
tethered variable. In preliminary testing, it was found
that the stability of the PS solution was improved by
tethering all the variables involved in quotient calcu-
lations (c, d, e, f, g, q, r, s), but that tethering a and b
produced no improvement in the solution.

5 Results

In this section we assess the speed and accuracy of our
adaptive PS algorithms by running benchmark simula-
tions for the Izhikevich and Hodgkin-Huxley neuron
models. The results are compared to those obtained
using the 4th-order Runge-Kutta (RK) and Bulirsch-
Stoer (BS) methods.

The 4th-order Runge-Kutta method is one of the
most commonly used numerical integration methods
(Press et al. 1992). The method offers moderate accu-
racy at moderate computational cost. For each equa-
tion, the derivative is evaluated four times per step:
once at the start point, twice at trial midpoints, and once
at a trial endpoint. These results are then combined in
such a way that the first, second and third order error
terms cancel. Thus, the solution agrees with the Taylor
series expansion up to the 4th-degree term. Derivative
evaluations are the major computational cost of RK.

The Bulirsch-Stoer method is another popular
method. For smooth ODEs without singular points
inside the integration interval, BS is described by
Press et al. (1992) as the best known way to obtain
high-accuracy solutions to ODEs with minimal com-
putational effort. The method combines the (second
order) modified midpoint method with the technique
of Richardson extrapolation. In a single BS step, a
sequence of crossings of the step is made with an
increasing number n of modified midpoint substeps.
Following Press et al. (1992), we use the sequence
nk = 2k, where k is the crossing number. After each
crossing, a rational function extrapolation is carried out
to approximate the solution that would be obtained if
the step size were zero. The extrapolation algorithm
also returns error estimates. If the latter are acceptable,
we terminate the sequence and move to the next step.
If not, we continue with the next crossing. For a given
step size, BS can be expected to be more accurate but
also more computationally expensive than RK.

Both BS and PS can apply adaptive error con-
trol without adaptive time stepping. To examine this
process, adaptive stepping was not implemented for any
of the methods. For PS, adaptive order processing was
implemented as described in Section 2.3. Equivalent
adaptive error control, based on change in the iterative
solution, was employed for BS. PS was limited to a
maximum of 200-th order, while BS was limited to a
maximum of 50 crossings.

Simulations were run in the MATLAB 7.5 environ-
ment, with algorithms written in C and compiled as
mex files. Code for the Runge-Kutta and Bulirsch-Stoer
methods was adapted from the routines provided in
Press et al. (1992) by removing adaptive time step-

J Comput Neurosci

ping. The machines used to run the simulations fea-
tured 2.2 GHz AMD Opteron processors, and at least
4 GB of memory. Simulation code will be provided in
the ModelDB database.1 Major routines are listed in
Appendix A.

5.1 Izhikevich model

Two types of simulation were used on the Izhikevich
model. In the first type, cells were driven by current
injection only. In the second, recurrent synaptic inter-
actions were also modelled. These different simulations
enabled us to separate the computational costs of inte-
gration and synaptic processing.

5.1.1 Current injection simulations

The current injection model featured 1000 neurons but
no functional synapses. All cells had identical para-
meters, set by fitting the model to the HH neuron
in Brette et al. (2007). Details of the cellular model
and fitting process are given in Appendix B. All sim-
ulations were of one second duration. In one series
of experiments, all model cells were driven by a con-
stant, depolarising injection current sufficient to make
them fire once within the simulation time period. In
another, the cells were driven to fire ten times. These
are the one- and ten-spike simulations, respectively. In
each case, we applied nc = 15 different error tolerance
conditions. For BS and PS we used a global step size
of Δtg = 0.25 ms, and systematically varied the error
tolerance, ε. All three methods were stable (no solution
divergence to infinity) at this step size. For condition cn,
ε = 1e−(n + 1). For RK, we varied the error tolerance
indirectly by changing the global step size. For c1..15,
Δtg for RK was set to 1/4, 1/6, 1/8, 1/10, 1/20, 1/40, 1/60,
1/80, 1/100, 1/200, 1/400, 1/600, 1/800, 1/1000, 1/2000 ms,
respectively. For time averaging, all simulations were
repeated ten times. All solution algorithms included
calculations for exact spike times using the Newton-
Raphson method as described in Section 3.2. For RK
and BS this required additional integration steps to
evaluate v and v′ at different time points.

Figure 2 shows the results from these simulations.
In Fig. 2 (top) simulation time is plotted as a func-
tion of c. In the one-spike simulations (solid lines),
PS was the fastest method for all c, with simulation
times monotonically increasing from 0.72 ± 0.01 s (c1)
to 1.83 ± 0.02 s (c15). RK times rose from 0.78 ± 0.01 s
to 388 ± 0.7 s for c1..15. BS times increased gradually

1http://senselab.med.yale.edu/senselab/modeldb.

1

10

100

1000
RK 1 10

BS 1 10

PS 1 10

S
im

ul
at

io
n

tim
e

(s
)

0

10

20

30

40

50
Mean BS crossings

Mean PS order

Max PS order

1

1

1

10

10

10

P
S

 o
rd

er
 /

B
S

 c
ro

ss
in

gs

1 5 10 15
10

0

10
5

10
10

10
15

10
20

A
cc

ur
ac

y
(m

V
 -1

)

Error tolerance condition

Fig. 2 Izhikevich model current injection results. (Top) Mean
simulation time for 1 s simulations with varying error tolerance
conditions. (Middle) Adaptive processing statistics. Plots show
the mean (over a simulation) number of crossings used by the
BS method per step, and the mean and maximum order of the PS
method. (Bottom) Simulation accuracy taken as the reciprocal of
absolute voltage divergence between test and reference traces.
Line styles as in top panel

from 7 to 11 s across c1..12 but rose steeply at tighter
error tolerances to 309 ± 1 s in condition 15. Results
from the ten-spike simulations were similar. PS was
again the fastest method in all conditions. However,
times here were greater than the one-spike results in
equivalent conditions, with gain ranging from 1.09 (c1)
to 1.44 (c7). RK times were slightly greater than for
the equivalent one-spike simulations for all c, with gain
factors ranging from 1.072 (c6) to 1.085 (c2). BS times
were reduced relative to the one-spike results in the
first few conditions, but were greater in the last four
conditions.

In order to explain the variation in simulation times,
Fig. 2 (middle) shows how adaptive processing for BS
and PS varied with error tolerance by plotting repre-
sentative statistics for each method. The number of BS
crossings was low for c1..12 but rose steeply for c > 12.
This increase reflects error tolerance failures. In both
one- and ten-spike simulations there were no failures

http://senselab.med.yale.edu/senselab/modeldb

J Comput Neurosci

for c1..12, but for c13,14,15 there were, respectively, 21,
475, 1666 failures per cell in the one-spike simulations
and 176, 1088, and 1850 failures per cell in the ten-spike
simulations. In contrast, PS never failed to achieve the
specified error tolerances. The mean order of the PS
method increased gradually with increasing c, and the
maximum order across all conditions was 20 in one-
and 21 in ten-spike simulations. The mean PS order
was greater in the ten- than one-spike simulations and
the gain was very similar to the simulation time gain,
ranging from 1.10 (c1) to 1.43 (c7).

To quantify the accuracy of the simulation output,
we created reference solutions against which to test
all other solutions. Since the PS Taylor series were
convergent in these simulations, reference solutions
were obtained by running PS to complete numerical
convergence (ε = 0). There were no tolerance failures
and reference simulation times were 1.84 ± 0.02 s for
one spike and 2.59 ± 0.01 s for ten. Mean order was
6.14 and 8.73, respectively, and maximum order was
20 and 21 (as for c15). Simulation error was calculated
as the mean absolute membrane voltage divergence
between test and reference traces. Figure 2 (bottom)
plots simulation accuracy, taken as the reciprocal of
the error.

Despite using the same error tolerance conditions,
BS was many times more accurate than PS for c1..10

in both one- and ten-spike simulations. In the one-
spike simulations, RK was also more accurate than
PS for c1..10. RK was less accurate in the ten-spike
simulations, but was still more accurate than PS for c1..6.
However, both BS and RK accuracy plots plateaued
at low tolerances, with peak values always between
1e11 and 1e13. Indeed, BS showed reduced accuracy
at the lowest tolerances where it exhibited failures. In
contrast, PS showed progressive accuracy gains with
decreasing tolerance until in condition 15 measured
accuracy was infinite since the reference and test traces
were identical for both one- and ten-spike simulations.

The reference PS simulations achieved double pre-
cision accuracy in the state variables and yet were
faster than the fastest BS simulations. Furthermore,
the reference runs were only 2.35 and 3.07 slower than
the fastest RK simulations in the one- and ten-spike
simulations, respectively.

5.1.2 Recurrent network model simulations

The network model here was based on Benchmark 1
from Brette et al. (2007), which was inspired by an
earlier model (Vogels and Abbott 2005). The network
featured 4000 neurons (80% excitatory, 20% inhibitory;
parameters as above). All cells were randomly (2%

probability) connected, and ns = 5 different network
configurations were created.

All simulations were of one second duration. To
generate recurrent activity, random stimulation was
applied for the first 50 ms, as described by Brette et al.
(2007). This initial stimulation was provided here by
constant current injection, and each cell was indepen-
dently assigned a random current value in [0, 200]
pA. For each network configuration, ni = 10 different
patterns of initial stimulation were applied, and each
pairing of network configuration and input pattern de-
fines a single experiment (ne = ns × ni = 50).

In the absence of numerical errors, all simulations
from the same experiment should have produced iden-
tical output. Repeated experiments therefore allowed
us to examine the speed/accuracy trade-off for each
integration method.

Given the results from the current injection sim-
ulations, we selected three representative error tol-
erance conditions to apply here. Specifically, it was
specified that c1,2,3 here would be identical to c1,9,15

from the current injection simulations. Thus, for BS
and PS, ε = 1e-2, 1e-10, 1e-16, and for RK, Δtg =
1/4, 1/100,1/2000. As in the current injection simula-
tions, reference solutions were created using PS with
ε = 0.

5.1.3 Single experiment results

In this section, we characterise the outputs from a
single experiment, using the reference solution to assess
accuracy. Figure 3(a) shows membrane potential traces
from a single neuron, with results from conditions 1–
3 arranged in separate panels, top to bottom and in-
tegration methods represented using different colours.
For comparison, the trace from the reference solution
for this experiment is plotted as a black line in each
panel. The reference trace was drawn last so that it
would obscure the coloured traces when they were in
agreement. Thus, working left to right in a single panel,
the appearance of a coloured line is a visual indicator of
divergence between the reference solution and the test
solution from the method represented by that colour.

A quantitative measure of trace divergence (accu-
racy) was obtained by recording the time point at which
each test trace first differed from the reference trace by
more than 1 mV. These divergence points are indicated
by vertical lines in Fig. 3(a). For c1, the divergence times
for all three methods were between 140 and 150 ms.
For c2, divergence times were later for all methods, at
433 ms (RK), 443 ms (PS), and 500 ms (BS). In the final
condition, the BS and RK results were reversed relative
to the previous condition with RK diverging at 500 ms,

J Comput Neurosci

-80

-40

0

RK
BS
PS
ref

-80

-40

0

M
em

br
an

e
po

te
nt

ia
l (

m
V

)

0 200 400 600 800 1000
-80

-40

0

Time (ms)

1

2

3

0

5

10

15

RK
BS
PS
ref

0

5

10

15

N
eu

ro
n

in
de

x
0 200 400 600 800 1000

0

5

10

15

Time (ms)

1

2

3

(a) (b)

Fig. 3 Izhikevich model recurrent network results: recordings
from repeated simulations using the same network model and
initial random inputs but varying the integration method and
error tolerance/time step size. (a) Membrane potential traces
from single neuron. (Top to bottom) Conditions 1–3. In each plot,
the colour represents the integration method, with an additional
reference trace drawn in black. The reference trace was drawn

last. Thus, the appearance of coloured lines indicates divergence
of test solutions from the reference. (b) Population raster plot of
the first twenty cells in the same network model as in (a); layout
and colours as in (a). The single cell traced in (a) appears here
as neuron 5. As in (a), these plots are overlain by a reference
solution in black. Thus, the appearance of coloured dots indicates
divergence

and BS diverging earlier at 433 ms. In contrast, the PS
test solution agreed with the reference solution over the
full one second simulation.

Figure 3(b) shows population raster plots from the
first 15 cells in the same network. Once again, the
reference solution is plotted in each panel to give a vi-
sual indicator of agreement. Raster divergence (vertical
lines) was taken as the time point at which a test spike
time first differed from the corresponding reference
spike time by more than 1 ms. Raster divergence times
were generally later than trace divergence times but
followed the same trends. This indicates that solution
divergence for this model is a network phenomenon
rather than a single cell characteristic; as expected given
the highly recurrent network activity here.

Both voltage traces and spike time results from each
method generally converged towards the reference so-
lution as the error tolerance decreased. The only ex-
ception to this rule was the BS result from condition 3,
which was worse than condition 2. As above, BS exhib-
ited error tolerance failures at the lowest tolerance, and
reduced accuracy probably results from roundoff errors

with many crossings (Press et al. 1992). Only the PS
solution from condition 3 showed agreement with the
reference solution that extended beyond the time limit
of the simulation. RK and BS showed neither complete
agreement with the reference solution, nor agreement
between their own test solutions.

5.1.4 Overall performance results

In this section, we examine the overall accuracy of each
integration method and derive a performance measure
based on both speed and accuracy. In the single exper-
iment results, simple heuristic measures of trace and
raster plot divergence were employed to assess accu-
racy. While those measures were sufficient to highlight
important trends in the data, a stricter measure of
global solution divergence was obtained here by com-
paring time-ordered sequences of spikes from different
simulations in the same experiment. Spike sequences
consisted of {spike time, neuron index} pairs, and the
duration of global solution agreement was taken as the
time of the last spike at which the test and reference

J Comput Neurosci

1

10

100

1000

10000
S

im
ul

at
io

n
tim

e
(s

)

RK
BS
PS

0

0.5

1

D
ur

at
io

n
of

ag
re

em
en

t (
s)

1 2 3
0

0.02

0.04

Error tolerance condition

P
er

fo
rm

an
ce

Fig. 4 Izhikevich model recurrent network results: perfor-
mance summary. (Top) Mean simulation time. (Middle) Sim-
ulation accuracy: mean duration over which the output from
simulation runs agree with reference solutions in terms of the
exact spike sequences (see text for further details). (Bottom)
Performance (accuracy/time)

sequence neuron indices were identical. Assuming the
reference simulations were at least as accurate as the
test simulations, the duration of agreement provides a
measure of solution accuracy.

Figure 4 (top) plots simulation time for each method
as a function of the error tolerance condition. The
general pattern of results here was qualitatively similar
to the current injection results in Fig. 2(a). The mean
number of spikes across all experiments was 7.66 ± 0.4,
so we compare with the ten-spike current injection
results. RK times were between 6.07 (c2) and 6.82 (c1)
times larger than in the equivalent current injection
simulation. PS times were between 7.51 (c2,3) and 8.31
(c1) times larger, while BS times were between 5.09
(c1) and 8.9 (c3) times larger. These increased times,
despite reduced firing rate, reflect the introduction of
synaptic interactions, and the fact that the recurrent
network had four times as many cells. Furthermore,
trace recordings were output to file during the recurrent
simulations but not during the current injection simula-
tions. To examine the cost of synaptic interactions more
directly, additional simulations were run with smaller

recurrent networks of 1000 cells, without file record-
ings, and with firing rate adjusted to approximately
ten spikes per cell via weight scaling. In these smaller
simulations, RK times were between 0.97 (c2,3) and 1.03
(c1) times larger than in the equivalent current injection
simulation. PS times were between 1.24 (c1) and 1.32
(c3) times larger, while BS times were between 1.27 (c1)
and 1.96 (c3) times larger. Thus, the additional costs of
synaptic interactions was noticeable for BS and PS, but
not RK.

Figure 4 (middle) plots the mean duration of agree-
ment for each method. These results are broadly similar
to those obtained in the single experiment results. RK
accuracy increased by a large amount moving from c1

to c2, and by a smaller amount from c2 to c3, reaching
a maximal value of 0.33 s. BS accuracy peaked at 0.30
s for c2 and decreased at c3. PS accuracy increased
progressively as the error tolerance was tightened. In
condition 3, most, but not all, PS simulations agreed
with the reference solution over the full duration of
the simulation. Thus, unlike in the current injection
simulations, tiny numerical differences between the
simulations with ε = 1e-16 and ε = 0 were sufficient
here to cause network state divergence in some cases
within a one second simulation time period.

Morrison et al. (2007) have argued that in order
to arrive at a relevant measure of the performance
of an integration method, simulation time should be
analysed as a function of the integration error. Fol-
lowing this principle, overall performance was assessed
as a function of both speed and accuracy by dividing
the duration of agreement by simulation time to yield
a dimensionless performance measure. For example,
a performance score of 1 would be obtained by a
method running at real-time speed and showing com-
plete agreement with the reference solution. Figure 4
(bottom) plots mean performance. By this measure,
RK was the best performing method for c1, while PS
performed second best for c1 and much better than the
other methods for c2,3.

The reference PS simulations once again achieved
double precision accuracy in the state variables over
the simulation period and took 19.50 ± 0.7 s to run.
This was faster than the fastest BS simulations, and 3.39
times slower than the fastest RK simulations.

5.2 Hodgkin-Huxley model

For the Hodgin-Huxley model, current injection simu-
lations were used to compare methods in the absence of
synaptic processing. Ten identical cells were modelled
for more accurate time calculations; parameters are
listed in Appendix B. As for the Izhikevich model,

J Comput Neurosci

one- and ten-spike simulations were run and 15 error
tolerance conditions were applied. Preliminary testing
showed solution divergence to infinity with step sizes
larger than 0.01 ms for RK, and 0.1 ms for BS/PS.
Consequently, Δtg was set to 0.1 ms for all BS and
PS simulations, and 0.01 for RK in condition 1. Error
tolerances for BS and PS were identical to those used
in Section 5.1.1. For RK, Δtg was reduced in the same
manner as for the Izhikevich model, but from a lower
starting point. Thus, for c15, Δtg for RK was 1/80,000 ms,
or 12.5 ns.

For the PS method, an adaptive algorithm with fail-
ure detection was used as described in Section 4.1, with
a replacement BS step being run when PS failure was
detected.

Unlike the Izhikevich model simulations, the PS
method sometimes failed to achieve the specified error
tolerances here, giving no guarantee of accuracy. For
this reason, we conducted an analysis of within-method
agreement across conditions using the c15 results from
each method as reference solutions. Voltage traces
were recorded from every simulation at 1 ms sampling
steps, and the mean absolute difference between test
and reference traces was recorded. All methods showed
initial convergence towards their own reference as the
error tolerance was reduced, suggesting that they were
becoming more accurate. The best result in both one-
and ten-spike simulations came from PS (c14) at 2.39e-
13 and 1.12e-12 mV, respectively. RK and BS achieved
divergences never less than 1e-10 and 1e-9 mV,
respectively.

Consequently, general reference solutions for each
experiment were produced using PS with ε = 0. Treat-
ing all other voltage traces as test solutions, the mean
absolute voltage difference between reference and test
traces was calculated, and the inverse of this value was
taken as an accuracy measure for the test solution.
Finally, overall performance was taken as accuracy
divided by simulation time.

Figure 5 shows the results of this performance analy-
sis. The top panel shows how simulation time varied
with the error tolerance condition. All methods became
slower with decreasing error tolerance, as expected. RK
was the slowest method in all conditions here. PS was
the fastest method, with better than real-time speed
in all conditions in the one-spike experiments. In the
ten-spike simulations, PS was between 1.26 (c1) and
3.27 (c15) times slower than the equivalent one-spike
simulations, but was still faster than RK and BS in all
conditions.

The middle panel of Fig. 5 shows mean accuracy
values plotted against the error tolerance condition. As
with the Izhikevich model results, RK and BS showed

0.1

1

10

100

1000

10000

S
im

ul
at

io
n

tim
e

(s
) RK 1 10

BS 1 10
PS 1 10

10
0

10
5

10
10

10
15

A
cc

ur
ac

y
(m

V
 -1

)

1 5 10 15
10

0

10
5

10
10

10
15

Error tolerance condition

P
er

fo
rm

an
ce

Fig. 5 HH model results. (Top) Mean simulation time for 1 s
benchmark simulation. (Middle) Mean accuracy, with accuracy
values taken as the inverse of the mean absolute voltage dif-
ference between test and reference solutions. (Bottom) Overall
performance (accuracy/time)

convergence towards the reference solution with reduc-
ing error tolerance, justifying the choice of reference.
As for the Izhikevich model however, the accuracy
measures for both methods plateaued, reaching simi-
lar peak levels in each case, with the peak located at
c11 (BS, one-spike) or c10 (all other simulations). PS
accuracy continued to improve beyond this tolerance
level, reaching peak values more than two orders of
magnitude greater than the alternatives in the one-
spike simulations and roughly one order of magnitude
greater in the ten-spike experiments.

The bottom panel of Fig. 5 shows overall perfor-
mance values for each method. PS recorded the best
results here in both the one- and ten-spike simulations.
Comparing peak performance values for each method,
in the one-spike simulations PS performed roughly four
orders of magnitude better than BS and five orders
of magnitude better than RK. In the ten-spike simu-
lations, PS performed 9 times better than BS, and 558
times better than RK.

The reference PS simulations took around ten per-
cent longer to run than the c15 simulations in both one-
and ten-spike simulations. Unlike the Izhikevich model

J Comput Neurosci

results, double precision accuracy was not obtained
due to error tolerance failures. The PS method only
failed around singular points in the equations, but the
replacement BS steps were unable to achieve zero error
tolerance when PS failed.

6 Discussion

The Parker-Sochacki method is a promising new nu-
merical integration technique. We have presented the
method and shown how it can be applied to the
Izhikevich and Hodgkin-Huxley neuronal models.

In Section 2, we summarised major milestones in the
development of the Parker-Sochacki method and illus-
trated its application through examples. We demon-
strated how to implement adaptive error control using
adaptive order processing in PS. We also showed how
power series division and power operations can be
used within the Parker-Sochacki framework. For terms
with powers greater than 4, Euler’s power method can
provide significant computational savings over iterated
Cauchy products, but it is the division operation which
is likely to be of greater utility. Series division is simple
to implement since the major calculation can be carried
out using a standard Cauchy product function. With this
operation, PS can be directly applied to any equation
composed only of numbers, variables, positive integer
powers, and the four basic arithmetic operations (ad-
dition, subtraction, multiplication and division). This is
a far broader class of equations than the polynomials
considered in previous articles (Parker and Sochacki
1996; Carothers et al. 2005). Where other expressions
are present, it may still be possible to apply the method,
but additional work will be required to discover and
apply suitable variable substitutions.

In Section 3, we applied PS to the Izhikevich neu-
ron model: a simple model capable of rich dynamic
behaviour. We developed an efficient PS solution using
a single Cauchy product, showed how to calculate exact
spike times within larger time steps using the Newton-
Raphson method and presented a simple adaptive or-
der algorithm.

Benchmark simulations in Section 5.1 demonstrated
that the Parker-Sochaki method is capable of double
precision integration accuracy for Izhikevich model
neurons in both current injection and recurrent net-
work simulations. Neither the Bulirsch-Stoer nor the
Runge-Kutta methods were capable of the same level
of accuracy. Furthermore, in Section 5.1.2 it was shown
that integration accuracy had a major effect on network
behaviour in a recurrent network simulation, with small
solution errors leading to divergent behaviour within a
relatively short simulation time period.

In light of the typical parameter uncertainties in
neuronal modelling, the question of whether double
precision integration accuracy is useful in a given set-
ting will be a matter for the individual investigator to
consider. However, the relative time cost of applying
zero error tolerance in PS simulations is small; refer-
ence PS simulations were always faster than any BS
simulations on this model and took less than four times
as long to run as 4th-order RK simulations with the
same global step size. In general, we would make the
following suggestions. First, PS should always be run
with zero error tolerance. Second, even if PS is not used
for the main simulations in a study, it may still be useful
as a reference solution in pilot work.

In Section 4, we applied PS to a Hodgkin-Huxley
model. We showed how variable substitutions trans-
form the equations into a form suitable for the appli-
cation of PS. We also successfully applied the series
division operation. However, for equations of the form
x/(exp(x) − 1), we encountered a Taylor series diver-
gence problem that we were unable to solve through
variable substitutions. There are at least three ways
to work around such a problem. First, as we did, an
alternative numerical integration method can be used
for steps where the PS method fails. Second, polyno-
mial, spline, or rational function approximation meth-
ods can be used. Cubic interpolating splines are one
attractive option here due to the low order and high
accuracy offered (de Boor 2001). Alternatively, Floater
and Hormann (2007) proposed a family of rational
interpolants that have no poles, and arbitrarily high
approximation orders. Finally, there exist alternative
equation forms for Hodgkin-Huxley type models that
avoid the presence of singular points; one promising
option being the Extended Hodgkin-Huxley (EHH)
model (Borg-Graham 1999) (Section 8.4.2). Here, the
voltage-dependent rate constant equations take on the
following generic form:

αx = α′
x/(τ0(α

′
x + β ′

x) + 1) (66)

βx = β ′
x/(τ0(α

′
x + β ′

x) + 1) (67)

α′
x = K exp((zγ (v − v1/2)F)/RT) (68)

β ′
x = K exp((−z(1 − γ)(v − v1/2)F)/RT) (69)

where K is a positive constant, F is Faraday’s constant,
R is the gas constant, and T is the temperature in
Kelvin. The following method creates a PS solution.
First, substitute for the exponential expressions to give
α′

x = ax, α
′
x = b x. Next, define a derived variable cx =

τ0(ax + b x) + 1. Finally, solve for αx and βx using series
division operations on ax/cx and b x/cx, respectively.

J Comput Neurosci

Furthermore, since K is positive, cx is always positive,
avoiding any singularities.

In order to retain the Hodgkin-Huxley model equa-
tions used by Brette et al. (2007), benchmark sim-
ulations in Section 5.2 used the method-substitution
approach. At low error tolerances, this approach ap-
peared to yield greater accuracy than the alternative
methods, but was unable to achieve double precision
accuracy due to failures in both PS steps close to
singular points and the replacement BS steps. Given
the lack of singular points in the Extended Hodgkin-
Huxley equations, we conjecture that the Maclaurin
series would always be convergent for this modelling
framework. If simulation testing proves this conjecture
to be correct, then the PS method will be able to achieve
arbitrary precision and should also run faster than on
the standard Hodgkin Huxley model due to an absence
of failure and replacement steps.

In all of our simulations, continuous event times
were accommodated within a globally clock-driven
framework. This modelling approach enables far
greater accuracy than traditional clock-driven meth-
ods where events are restricted to discrete time
points. Event-driven simulation approaches (Mattia
and Del Giudice 2000; Delorme and Thorpe 2003;
Makino 2003; Brette 2006, 2007), offer comparable
event timing precision but are generally restricted to
simple neuronal models, while the present approach
is far more widely applicable. Morrison et al. (2007)
proposed a similar hybrid clock-driven/event-driven
approach but, like many standard event-driven tech-
niques, their method was restricted to linear neu-
ron models. In contrast, by using the Parker-Sochacki
method, we were able to combine the flexibility of
clock-driven simulation methods with the precision of
event-driven approaches.

In Appendix A, we present the major routines used
in our implementation of the Parker-Sochacki method.
We endeavoured to make the code generic, modular
and simple to adapt. It should be emphasized that the
provided code does not constitute a general neuronal
modelling package of the type described by Brette et al.
(2007). Rather, it is our hope that the Parker-Sochacki
method will be adopted into existing simulation pack-
ages as an alternative integration method for highly
accurate simulations.

As previously noted, the Parker-Sochacki method
is directly applicable to any model with polynomial
or rational differential equations. In terms of exist-
ing spiking neuron models, the class with polynomial
equations includes the leaky (Lapicque 1907; Tuckwell
1988) and quadratic (Ermentrout 1996; Latham et al.
2000) integrate-and-fire models, the resonate-and-fire

neuron model (Izhikevich 2001), the Fitzhugh-Nagumo
model (Fitzhugh 1961; Nagumo et al. 1962), and the
models of spiking and bursting by Hindmarsh and
Rose (1982, 1984). The exponential integrate-and-fire
model (Fourcaud-Trocmé et al. 2003), including the
two-dimensional adaptive version (Brette and Gerstner
2005), can be handled using an exponential variable
substitution (see Section 2.4). For Hodgkin-Huxley
type models, multiple substitutions will usually be
required.

The Hodgkin-Huxley formalism can be viewed as a
simple Markov kinetic model (Destexhe et al. 1994).
More complex kinetic models have been used to
model voltage-gated ion channels (see, for example
Vandenberg and Bezanilla 1991; Bezanilla et al.
1994), and it has been suggested that ligand-gated,
and second-messenger-gated channels can be modeled
along the same lines (Destexhe et al. 1994; Destexhe
2000). Like the HH and EHH models, these general ki-
netic models usually feature exponential functions that
can be handled using the same kind of substitutions.

Compartmental models often use equations similar
to single-compartment models for each compartment,
plus linear, resistive coupling terms between neigh-
bours. The PS method handles coupling terms in the
same way as any other variables; no additional substi-
tutions or manipulations are required. Indeed, PS has
already been successfully applied to the n-body prob-
lem (Rudmin 1998; Pruett et al. 2003), which features n
coupling terms in the equations describing the motion
of each body. Thus, the PS method is applicable to a
compartmental model provided it is applicable to the
equations of individual compartments, with coupling
terms.

Calcium modelling introduces calcium ion concen-
trations as model variables, with equations describ-
ing concentration changes (Borg-Graham 1999). Once
again, PS handles these new variables in the same way
as any others.

In conclusion, the Parker-Sochacki method offers
unprecedented integration accuracy in neuronal model
simulations, at moderate computational cost, and is
applicable in a variety of computational neuroscience
settings. It is our hope that this article will help to
facilitate its wider adoption.

Acknowledgements Research supported by The Wellcome
Trust. We are grateful to Joseph Rudmin, Stephen Lucas and Jim
Sochacki for stimulating discussions and helpful advice.

Open Access This article is distributed under the terms of the
Creative Commons Attribution Noncommercial License which
permits any noncommercial use, distribution, and reproduction
in any medium, provided the original author(s) and source are
credited.

J Comput Neurosci

Appendix A: Parker-Sochacki solution code

The routines below form the core of our implemen-
tation of the Parker-Sochacki method. The generic
solver routine, ps_step, solves a system of differential
equations using PS and advances the solution across
a single time step. Worker routines first and iter
are passed in to ps_step and calculate the first and
subsequent terms of the PS solution to a specific system.
The ps_step routine was used with different first
and iter functions for both Izhikevich and Hodgkin-
Huxley model simulations; the Izhikevich model rou-
tines iz_first and iz_iter are included as an
example. In order to use ps_step to solve a different
model, all that is required is to define suitable ‘first’
and ‘iter’ functions specific to the model in question.
Also included below are some generic power series
operation functions.

/*Generic Parker-Sochacki solver function*/
int ps_step(double *y[],double *co[],double y1[],

double ynew[],
double fp[], double eta[],
void (*first)(double *[],double *[],double []),
void (*iter)(double *[],double *[],double [],int),
int stop,int ps_limit, int nv, int err_nv){
int i,p; double dt=fp[99], dt_pow;
first(y,co,fp); /*Calculate first order terms*/
if(dt == 1)for(i=0;i<nv;i++)y1[i]=y[i][0]+y[i][1];
else{for(i=0;i<nv;i++)y1[i]=y[i][0]+dt*y[i][1];
dt_pow=dt*dt;}
for(p=1;p<(ps_limit-1);p++){/*Iterations*/

iter(y,co,fp,p);
/*Update solution*/
if(dt == 1)for(i=0;i<nv;i++)ynew[i]=y1[i]+y[i][p+1];
else{for(i=0;i<nv;i++)ynew[i]=y1[i]+y[i][p+1]*dt_pow;

dt_pow*=dt;
}
/*Check for solution divergence*/
if((fabs(y[0][p+1])>10.0)){p=-1;break;}
/*Test error tolerance on variable value change*/
for(i=0;i<err_nv;i++){if(fabs(ynew[i]-y1[i])>eta[i])
break;}
if(i==err_nv)break;
for(i=0;i<nv;i++)y1[i]=ynew[i];

} p++;
if(stop==1){if(p==ps_limit)mexErrMsgTxt
("PS solve failed.");}
return p;

}

/*PS - first term for Izhikevich model*/
void iz_first(double *y[], double *co[], double fp[]){

double v,u,g_ampa,g_gaba,I,k,l,E_ampa,E_gaba,E,a,b,
co_g_ampa, co_g_gaba,chi;
v = y[0][0]; u = y[1][0]; g_ampa = y[2][0];
g_gaba = y[3][0];
chi = y[4][0];
I = fp[0]; k = fp[1]; E_ampa = fp[3]; E_gaba = fp[4];
E = fp[5]; a = fp[6]; b = fp[7]; co_g_ampa = fp[8];
co_g_gaba = fp[9];
y[0][1] = E*(v*chi - u + E_ampa*g_ampa
+ E_gaba*g_gaba + I);

y[1][1] = a*(b*v - u);
y[2][1] = co_g_ampa*g_ampa;
y[3][1] = co_g_gaba*g_gaba;
y[4][1] = k*y[0][1] - y[2][1] - y[3][1];

}

/*PS - iteration function for higher order terms*/
void iz_iter(double *y[], double *co[], double fp[],
int p){

double v,k,l,E_ampa,E_gaba,b,chi,vchi; int i;
k = fp[1]; E_ampa = fp[3]; E_gaba = fp[4]; b = fp[7];
vchi = y[0][0]*y[4][p] + y[4][0]*y[0][p];
for(i = 1; i < p; i++){vchi += y[0][i]*y[4][p-i];}
y[0][p+1] = co[0][p]*(vchi - y[1][p] + E_ampa*y[2][p]
+ E_gaba*y[3][p]);
y[1][p+1] = co[1][p]*(b*y[0][p] - y[1][p]);
y[2][p+1] = co[2][p]*y[2][p];
y[3][p+1] = co[3][p]*y[3][p];
y[4][p+1] = k*y[0][p+1] - y[2][p+1] - y[3][p+1];

}

/*Power series operation routines for the Cauchy product,
series division, and Euler’s power method*/

void cauchy_prod(int p,double *a,double a0,double *b,
double b0,

double *c){
/*c is the pth term of the Cauchy product of a and b
with zeroth order terms a0, b0 allowing shifted
products
(e.g (a-1)*(b+1))*/
int i;

*c = a0*b[p] + b0*a[p];
for(i = 1; i < p; i++){*c += a[i]*b[p-i];}

}

void series_div(int p,double a_pp,double *b,double b0,
double *c,
double c0){
/*calculates pth term of c = a/b, with zeroth order
terms
b0, c0*/
double cb;
cauchy_prod(p,c,c0,b+1,b[1],&cb);
c[p+1] = (a_pp - cb)/b0;

}

void series_pow(int p,double *a,double a0,double *b,
double b0,
double x){
/*calculates pth coefficient of b = a^x*/
int i;
b[p] = x*a[p]*b0; /*i=p special case*/
for(i=1;i<p;i++){
b[p] += ((x+1)*(double)i/(double)p - 1)*a[i]*b[p-i];

}
b[p] /= a0;

}

Appendix B: Benchmark model neuron parameters

Cellular model parameters for both the Izhikevich and
HH models were taken from Brette et al. (2007), and
all cells had identical basic parameters. Briefly, the cell
area was 20,000 μm2, and input resistance was 100 M�.
Given a specific capacitance of 1 μF/cm2, whole cell
capacitance was taken as C = 200 pF. Following the
published code accompanying Brette et al. (2007), EL

was set to −65 mV; the value of −60 mV given in the
text of the paper was erroneous (Destexhe, personal
communication).

The HH neuron model was as described in Section 4.
In addition to the basic parameters listed above, pa-
rameters specific to the HH model were: gL = 10 nS,

J Comput Neurosci

ḡNa = 20000 nS, ḡK = 6000 nS, ENa = 50 mV, EK =
−90 mV.

The Izhikevich model neuron parameters were ob-
tained by fitting the model to the HH neuron in Brette
et al. (2007). First, vrest was taken as −65 mV to match
EL. The voltage threshold of −50 mV was shifted by
vrest to give vt = 15 mV. Next, vmax and c were obtained
by observing the HH neuron model under constant,
supra-threshold current injection. The observed values
of 48 mV and −85 mV were shifted relative to vrest to
give vmax = 113 mV and c = −20 mV. In the same sim-
ulations, the rheobase current was found to be around
19 pA. Since the HH neuron from Brette et al. (2007)
lacks spike frequency adaptation, ustep was set to zero,
and a was set to a value of 0.03 to match the value
given by Izhikevich (2007) for a regular spiking cortical
neuron.

Izhikevich (2007) (Ch 5), describes a method for
setting b and k given the rheobase current, input re-
sistance, and the resting and threshold potentials. Us-
ing this method, values of k = 1.3 and b = −9.5 were
obtained.

Model synapses were conductance-based, and con-
ductances were summed together to form one η and one
γ value for each neuron. The conductances decayed ex-
ponentially with time constants of 5 ms for η and 10 ms
for γ . When fired, excitatory synapses incremented η by
6 nS, while inhibitory synapses incremented γ by 67 nS.

References

Bezanilla, F., Perozo, E., & Stefani, E. (1994). Gating of shaker
k+ channels: Ii. The components of gating currents and
a model of channel activation. Biophysical Journal, 66(4),
1011–1021, April.

Borg-Graham, L. (1999). Interpretations of data and mechanisms
for hippocampal pyramidal cell models. In Cerebral cortex
(pp. 19–138). New York: Plenum.

Brette, R. (2006). Exact simulation of integrate-and-fire mod-
els with synaptic conductances. Neural Computation, 18(8),
2004–2027.

Brette, R. (2007). Exact simulation of integrate-and-fire mod-
els with exponential currents. Neural Computation, 19(10),
2604–2609.

Brette, R., & Gerstner, W. (2005). Adaptive exponential
integrate-and-fire model as an effective description of neu-
ronal activity. Journal of Neurophysiology, 94(5), 3637–3642,
November.

Brette, R., Rudolph, M., Carnevale, T., Hines, M., Beeman, D.,
Bower, J. M., et al. (2007). Simulation of networks of spiking
neurons: A review of tools and strategies. Journal of Com-
putational Neuroscience, 23(3), 349–398, December.

Carothers, D. C., Parker, G. E., Sochacki, J. S., & Warne, P. G.
(2005). Some properties of solutions to polynomial systems
of differential equations. Electronic Journal of Differential
Equations, 2005(40), 1–17.

de Boor, C. (2001). A practical guide to splines. In Applied
mathematical sciences, revised edition (Vol. 27). New York:
Springer.

Delorme, A., & Thorpe, S. J. (2003). SpikeNET: An event-driven
simulation package for modelling large networks of spiking
neurons. Network, 14(4), 613–27.

Destexhe, A. (2000). Kinetic models of membrane excitability
and synaptic interactions. In J. M. Bower & H. Bolouri
(Eds.), Computational modeling of genetic and biochemical
networks (pp. 225–262). Cambridge: MIT.

Destexhe, A., Mainen, Z. F., & Sejnowski, T. J. (1994). Syn-
thesis of models for excitable membranes, synaptic trans-
mission and neuromodulation using a common kinetic
formalism. Journal of Computational Neuroscience, 1(3),
195–230, August.

Ermentrout, B. (1996). Type i membranes, phase resetting
curves, and synchrony. Neural Computation, 8(5), 979–1001,
July.

Fitzhugh, R. (1961). Impulses and physiological states in theo-
retical models of nerve membrane. Biophysical Journal, 1,
445–166.

Floater, M. S., & Hormann, K. (2007). Barycentric rational in-
terpolation with no poles and high rates of approximation.
Numerical Mathematics, 107(2), 315–331.

Fourcaud-Trocmé, N., Hansel, D., van Vreeswijk, C., & Brunel,
N. (2003). How spike generation mechanisms determine the
neuronal response to fluctuating inputs. Journal of Neuro-
science, 23(37), 11628–11640, December.

Hindmarsh, J. L., & Rose, R. M. (1982). A model of the nerve
impulse using two first-order differential equations. Nature,
296(5853), 162–164, March.

Hindmarsh, J. L., & Rose, R. M. (1984). A model of neuronal
bursting using three coupled first order differential equa-
tions. Proceedings of the Royal Society of London. Series B,
Biological Sciences, 221(1222), 87–102, March.

Hodgkin, A. L., & Huxley, A. F. (1952). A quantitative descrip-
tion of membrane current and its application to conduction
and excitation in nerve. Journal of Physiology, 117(4), 500–
544, August.

Izhikevich, E. M. (2001). Resonate-and-fire neurons. Neural net-
works, 14(6–7), 883–894, July–September.

Izhikevich, E. M. (2003). Simple model of spiking neurons. IEEE
Transactions on Neural Networks, 14(6), 1569–1572.

Izhikevich, E. M. (2004). Which model to use for cortical spik-
ing neurons? IEEE Transactions on Neural Networks, 15(5),
1063–1070, September.

Izhikevich, E. M. (2007). Dynamical systems in neuroscience: The
geometry of excitability and bursting. Cambridge: MIT.

Knuth, D. E. (1997). The art of computer programming: Semi-
numerical algorithms (Vol. 2, 3rd ed.). Boston: Addison-
Wesley Longman.

Lapicque, L. (1907). Recherches quantitatives sur l’excitation
électrique des nerfs traitée comme une polarisation. Journal
de Physiologie et de Pathologie Générale, 9, 620–35.

Latham, P. E., Richmond, B. J., Nelson, P. G., & Nirenberg, S.
(2000). Intrinsic dynamics in neuronal networks. I. Theory.
Journal of Neurophysiology, 83(2), 808–827, February.

Makino, T. (2003). A discrete-event neural network simulator for
general neuron models. Neural Computing & Applications,
11, 210–223.

J Comput Neurosci

Mattia, M., & Del Giudice, P. (2000). Efficient event-driven sim-
ulation of large networks of spiking neurons and dynamical
synapses. Neural Computation, 12(10), 2305–2329.

Morrison, A., Straube, S., Plesser, H. E., & Diesmann, M. (2007).
Exact subthreshold integration with continuous spike times
in discrete-time neural network simulations. Neural Compu-
tation, 19(1), 47–79, January.

Nagumo, J., Arimoto, S., & Yoshizawa, S. (1962). An active pulse
transmission line simulating nerve axon. Proceedings of the
IRE, 50, 2061–2070.

Parker, G. E., & Sochacki, J. S. (1996). Implementing the Picard
iteration. Neural, Parallel & Scientific Computations, 4(1),
97–112.

Parker, G. E., & Sochacki, J. S. (2000). A Picard-Maclaurin the-
orem for initial value PDE’s. Abstract and Applied Analysis,
5(1), 47–63.

Press, W., Teukolsky, S., Vetterling, W., & Flannery, B. (1992).
Numerical recipes in C (2nd ed.). Cambridge: Cambridge
University Press.

Pruett, C. D., Rudmin, J. W., & Lacy, J. M. (2003). An adaptive
N-body algorithm of optimal order. Journal of Computa-
tional Physics, 187(1), 298–317.

Rudmin, J. W. (1998). Application of the Parker-Sochacki
method to celestial mechanics. Technical Report, James
Madison University.

Traub, R. D., & Miles, R. (1991). Neuronal networks of the hip-
pocampus. New York: Cambridge University Press.

Tuckwell, H. (1988). Introduction to theoretical neurobiol-
ogy: Linear cable theory and dendritic structure (Vol. 1).
Cambridge: Cambridge University Press.

Vandenberg, C. A., & Bezanilla, F. (1991). A sodium channel gat-
ing model based on single channel, macroscopic ionic, and
gating currents in the squid giant axon. Biophysical Journal,
60(6), 1511–1533, December.

Vogels, T. P., & Abbott, L. F. (2005). Signal propaga-
tion and logic gating in networks of integrate-and-fire
neurons. Journal of Neuroscience, 25(46), 10786–10795,
November.

	Spiking neural network simulation: numerical integration with the Parker-Sochacki method
	Abstract
	Introduction
	The Parker-Sochacki method
	Application
	Simulations
	Adaptive order processing
	Variable substitutions
	Power series operations

	The Izhikevich model
	The Parker-Sochacki solution
	Calculating exact spike times
	An adaptive order algorithm

	A Hodgkin-Huxley model
	The Parker-Sochacki solution

	Results
	Izhikevich model
	Current injection simulations
	Recurrent network model simulations
	Single experiment results
	Overall performance results

	Hodgkin-Huxley model

	Discussion
	Parker-Sochacki solution code
	Benchmark model neuron parameters
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

