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SUMMARY

Memory storage on short timescales is thought to be
maintained by neuronal activity that persists after the
remembered stimulus is removed. Although previous
work suggested that positive feedback is necessary
to maintain persistent activity, here it is demon-
strated how neuronal responses can instead be
maintained by a purely feedforward mechanism in
which activity is passed sequentially through a chain
of network states. This feedforward form of memory
storage is shown to occur both in architecturally
feedforward networks and in recurrent networks
that nevertheless function in a feedforward manner.
The networks can be tuned to be perfect integrators
of their inputs or to reproduce the time-varying firing
patterns observed during some working memory
tasks but not easily reproduced by feedback-based
attractor models. This work illustrates a mechanism
for maintaining short-term memory in which both
feedforward and feedback processes interact to
govern network behavior.

INTRODUCTION

Accumulation of signals into short-term memory is critical to

a host of sensory, motor, and cognitive processes. Electrophys-

iological recordings have revealed a neural correlate of the

storage of memorized stimuli in which the persistent firing rate

of individual neurons varies in a graded manner with the stored

stimulus (Brody et al., 2003b; Durstewitz et al., 2000; Huk and

Shadlen, 2005; Major and Tank, 2004; Robinson, 1989; Wang,

2001). The mechanistic origin of such responses remains unre-

solved and presents a long-standing puzzle because the persis-

tent nature of these responses seems at odds with the typically

much shorter time constants governing the flow of synaptic and

membrane currents in neurons.

To explain how persistent activity can be generated by neurons

with relatively short biophysical time constants, it has been

hypothesized that positive-feedback processes are required to

sustain the drive provided by transient stimuli. This feedback

hypothesis has become the accepted paradigm for modeling

the generation of graded persistent neural activity and is the mech-

anistic underpinning of the dominant model of graded short-term

memory—the attractor model—which is based upon the idea that
memory networks settle into (are ‘‘attracted to’’) specific spatial

patterns of activity that represent previously memorized items

and can be self-sustained due to positive feedback.

Here, I present an alternative to the positive-feedback hypoth-

esis by showing how purely feedforward interactions can lead to

persistent neural activity and, furthermore, to temporal integra-

tion of an input, over long timescales. This work challenges

two implicit assumptions of previous models: first, that recurrent

connectivity is required for a network to generate persistent

neural activity and temporal integration; second, that the pres-

ence of recurrent connectivity in short-term memory networks

implies that the function of this connectivity is to mediate positive

feedback—instead, I show how networks with a recurrent archi-

tecture can behave as ‘‘feedforward networks in disguise’’ that

propagate activity in a feedforward manner through a unidirec-

tional chain of transiently activated network states.

A hallmark of the memory networks presented here is that they

are capable not only of generating persistent neural activity but

also a rich repertoire of temporal activity patterns. Thus, these

models may provide an explanation for the time-varying persis-

tent neural activity that has been observed during many working

memory tasks (Baeg et al., 2003; Batuev, 1994; Batuev et al.,

1979; Brody et al., 2003a; Deadwyler and Hampson, 2006;

Pastalkova et al., 2008) but that is notably absent from current

attractor models of short-term memory.

The structure of the paper is as follows: first, the basic mecha-

nism by which a feedforward network can generate persistent

neural activity, and more generally perform temporal integration,

is demonstrated. Second, this mechanism is extended to recurrent

networks that propagate activity through a feedforward sequence

of activity patterns. Third, it is shown that these networks are not

well-characterized by the traditional eigenvalue/eigenvector-

based mathematical methods of analysis typically used to charac-

terize short-term memory networks, and an alternative framework

for analyzing such networks (the Schur decomposition) is pre-

sented. Finally, the performance of feedforward networks is

compared to that of feedback-based attractor models for two

tasks: generation of constant-rate persistent activity and

generation of temporally heterogeneous activity patterns recorded

electrophysiologically during a working memory task.

RESULTS

Integration and Persistent Activity in a Network with
Feedforward Architecture
To see how a network can temporally integrate an input in the

absence of feedback processes, first consider a simple
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feedforward network for which it is clear that there can be no role

for positive feedback in generating long timescales of persistent

activity. The network consists of N neurons characterized by

their mean firing rate activity. Each neuron receives input from

earlier neurons and acts as a low-pass filter of this input with

exponential time constant t (Figure 1A, left; Experimental Proce-

dures). The performance of this network can be understood by

categorizing the different pathways from input to output in terms

of the number of intermediate stages n they traverse. External

inputs can directly project to the output neuron, or can go

through n = 1, 2, 3, or more intermediate stages before reaching

the final stage. The total contribution of all pathways that travel

through n intermediate stages can be characterized by a cumula-

tive weight Wn. Thus, the network output is identical to that

produced by a simpler network (Figure 1A, right) in which the

external input is linearly filtered n times before projecting with

weight Wn onto the final output neuron.

Perfect temporal integration for a time proportional to the

network size N and time constant t results when the contribu-

tions of the filtered inputs are summed together with appropriate

weights. This is illustrated in Figure 1B for the case of integrating

a brief pulse of input into a step function of unit amplitude. The

pulse-to-step transformation is accomplished in two stages:

first, each successive filtering of the input signal results in

a temporal response component that peaks one time constant

later than the previous one (Figure 1B, middle). Second, appro-

priately weighted summation of these temporal response ‘‘basis

functions’’ can precisely fill out a step function for times up to

�Nt (Figure 1B, bottom). More generally, because the network

is linear and any input can be decomposed into a sequence of

pulses, the same network can perfectly integrate any function

over this timescale. For example, doubling or halving the size

of the pulse leads to double or half the size of the step response

(Figure 1D), and applying a step input leads to a linear ramping

output with slope proportional to the size of the step (Figure 1E).

Quantitatively, integration by the feedforward network of

Figure 1 can be understood by noting that linearly filtering a pulse

(d function) input n + 1 times produces a response

gn =
1

n!
t̂ne�t̂;

where t̂ = t/t and gn is measured in units of 1/t (Figures 1B and

1C). When the pathways are summed with equal weights Wn = 1,

the resulting output is a step function of unit amplitude:
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The final approximation, based on the Taylor series for the

exponential function, holds for times t less than �Nt. Slightly

better performance at late times can be obtained by more heavily

weighting the longest-latency basis functions to compensate for

the fact that the series is truncated at a finite number of terms

(Figures 1B and 1C, bottom, red traces).
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The above example illustrates that the feedforward network

operates by converting pulses of input into a set of basis func-

tions gn (Figure 1B) that can be summed to yield a step response.

The time constant t of each neuron in Figure 1A could corre-

spond to the intrinsic timescale of decay of membrane or

synaptic currents in an individual neuron. Alternatively, each

‘‘neuron’’ in Figure 1A could represent a group of neurons that

together act as one stage of a feedforward network, and t could

reflect timescales generated in part by recurrent processing

within each group, as illustrated in Figure 2A (top).

Depending on the exact architecture of the feedforward

network, the responses of the individual neurons in the network

can exhibit a multitude of possible waveforms, limited only by the

constraint that the response of neurons in the ith stage of the

network be comprised of a weighted sum of the first i basis func-

tions. For example, Figure 2B illustrates a network in which the

response of stage i reflects equal weighting of the first i basis

functions so that successive stages exhibit progressively longer

durations of perfect integration, and the final stage (thick black

trace) is identical to the equally weighted sum of filters shown

in Figure 2A (bottom, black trace). Such a lengthening of persis-

tent activity across a cascade of stages has been suggested to

take place in the cat oculomotor neural integrator (Delgado-

Garcia et al., 1989; Escudero et al., 1992). Figure 2C illustrates

a more complex feedforward network in which each stage is

explicitly represented by multiple units and there is heteroge-

neity in the connection strengths—the neuronal responses

exhibit a diversity of waveforms that reflect various linear combi-

nations of the temporal basis functions (Figure 2C, top) and that

can again be summed to yield perfect integration for times of

order Nt (Figure 2C, bottom). This heterogeneity in temporal

response pattern is characteristic of neuronal responses

observed in some cortical memory networks (see final section

of the Results).

Feedforward Functionality in a Network with Recurrent
Architecture
The feedforward networks described above illustrate how a feed-

forward mechanism can generate persistent neural activity and

temporal integration over a timescale much longer than the

intrinsic neuronal or synaptic time constants. Given that the

architecture of most biological networks is strongly recurrent,

a natural question is whether an analogous mechanism could

operate in recurrent networks. Below, I show that certain recur-

rent networks can indeed behave in a feedforward manner by

propagating activity through a unidirectional chain of activity

states analogous to the unidirectional chain of neurons

described above. This suggests that the observed presence of

recurrent connectivity may be disguising functionally feedfor-

ward behavior that could enhance the computational power of

such networks (see final section of Results and Discussion).

The key concept in understanding how a recurrent network

can behave analogously to a feedforward network is to analyze

the network’s response in terms of activity patterns of popula-

tions of neurons, rather than activities of individual neurons.

This means of analysis is illustrated first for a simple feedforward

network consisting of a chain of three neurons connected in

sequence (Figure 3A, top). Rather than interpreting the operation
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of this network as neuron 1 projects to neuron 2 which projects

to neuron 3, one can instead think of input as being sent to the

activity pattern ‘‘first neuron active, all other neurons inactive’’

(Figure 3A, middle, red box), which projects to the pattern

‘‘second neuron active, all other neurons inactive’’ (blue box),

which projects to the third activity pattern (purple box).

A more efficient way to visualize these patterns is as points in

space with coordinate xi equal to the activity of the ith neuron in

the pattern (Figure 3A, bottom). For the feedforward chain of

neurons, in which each activity pattern consists of only a single

active neuron, the three patterns define a set of orthogonal coor-

dinate axes that lie along the usual Cartesian directions x1, x2,

and x3. Thus, at any given time, the total network activity can

be described by a point in this space labeled by its components

along these Cartesian axes. For more complex networks (see

below), a different set of orthogonal coordinate axes that are

rotated in space relative to the x1, x2, and x3 directions may

prove more convenient, and the components of activity along

Figure 1. Integration by a Feedforward

Network

(A) (Left) Feedforward network consisting of stages

that linearly filter their inputs with time constant t.

(Right) Rearranged network with same output as

the left network.

(B) Integration of a pulse into a step. The network

effectively decomposes the output into temporal

basis functions (middle) reflecting the number of

times the input was linearly filtered (n = 1, 8, 15,

22,. shown). When appropriately summed, the

output is a unit-amplitude step for a duration �Nt

(N = 100, t = 100 ms chosen here for illustration).

(C) First three basis functions gn and their sum.

(D) Response to a pulse of input varies linearly with

the input amplitude.

(E) Integration of a step into a ramp by the same

network.

these rotated coordinated axes could be

used to label the network activity state.

An example of the temporal evolution of

the components of the feedforward

network is shown in Figure 3B for the

case that a pulse of input was applied to

pattern 1 (i.e., to neuron 1)—activity prop-

agates from one pattern to the next in

a feedforward manner, reproducing the

feedforward basis functions derived

previously (Figure 1C).

Qualitatively identical behavior can

occur in a recurrent network. Rather

than having activity patterns in which

only a single neuron is active drive other

patterns in which only a single neuron is

active, suppose that particular combina-

tions of neuronal firing drive other

combinations. A simple example of such

a network is illustrated in Figure 3C. The

network was constructed by applying

a coordinate rotation to the connectivity matrix of the feedfor-

ward network of Figure 3A (Experimental Procedures). This

construction corresponds to rotating the geometric representa-

tion of the network of Figure 3A (bottom) to give the set of inter-

actions shown in Figure 3C (bottom) in which different patterns of

neuronal firing project in a feedforward manner to other patterns.

The corresponding network architecture (Figure 3C, top) is

necessarily recurrent because this network has combinations

of the activity of all three neurons driving other combinations of

all three neurons. Nevertheless, the network’s operation is

essentially feedforward, with later activity patterns serving as

linear filters of previous activity patterns. Thus, the activity

patterns in this network behave exactly as if they were neurons

interconnected by synapses in a feedforward network. Confirm-

ing this, when a pulse of input was presented to the first activity

pattern (that is, was presented to the three neurons in proportion

to the values represented by the first activity pattern), the activity

propagated from the first pattern to the second to the third in
Neuron 61, 621–634, February 26, 2009 ª2009 Elsevier Inc. 623
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Figure 2. Variants on the Feedforward Network Architecture

(A) (Top) Network in which the time scale t of each stage reflects a mixture of intrinsic neuronal dynamics and positive feedback between locally connected clusters

of neurons with shorter intrinsic time constant. Each neuron projected to all neurons in its own cluster and in the cluster ahead of it. The neurons in each stage of this

network produced identical responses (middle) to those in a simplified network (effective network) consisting of a linear chain of neurons with time constant t.

(B) Network in which integration gets successively prolonged at each successive stage. Final output (thick black trace) is identical to the summed output of the

network in panel (A) (black trace). Stages color-coded using legend of panel (A).

(C) Schematic of a more complicated feedforward network. Due to the multitude of pathways through the network, units exhibit a diversity of temporal responses

(colored traces, four examples) that are composed of the same temporal basis functions as in the simpler networks and can be summed to yield perfect integration

(bottom). Each stage (columns) consisted of 20 units. For all panels: N = 20 stages, t = 500 ms.
exactly the same manner in which activity propagated from the

first neuron to the second neuron to the third neuron in the archi-

tecturally feedforward network of Figure 3A (compare Figures 3B

and 3D). Thus, although recurrent in architecture, this network is

feedforward in function. Such networks will be referred to in the

following as ‘‘functionally feedforward’’ or ‘‘rotated feedforward’’

networks to highlight the manner in which activity propagates

through them.

Mathematical Characterization of Functionally
Feedforward Networks
The operation of the functionally feedforward network of

Figure 3C differs dramatically from that of traditional recurrent

memory networks. In traditional memory networks, persistent

neural activity is generated through positive-feedback loops that

allow certain activity patterns to be self-sustained. In the func-

tionally feedforward network, by contrast, long-lasting activity

is a result of cascading the responses of many feedforward
624 Neuron 61, 621–634, February 26, 2009 ª2009 Elsevier Inc.
stages that individually exhibit briefer, transient responses to

their inputs. Because the traditional mathematical formalism

for analyzing the timescales of activity in a network, based on

eigenvector analysis, cannot capture feedforward interactions,

below I present an alternative mathematical formalism for under-

standing the operation of feedforward networks and for revealing

feedforward interactions in arbitrary recurrent networks.

The standard manner in which to analyze linear networks is to

decompose the neuronal activities into component activity

patterns that interact in a simpler manner than the neurons

(Figures 4 and 5). Eigenvector analysis does this by identifying

network states (the eigenvector patterns of activity, or ‘‘eigen-

modes’’) that provide feedback only onto themselves and do

not interact with each other. This is useful in explaining the

persistent activity seen in traditional memory networks because

it enables one to identify the feedback interactions that allow

certain patterns of activity to be sustained for long durations.

Quantitatively, the amount of feedback an eigenmode feeds
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Figure 3. Feedforward Processing of Inputs

by a Recurrent Network

(A) Processing by an architecturally feedforward

network (top). Firing of each individual neuron can

be alternatively viewed as firing of the activity

pattern in which this neuron is active and others

are silent (middle). In this view, connections

between neurons are replaced by connections

between patterns so that earlier patterns of activity

triggersubsequent patterns of activity. Eachpattern

canbe representedby a point inN dimensions (N= 3

here) whose component along the ith axis repre-

sents the ith neuron’s activity level in this pattern.

(B) Amount of activity in each pattern, plotted

across time, when a pulse of input stimulates the

first activity pattern. Because the activity patterns

correspond to a single neuron being active, this

graph reproduces the progression of firing of the

individual neurons.

(C) Recurrent network that behaves analogously to

the feedforward network of panel (A). Activity

propagates in a feedforward manner between

orthogonal patterns (middle, bottom).

(D) When a pulse of input stimulates the first

activity pattern, the amount of activity in each

pattern is identical to that of panel (A), reflecting

the feedforward propagation through patterns.
onto itself is given by the eigenvalue associated with this eigen-

mode: positive feedback is represented by a positive eigenvalue

and allows activity in the mode to be prolonged relative to the

intrinsic neuronal time constant t, while negative feedback is

represented by a negative eigenvalue and causes activity to

decay more quickly than t. The timescale of persistent activity

in the network is set by the largest eigenvalue because the

mode with the largest feedback persists for the longest amount

of time. Most often, networks modeling persistent neural activity

have at least one eigenmode with an eigenvalue near 1, corre-

sponding to the amount of feedback required to precisely offset

intrinsic decay processes and self-sustain activity indefinitely.

Although eigenvectors are useful for identifying the feedback

interactions that maintain persistent activity in traditional inte-

grator networks, they do not explain the persistent activity

seen in the functionally feedforward networks. This is because,

in feedforward networks, activity in the individual states is not

self-sustained but rather is passed on to other states in a feedfor-

ward manner. To identify such feedforward interactions requires

a different decomposition—the Schur decomposition—that

finds a different set of activity patterns (the Schur modes) that

can both send feedback onto themselves (like the eigenmodes)

and also propagate activity between states in a feedforward

manner (Figures 4 and 5). Below, we compare the eigenvector

and Schur decompositions for three different networks:

a network in which persistent activity is generated purely through

positive feedback (Figure 4A), a functionally feedforward

network with two stages (Figure 4B), and a network with a mixture

of feedback and feedforward interactions (Figure 4C).

The network of Figure 4A contains two neurons that provide

positive feedback to each other through mutual excitatory

synaptic connections. In response to a pulse of input to neuron 1,

the exchange of excitation between the neurons leads to their
activities approaching equal levels that are sustained indefinitely

by the positive feedback (Figure 4A, bottom). These positive-

feedback interactions are captured by the eigenvector analysis

(Figure 4D): the pattern [1,1] corresponding to each neuron firing

equally has an eigenvalue of 1, indicating sufficient positive feed-

back to maintain this firing pattern indefinitely (Figure 4D: top,

blue dot represents the pattern [1,1] that feeds back onto itself;

bottom, activity in this mode is sustained over time), while the

pattern [1,–1] (red) corresponding to symmetric differences in

firing around this sustained level decays away due to lack of

feedback onto itself. These interactions are also identified by

the Schur decomposition, which is identical to the eigenvector

decomposition in this case because no additional feedforward

interactions take place in the network (Figure 4G).

Now consider the network of Figure 4B, in which one of the

neurons is inhibitory. Eigenvector analysis shows that this

network has two precisely overlapping eigenvectors, corre-

sponding to the pattern [1,1] in which the two neurons fire at

equal rates. This activity pattern sends zero feedback onto itself

(i.e., has eigenvalue zero) because the inputs provided by the

excitatory and inhibitory neuron cancel one another. Thus, if

only feedback interactions were considered, the neuronal activ-

ities would be expected to decay with the intrinsic neuronal time

constant t (Figure 4B, dashed black line). However, as seen in

Figure 4B (bottom), there is a slower component to the neuronal

responses and this is due to feedforward interactions not

revealed by the eigenvector analysis. Using the Schur decompo-

sition to identify such interactions shows that the pattern [1,1] is

the second stage of a functionally feedforward network that

propagates activity from the state [1,–1] (red) to the state [1,1]

(blue) (Figure 4H, top).

More generally, the magnitudes of the excitatory and inhibitory

synaptic strengths will not be equal. Figure 4C shows a case in
Neuron 61, 621–634, February 26, 2009 ª2009 Elsevier Inc. 625
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Figure 4. Schur, but Not Eigenvector, Decomposition Reveals Feedforward Interactions between Patterns of Activity

(A–C) (Top) Architecture of a network that generates persistent activity through positive feedback (A), a functionally feedforward network (B), and a network with

a mixture of functionally feedforward and feedback interactions (C). (Bottom) Neuronal responses when a pulse of input is given to neuron 1 (the green neuron). In

(B), the intrinsic neuronal decay time (black dashed) is shown for comparison.

(D–F) Eigenvectors and eigenvalues of the corresponding networks. (Top) The eigenvectors are indicated by colored dots and corresponding axes extending

through these dots. The corresponding eigenvalues are indicated by the strength of a feedback loop of the eigenvector onto itself (no loop indicates an eigenvalue

of zero). In (E), the two eigenvectors perfectly overlap so there is only one distinct eigenvector. (Bottom) Decomposition of the neuronal responses from panels

(A)–(C) into their eigenvector components (see Figure 5D). The responses cannot be decomposed in panel (E) because there is only a single eigenvector. In (F), the

neuronal responses from panel (C) are shown (dashed) for comparison.

(G–I) Schur decomposition of the network activity. (Top) Schur modes are indicated by colored dots and corresponding axes. The strengths of self-feedback

(loops) or feedforward interactions are indicated next to the connections. (Bottom) Activity in each Schur mode over time. Neuronal responses equal the

sums and differences of these activities. See main text for details.
626 Neuron 61, 621–634, February 26, 2009 ª2009 Elsevier Inc.
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which the excitatory synapses are stronger than the inhibitory

synapses so that the network behavior is intermediate between

the pure-feedback network of Figure 4A and the pure-

feedforward network of Figure 4B. As expected, the eigenvector

analysis reveals that there is net positive feedback in the network

as evidenced by the positive eigenvalue associated with the

eigenmode [1,1] (Figure 4F). The Schur decomposition addition-

ally reveals that there is a feedforward interaction between the

states [1,–1] and [1,1] (Figure 4I). This example suggests that

the general behavior of recurrent networks is neither purely feed-

forward nor purely feedback, but rather reflects a mixture of

functionally feedforward and feedback interactions.

There is a subtlety to the analysis of the network of Figure 4C

because, mathematically, both the eigenvector and Schur

decompositions can be used to obtain the neuronal responses.

Thus, it is not immediately obvious whether to interpret this

network as containing both feedback and feedforward interac-

tions (as suggested by the Schur decomposition) or rather to

interpret it as having only feedback interactions (as suggested

by the eigenvector analysis). A hint that the Schur decomposition

is more natural is obtained by comparing the activity in the Schur

and eigenmodes to the neuronal responses. Whereas the activity

in the Schur modes is of similar magnitude to the neuronal

responses (the neuronal responses of Figure 4C can be obtained

Figure 5. Comparison of the Eigenvector

and Schur Decompositions

(A) Interactions between neurons (or, equivalently,

patterns in which only a single neuron is active,

top) are characterized by a connectivity matrix

(bottom) whose entries wij describe how strongly

the activity xj of neuron j influences the activity xi

of neuron i.

(B) The eigenvector decomposition finds activity

patterns (top) that only interact with themselves.

These self-feedback interactions are described

by a diagonal matrix (bottom) whose elements

along the diagonal (pink) are the eigenvalues.

(C) The Schur decomposition finds orthogonal

activity patterns (top) that can interact both with

themselves (pink, with same self-feedback terms

as in [B]) or in a feedforward manner (green, lower

triangular entries give connection strengths from

Schur pattern j to i where j < i).

(D) Decomposition of an activity pattern consisting

of only neuron 1 firing (black arrow) into single

neuron states (left), nonorthogonal eigenmodes

(middle), or orthogonal Schur modes (right). The

decomposition shown corresponds to the network

of Figure 4C. States are shown as solid dots that

define the directions of the coordinate axes drawn

through them.

as sums and differences of the Schur

modes of Figure 4I), the eigenmodes are

almost three times the size of the largest

neuronal response (Figure 4F). Further-

more, the exponential decay time of the

slowest eigenmode, which is often used

to estimate the slowest time scale of

activity in the network, does not correspond well with the slower

rise and fall of activity seen most noticeably in the response of

neuron 2 (Figure 4C, cyan trace does not fall to half its maximal

value until a time of almost 3t even though the slowest eigen-

mode decays with exponential time constant 1.25t).

The disconnect between the neuronal responses and the

eigenvectors stems from the fact that, although the eigenvectors

are noninteracting in the sense that activity that starts in one

mode never transitions to the other mode, they are not nonover-

lapping (i.e., orthogonal). Thus, the axes defined by the eigen-

modes (Figures 4E and 4F, gray lines) are very different from

the Cartesian axes x1 and x2 that define the firing activity of the

individual neurons: whereas in Cartesian coordinate systems,

a vector representing the network activity is decomposed into

components that are smaller than the vector itself, in non-

Cartesian coordinate axes the same vector may decompose

into components that are larger than itself (Figure 5). By contrast,

the Schur decomposition always produces orthogonal eigen-

modes. This means that the Schur, but not the eigenvector,

modes behave analogously to interconnected neurons and,

when we refer to ‘‘feedback’’ or ‘‘feedforward’’ interactions

between the Schur modes we can maintain the intuitions we

have for how neurons with self-feedback or feedforward connec-

tions behave. For example, consider again the feedforward
Neuron 61, 621–634, February 26, 2009 ª2009 Elsevier Inc. 627
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network of Figure 4B: when a pulse of input is given to neuron 1,

equivalent to stimulating the first two Schur modes equally

(Figure 5D, right), the first Schur mode (Figure 4H, red) decays

exponentially like the first neuron of a feedforward chain, while

the second Schur mode (blue) reflects a sum of exponential

decay due to its direct stimulation plus a delayed response

due to input received from the first mode. Thus, the Schur modes

behave exactly like the network of Figure 2B in which a pulse of

input was applied to each neuron of a feedforward chain.

The examples above illustrate how feedforward interactions

that are not revealed by eigenvector analysis can lead to

a prolongation of neuronal responses. However, because the

networks contained only two functional stages, the prolongation

of responses was not dramatic. To highlight the difference that

can occur between the timescales of decay predicted by the

eigenvalues and the timescale of neuronal responses, a 100

neuron functionally feedforward network was simulated. The

network was explicitly designed as a ‘‘rotated feedforward

network,’’ as in Figure 3C. All eigenvalues of the network

equalled zero, indicating an absence of functional feedback, so

that the slowest decaying eigenmode decayed with the intrinsic

neuronal time constant t = 100 ms (Figure 6A). Nevertheless, the

neuronal responses exhibited activity for times of order Nt = 10 s

(Figure 6B) that reflected the feedforward coupling between the

100 Schur modes of the network and that could be summed to

give constant-rate persistent activity over this timescale

(Figure 6C).

Comparison with Low-Dimensional Attractor Networks
The previous sections have demonstrated how a feedforward

network can sustain persistent neural activity and perform

temporal integration for a duration proportional to the network

size. Traditionally these operations have been modeled as

occurring through positive-feedback processes that, in prin-

ciple, can be accomplished by a single neuron with a synapse

onto itself (Seung et al., 2000). Integrator networks typically

have been modeled as ‘‘line attractors’’ in which all but a single

eigenmode of activity decays away quickly, so that all neurons

have nearly identical slowly decaying activity waveforms after

a time period of a few t and thus essentially behave like a single

neuron (Figures 7A–7D, middle panels).

Given that feedforward networks require many neurons to

generate long timescales of activity and can never sustain activity

indefinitely, what advantages might be conferred byuse of a feed-

forward rather than a low-dimensional attractor network? This

question is addressed below, first for the case of maintaining

constant-rate persistent activity (Figure 7) and then for the case

of generating time-varying persistent activity in response to

a transient stimulus (Figure 8). As will be shown, the diversity of

temporal responses produced by the feedforward networks

provides them with flexibility to produce many different firing

patterns over long durations while the lack of feedback provides

a degree of robustness against runaway growth of activity.

Generation of Constant-Rate Persistent Neural Activity
Line attractor networks have been widely used as models for

the generation of persistent neural activity because, when prop-

erly tuned, these networks can sustain firing indefinitely
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(Figure 7C). Furthermore, because these networks encode

a single-dimensional quantity and do not respond persistently

to inputs along other dimensions, they have the useful property

that they can filter out irrelevant components of inputs. However,

as has been widely noted, line attractor networks require a high

degree of fine tuning in order to maintain persistence for long

durations: too much feedback can lead to runaway growth of

activity while too little feedback can be insufficient to overcome

the intrinsic decay processes that set the neuronal integration

time constant t. For example, in order to produce persistent

activity that is held constant to within ±5% for 2 s, a line attractor

needs to be tuned to have an exponential decay time constant of

20 s. For a network of neurons with intrinsic time constants t =

100 ms, this corresponds to tuning the network’s weights to

within 0.5% of the value required to sustain perfectly stable firing

(Figure 7B). Decreasing synaptic connection strengths more

than this leads to an inability to sustain activity for the requisite

2 s period (Figure 7A). Even worse, increasing connection

strengths leads to runaway growth of activity (Figure 7D).

A key reason why the line attractor requires such precise

tuning is that its neurons exhibit identical activity patterns at

times much beyond the time scale of the intrinsic time

constant t (Figures 7A–7D, middle panels). Therefore, a readout

Figure 6. Activity in a Functionally Feedforward Network Can

Outlast the Slowest Decaying Eigenmode by a Factor Equal to the

Network Size

(A) The slowest decaying eigenmode of a functionally feedforward network

equals the intrinsic neuronal time constant t = 100 ms.

(B) Neuronal firing rates of the same network exhibit activity for a time

�Nt = 10 s that (C) can be summed to yield persistent neural activity over

the same timescale.
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Figure 7. Pulse-to-Step Integration for a Line Attractor versus a Feedforward Network

(A–D) In response to a brief pulse of input (top panels), neurons in a line attractor rapidly converge to a single temporal pattern of activity (middle panels) and

therefore cannot be summed to give 2 s of constant-rate activity to within ±5% (dashed lines) unless the exponential decay is tuned to a much longer timescale

(panel [B], 20 s decay). Small mistunings lead to rapid decay (A) or exponential growth (D) of both neuronal activity and summed output.

(E–H) Performance of a feedforward network consisting of a chain of neurons. Due to the diversity of neuronal responses, a readout mechanism that sums these

responses can produce activity that is maintained for 2 s even when the feedforward chain has larger mistunings of weights than was found for the line attractor

networks. In all panels, mistuning is relative to a network (C and G) that performs perfect integration (up to a time �Nt = 10 s for the feedforward network).
mechanism that sums the activities of such neurons will be con-

strained to exhibit this same activity pattern (lower panels).

Stated another way, because all neurons behave in the same

manner at long times, they can only accurately represent

a single-dimensional temporal pattern. When the desired output

pattern does not match this single-dimensional pattern, the

network has no flexibility with which to adjust.

The feedforward network behaves very differently. Because it

is feedforward, the duration�Nt over which it can sustain persis-

tent activity is strictly limited by the network size and the time

constant of the feedforward stages. However, over this time-

scale it generates a diverse set of responses whose peaks are

spaced evenly in time. Thus, in order to generate accurate

persistent activity for two seconds, the network only needs to

generate significant responses for 2 s (Figure 7E). This is

because the readout process can sum neuronal activities in

a manner that compensates for imprecise tuning within the feed-

forward network (up to a point—in all simulations, readout

weights were limited to a magnitude of 5 to avoid artificially
good fits due to sums and differences of extremely large indi-

vidual inputs; illustration of a network in which readout weights

were not allowed to be adjusted to compensate for imprecise

tuning within the feedforward network is shown in Figure S3A).

Furthermore, because the feedforward network runs out of

stages after a time �Nt, there is an inherent brake on runaway

activity of neuronal responses at this time. Thus, the feedforward

networks are more robust against weight increases that would

cause instability in feedback-based networks (Figure 7H).

The above example shows that, even for producing constant-

rate persistent neural activity, the performance of the line attrac-

tor networks is less robust than that of the feedforward network.

Nevertheless, a well-tuned line attractor can produce such

activity and, in principle, can maintain such activity for limitless

durations. Next, I consider an example of activity recorded

during a working memory task in which the neuronal responses

during a prolonged delay period do not exhibit constant activity

but rather exhibit strong temporal variations that are consistently

reproduced across trials (Figure 8).
Neuron 61, 621–634, February 26, 2009 ª2009 Elsevier Inc. 629
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Generation of Time-Varying Persistent Neural Activity
Strongly temporally varying activity has been observed in

neuronal recordings obtained during a variety of working memory

related tasks (Baeg et al., 2003; Batuev, 1994; Batuev et al., 1979;

Brody et al., 2003a; Deadwyler and Hampson, 2006; Pastalkova

et al., 2008). In the study from which Figure 8A was taken,

monkeys were required to remember a visual stimulus during

a 9 s delay period and then, after a go-cue, press a button repre-

senting the remembered stimulus. Multielectrode recordings in

prefrontal cortex revealed neurons that consistently (across

trials) responded during particular portions of the delay period:

early (top panel); middle (second panel); late (third panel);

a mixture of early, middle, and/or late (fourth panel); or persis-

tently throughout the delay period (bottom panel). Interestingly,

only 5% of neurons in this study were found to exhibit tonic

persistent activity throughout the delay period (Figure 8A,

percentages for each class of neurons are shown to the right).

The neuronal responses shown in Figure 8A cannot be

described by the low-dimensional dynamics of the line attractor,

in which all neurons exhibit similar responses at long times.

When a 100 neuron line attractor with perfect tuning to give

stable persistent firing was constructed, the neuronal responses

of the network to a pulse of input all behaved in the same manner

at times much beyond the intrinsic time constant t (Figure 9,

green). Therefore, no matter how a readout mechanism summed

these activities, they could not be fit to the time-varying activities

seen in Figure 8A (Figure 8B, dark green traces show best fits).

By contrast, the feedforward network fit the time-varying activity

well (Figure 8B, light blue)—this is because the feedforward

basis functions have peaks spaced evenly over time, which

D

Figure 8. Generation of Time-Varying

Persistent Neural Activity by Functionally

Feedforward versus Positive-Feedback

Models

(A) Trial-averaged, time-varying persistent neural

activity of five neurons representing common

classes of response observed in prefrontal cortical

neurons during a visual working memory task

(percentages of each class shown to the right of

the plots). Adapted from Batuev (1994).

(B) Fits to data in (A) attained by linearly summing

the activities of neurons in networks with various

connectivity patterns. Traces for the feedforward

(light blue), functionally feedforward (purple), cyclic

(mustard), and orthogonal (brown) networks over-

lap nearly exactly. For the functionally feedfor-

ward, Gaussian random (red), and random orthog-

onal networks, traces show the performance of the

median of 100 randomly generated networks

obeying the connectivity pattern.

(C) Root mean squared error in the fits achieved by

the median, 25th and 75th best performing network.

(D) Fits to the persistent activity exhibited in the

bottom panel of (A) when the networks were

required to not only fit the delay period activity

but also return to baseline activity at the end of

the delay period. The functionally feedforward

networks can stop responding at any time up to

their maximal response duration by assigning

zero readout weight to the later-occurring basis

functions; the other networks cannot both fit the

delay-period activity and return to baseline

because they contain response modes that long

outlast the delay period.

(E) Examples of activity of individual neurons in the

feedforward versus feedback-based networks

when weights were increased by 2%. (Left) Feed-

forward versus cyclic networks. (Right) Function-

ally feedforward versus random attractor and

random orthogonal networks. Exponential growth

of the feedforward, but not feedback-based,

networks is limited by the time taken for activity

to propagate through the feedforward chain of

activity patterns.
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provides a natural representation from which to construct a wide

range of temporal activity patterns. A recurrently connected, but

functionally feedforward network performed nearly identically to

the architecturally feedforward network (Figure 8B, purple trace

not visible due to nearly perfect overlap with light blue feedfor-

ward trace). This suggests that the feedforward functionality of

the network, not the feedforward network architecture, underlies

the ability to fit these data.

The good performance of the feedforward networks in fitting

the time-varying persistent neural activity depended on two

features. First, unlike the line attractor network, there were

many independent modes of activity that could be used to fit

the different time-varying responses. Second, a large number

of these modes extended out for long time periods. Previous

work in ‘‘liquid-state machine’’ networks (Maass et al., 2002)

has suggested how a network of randomly connected networks

can be used to generate a diversity of temporal patterns, satis-

fying the first criterion above. However, the performance of

such networks is best for timescales close to the intrinsic

biophysical timescales of the individual neurons. To test if this

was the case for the linear networks used in this study, a network

was constructed with random connection strengths chosen from

a Gaussian distribution (as in the study of Maass et al. [2002]) and

the responses of this network to a pulse of input were fit to the

data of Figure 8A. Typically the activity of the neurons in such

networks either decayed on a timescale set by the intrinsic

time constant t or, if connections were too strong, exhibited

runaway growth of activity (data not shown). Even when the

mean and variance of the Gaussian distribution were tuned to

give the network a persistent mode of activity, the activity

observed was low-dimensional at long timescales (as in the

line attractor network) and did not capture time-varying activity

after the first few seconds (Figure 8B, red lines give best fits;

example neuronal firing rates in response to a pulse of input for

this and the other networks in this study are shown in Figure 9).

The above example suggests that randomly connecting

neurons into a network does not lead to many modes of activity

that persist far beyond the intrinsic time constant t. Rather, it

suggests that special network architectures may be required to

generate a diversity of temporal responses at long timescales.

The feedforward and functionally feedforward networks provide

two examples that differ sharply from traditional models of

persistent neural activity based on positive feedback. For

discussion of other networks (cyclic and random orthogonal

networks, Figures 8 and 9) that were found to fit the data well,

and their relationship to the feedforward networks focused on

here, see the Discussion. For a complementary approach (pseu-

dospectral analysis [Trefethen and Embree, 2005]) to analyzing

the functionally feedforward networks, see the Supplemental

Experimental Procedures.

DISCUSSION

Traditional neural network models of short-term memory and

persistent neural activity have assumed that positive feedback

is required for the generation of long-lasting activity in the

absence of a stimulus. This study has shown how graded persis-

tent activity and temporal integration can be generated even by
networks that entirely lack positive feedback. Thus, while it is

traditional to search for positive-feedback loops as a substrate

for long-lasting persistent neural activity, such feedback loops

are not required. Rather, feedback and feedforward mech-

anisms may operate in tandem with, for example, feedback

interactions being used to set the timescales t with which the

feedforward stages of a network filter their inputs.

Feedforward interactions were shown to occur not only in

architecturally feedforward networks but also in recurrent

networks that can act as ‘‘feedforward networks in disguise’’

by propagating activity through a feedforward cascade of

activity patterns. Such feedforward interactions could not be

Figure 9. Activities of Individual Neurons for the Networks tested
in Figure 8

(Left column) Schematic of network connectivity for an unconnected network

and the networks tested in Figure 8. (Right column) Example responses of 6 of

the 100 neurons in each network. The unconnected network is shown to illus-

trate the intrinsic neuronal decay time constant t = 100 ms.
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identified by traditional eigenvector-based methodologies for

analyzing recurrent networks because eigenvectors only identify

feedback interactions. Using the Schur decomposition, addi-

tional feedforward interactions were identified, and it was shown

that the generic behavior of recurrent networks is to contain both

feedforward and feedback interactions.

Comparison of Functionally Feedforward
and Feedback Networks
The performance of feedforward and feedback-based networks

in fitting constant-rate and time-varying persistent activity were

compared in order to ascertain their relative advantages and

disadvantages. These comparisons revealed two features that

determined network performance: (1) the number of modes of

network activity present at a given timescale, and (2) the suscep-

tibility of the network to instability. At one extreme are the line at-

tractors, with only a single persistent mode of activity. These

networks are the most efficient in terms of number of required

neurons—a line attractor can be constructed from a single

neuron connected with an autapse onto itself (Seung et al.,

2000). Furthermore, input components along nonpersistent

modes decay away quickly, which can be useful for filtering

out irrelevant inputs when only a single-dimensional quantity

needs to be stored. However, due to their one-dimensional

temporal dynamics, such networks can only be used to fit

a single stereotyped temporal activity pattern such as

constant-rate persistent activity. Furthermore, even to maintain

graded constant-rate persistent activity to a high degree of accu-

racy over a fixed period of time (e.g., 2 s in Figure 7), these

networks needed to be tuned to have exponential decay over

a much longer time period.

With increased numbers of neurons, the networks can

generate more independent modes of activity—generically N

modes of activity for a network of N neurons. However, unless

the networks are specially constructed, the duration of most

activity modes will be set by the time scale t of the intrinsic

biophysics of the neurons in the network and will contain few,

if any persistent modes of activity. This may explain why previous

studies of temporal processing by networks with random

connectivities, such as those used to model temporal intervals

(Buonomano, 2000; Karmarkar and Buonomano, 2007) and

temporal classification (Maass et al., 2002), were limited in appli-

cability to time intervals on the order of 1 s (on the order of the

largest biophysical time constant in the networks).

The feedforward networks can generate a wide variety of

temporal activity patterns because their responses are built

from basis functions gn that form a natural representation of

time. An identical representation of time over the timescale of

the delay period could be generated by a recurrent network

with a ‘‘cyclic’’ architecture in which the last of the chain of

neurons of the feedforward network connects back onto the first

(Figure 9, mustard lines), so that activity is identical to a feedfor-

ward network during the first time around the cycle. This cyclic

network and heterogeneously connected generalizations of it

(White et al., 2004) produced nearly identical fits to the feedfor-

ward networks for the time-varying data of Figure 8 (Figure 8B,

mustard and brown lines). However, at longer times, activity in

the orthogonal networks persisted whereas activity in the feed-
632 Neuron 61, 621–634, February 26, 2009 ª2009 Elsevier Inc.
forward network rapidly decayed to baseline levels (Figure 8D).

Thus, the feedforward networks have the disadvantage of

a limited memory time span but the possible advantages of

a built-in reset and clearing of their memory buffer (Figure 8D)

and robustness against runaway growth (Figure 8E).

Comparison to Experiment and Further Studies
An open experimental question is when a system will generate

high-dimensional versus low-dimensional persistent activity

patterns. Batuev (1994) observed high-dimensional, time-

varying activity in prefrontal but not parietal cortex, consistent

with a recent study of persistent activity in lateral intraparietal

cortex that found rapid decay to a single dimensional mode of

activity during decision-making tasks (Ganguli et al., 2008a).

Peaks in firing that occur at different times during the delay

period for different neurons have also been recorded in other

prefrontal working memory experiments (Baeg et al., 2003), as

well as in the hippocampus and subiculum (Deadwyler and

Hampson, 2006; Pastalkova et al., 2008). In the cat oculomotor

neural integrator, neurons have been reported to exhibit

a progressive lengthening of the time constant of integration

(qualitatively similar to that shown in Figure 2B) with decreasing

distance from the motor output nuclei, and these data have been

suggested to reflect a primarily feedforward cascade of process-

ing (Delgado-Garcia et al., 1989; Escudero et al., 1992). Further

experimental work will be needed to probe how persistent

neural activity depends upon task demands and brain region, as

well as to design new working memory tasks with more complex

temporal processing requirements.

Theoretical work can complement such experiments by

testing how feedforward or feedback-based architectures may

emerge from physiologically based learning rules. Previous

study of working memory networks that maintain a graded repre-

sentation of a memorized stimulus have suggested that a key

component of such learning rules may be homeostatic plasticity

mechanisms (Turrigiano et al., 1998) that keep neuronal firing

rates from growing too large or too small (Renart et al., 2003).

Application of a homeostatic learning rule to a simple feedfor-

ward chain of neurons did produce a working feedforward

integrator (Figure S3), but further study is needed with more

general network architectures.

This study has focused on linear networks whose response

amplitude varies linearly with the input. If graded responses to

inputs are not a feature of the networks being modeled, then

adding bistable or digital processes to the neurons (Camperi

and Wang, 1998; Goldman et al., 2003; Koulakov et al., 2002)

could provide robustness by preventing small increases or

decreases in synaptic weights from causing a cascading

increase or decrease in responses as activity propagates

through the network. Digitization of responses is a hallmark of

models of sequence processing that propagate activity through

a sequence of metastable states (Hopfield, 1982; Kleinfeld,

1986; Sompolinsky and Kanter, 1986; Rabinovich et al., 2008)

and, when accomplished through an intrinsic bursting mecha-

nism, has been suggested to underlie the robustness of temporal

sequence generation in birdsong nucleus HVC (Jin et al., 2007).

A powerful advantage of the feedforward networks discussed

here is their flexibility to be extended to more temporally
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complex tasks than generating constant-rate persistent activity

or linearly accumulating an input. Unlike line attractor models,

the feedforward integrator’s output is generated as a combina-

tion of basis functions that are each peaked around a particular

time. These basis functions could serve as a neural representa-

tion of time during a working memory period, or, when combined

with unequal weights, be used to generate complex temporal

sequences from a triggering pulse of input. Previous work in

signal processing has shown that the basis functions gn, or

similar ones, can be combined to form complex filters for use

in a host of temporal sequence processing tasks ranging from

speech recognition to EEG analysis (Principe et al., 1993; Tank

and Hopfield, 1987), and a recent information-theoretic study

(Ganguli et al., 2008b) shows that the information remembered

by a network about a previous input signal is maximal for

a network with functionally feedforward architecture. Thus,

placing persistent activity in the more general context of

temporal processing provides a unifying framework in which to

view temporal sequence recognition, generation, and accumula-

tion in memory.

EXPERIMENTAL PROCEDURES

Architecturally Feedforward Networks

Networks were defined by the linear network equations

t
dri

dt
= � ri +

X
j

wijrj + aixðtÞ (2)

where ri represents the average activity of unit i, wij is the connection strength

from unit j to unit i, x(t) represents the external input to be integrated, and ai

represents the strength of the external input to unit i. The architecturally feed-

forward networks were defined by having wij = 0 for i % j.

The dynamics of the rearranged feedforward network with equivalent output

(Figure 1A, right) is defined by the equations

tdRn

dt
= � Rn + Rn�1; 1%n%ðN� 1Þ

tdrout

dt
= � rout +

PN�1

n = 0

WiRi

(3)

where R0 = x(t) represents the external input and Rn for n R 1 represents the

activity of the nth stage. Wn represents the summed weight of all paths that

reach the output stage through n intermediate stages, where the weight of

a path equals the product of ai and all synaptic weights wij connecting the

neurons along this path. For the optimally fit summed outputs (Figures 1, 2,

6, and 7) and fits to time-varying delay period activity (Figure 8), readout

weights were constrained to jWnj% 5 to prevent the network from artificially

using differences of large weights to attain perfect fits. Network performance

was highly insensitive to the exact constraint used as long as the maximum al-

lowed magnitude of weights was at least a few to several times greater than 1,

depending on the particular simulation.

For the network of Figure 2A, clusters of recurrently connected neurons with

intrinsic decay time constants of 100 ms were connected to each other with

uniform excitatory weights wrec = 0.4 to produce stages that collectively had

a time constant t = 500 ms. Each neuron also projected forward with weights

wff = 0.2/3 to each neuron in the following cluster. When a pulse of input was

applied to each neuron in the first cluster, the neurons in this and subsequent

clusters behaved identically to neurons in a simpler network consisting of

a chain of neurons with biophysical time constant t (Figure 2A, effective

network).

For the feedforward network of Figure 2B, all weights wij = 0 except for those

projecting forward to the neighboring stage, which were set to 1. The response

of each stage of this network can be accounted for by delineating all possible

pathways from the external input to this stage. The first stage receives only

direct input; therefore its response corresponds to filtering the input once
and equals the first temporal basis function. The second stage receives both

direct input and input that traversed through the first stage; thus, its response

equals a sum of the first two basis functions. The ith stage receives direct input

plus input that arrived directly at each of the earlier stages; its response there-

fore equals a sum of the first i basis functions. This explains why the final

stage’s response is identical to the equally weighted sum shown in Figure 2A

(bottom, black trace).

The network of Figure 2C consisted of N = 20 stages (columns in Figure 2C)

that each contained 20 units. Feedforward connections were chosen

randomly with a 10% connection probability for units in neighboring stages

and a 0.2% probability for units in further separated stages. The pulse input

had a 50% probability of connecting to units in the first stage and a 5% prob-

ability of connecting to units in all other stages. Weights between connected

units equaled 10.

Eigenvector and Schur Decompositions

The eigenvector and Schur decompositions each decompose a network into

a set of activity patterns (states, Figure 5B and 5C) that interact through

a matrix that is simpler in form than the original connectivity matrix (Fig-

ure 5A–5C, interactions). Eigenvector analysis finds noninteracting compo-

nents by ‘‘diagonalizing’’ the connectivity matrix w into the form w = VDV–1,

where D is a diagonal matrix (Figure 5B, bottom) whose elements are the

eigenvalues l, and V is a matrix whose columns contain the eigenvector

patterns of activity (states, Figure 5B, top). One can conceptualize such

a transformation as a change of the coordinate axes from the cardinal axes

x1, x2,. that represent the firing activity of neurons 1, 2,. to a new set of

axes that point along the directions of the eigenvectors. The matrix V–1

transforms the neuronal activities xi into their components along the new

eigenvector axes. The matrix D characterizes the effect of the network’s

interactions on each of these components—because it is diagonal, the

component patterns interact only with themselves and the eigenvalues

represent the strength of these self-feedback interactions. The matrix V trans-

forms back from the eigenvector coordinate system to the actual neuronal

activities xi.

Eigenvectors are not generally orthogonal to one another. The Schur decom-

position (Horn and Johnson, 1985) finds a set of orthogonal patterns of activity

(Figure 5C, top; Figure 5D, right) that have both self-feedback interactions given

by the same eigenvalues as in the eigenvector decomposition and also feedfor-

ward interactions (Figure 5C, bottom). Mathematically, the Schur decomposi-

tion of a matrix w is given by w = UTU–1, where U is a matrix whose columns

contain the orthogonal Schur mode patterns of activity and T is a triangular

matrix that contains the eigenvalues along the diagonal and the feedforward

interactions between states in the lower (or upper, depending on convention)

triangular elements. Note that the exact choice of U and T is not unique

although the diagonal entries of T always equal the eigenvalues and the

squared magnitudes of the off-diagonal entries always sum to the same fixed

value for a given matrix w. For all functionally feedforward networks in this

paper, the weight matrix w was constructed by running the Schur decomposi-

tion ‘‘in reverse’’: A set of N orthogonal patterns were generated randomly by

applying a Gram-Schmidt orthogonalization procedure to a set of N randomly

generated vectors, and the resulting patterns were assembled into the columns

of a matrix U. Next, a feedforward matrix T was defined to describe the interac-

tions between these patterns and then multiplied on the left by U and on the

right by U–1. For the feedforward chain, Tij = 1 for i = j + 1 and 0 otherwise.

Because the vectors represented by the columns of U are orthogonal, they

can be considered to be rotated versions of the Cartesian axes x1, x2, x3 and

the matrix w corresponds to a ‘‘rotated’’ version of the feedforward matrix T,

as depicted in Figure 3. A key property of any coordinate rotation is that it

preserves the eigenvalue spectrum of the rotated matrix. Therefore, as in the

feedforward matrices T from which they were constructed, all eigenvalues of

the functionally feedforward matrices equal zero and the eigenvalue analysis

fails to predict the long timescales generated by these networks (however,

such long timescales are predicted by a pseudoeigenvalue analysis—see the

Supplemental Experimental Procedures).

Detailed description of the connectivity matrices of the networks tested in

Figures 7 and 8, as well as their eigenvalue and pseudoeigenvalue spectra

(Figures S1 and S2), is given in the Supplemental Experimental Procedures.
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A description of the homeostatic learning rule used to generate Figure S3B is

also included in the Supplemental Experimental Procedures.

SUPPLEMENTAL DATA

The Supplemental Data include Supplemental Experimental Procedures and

figures and can be found with this article online at http://www.neuron.org/

supplemental/S0896-6273(08)01083-0.
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