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SUMMARY

In motor learning, our brain uses movement errors to
adjust planning of future movements. This process
has traditionally been studied by examining how
motor planning is adjusted in response to visuomotor
or dynamic perturbations. Here, I show that the
learning strategy can be better identified from the
statistics of movements made in the absence of
perturbations. The strategy identified this way differs
from the learning mechanism assumed in main-
stream models for motor learning. Crucial for this
strategy is that motor noise arises partly centrally,
in movement planning, and partly peripherally, in
movement execution. Corrections are made by
modification of central planning signals from the
previous movement, which include the effects of
planning but not execution noise. The size of the
corrections is such that the movement variability is
minimized. This physiologically plausible strategy is
optimally tuned to the properties of motor noise,
and likely underlies learning in many motor tasks.

INTRODUCTION

Suppose you play darts and aim for the bull’s eye in the center of

the board but hit the point 10 cm to the right of it. What should

you do to do better in the next throw? Your previous throw had

a rightward error of 10 cm, so you could try to make a leftward

correction of the same size, and thus aim for the point 10 cm

left of the bull’s eye. Alternatively, you could argue that if you

want to hit the bull’s eye, you should always aim for it, and

thus not make any correction. Or perhaps, the best strategy is

to do something in between and aim for instance 5 cm to the

left of the bull’s eye. It is not obvious which strategy is the best.

This is a very simple example of a motor learning task in which

errors in previous movements can be used to modify planning of

future movements. Motor learning can take more complicated

forms, such as learning a new motor skill like juggling (Shadmehr

and Wise, 2005), but virtually all forms of motor learning are

based on the movement errors made. The way in which errors

are used to modify motor planning has traditionally been studied

using visuomotor or dynamic perturbations that disturb the
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motor performance (von Helmholtz, 1867; Welch, 1978; Shad-

mehr and Mussa-Ivaldi, 1994; Shadmehr and Wise, 2005).

Subjects participating in such an experiment, however, have to

perform two tasks at the same time (Berniker and Kording,

2008; Wei and Körding, 2009). On the one hand, they have to

estimate the perturbations and predict the perturbation of the

next movement, while on the other hand they have to perform

the genuine motor learning task of correcting their motor plan-

ning. The results of such studies will therefore reflect both tasks.

The darts example suggests an alternative and cleaner way to

identify how the motor system learns from movement errors.

Given the natural movement variability and our motor system’s

propensity to correct for movement errors, there should be

a certain relation between the errors in consecutive movements.

If this is the case, an analysis of the time-series statistics of

natural movement errors provides an excellent opportunity to

identify the motor learning strategy in a way that is not

confounded by the subject’s need to estimate and predict

perturbations. This approach is followed here for the well-prac-

ticed task of moving the right index fingertip to visual targets.

The darts example demonstrates that it can be difficult to

determine how one should correct for an observed error. Errors

arise when the brain generates inappropriate motor commands.

A motor command is a set of time-varying signals that are sent to

the muscles. Given the initial arm posture, a motor command

corresponds to a unique spatial location where it will cause the

finger to move to. I will denote this location as the movement

endpoint, or simply endpoint. Motor commands can be inappro-

priate in two distinct ways. First, the central planning of a move-

ment, i.e., the generation of motor commands in premotor and

motor areas (Churchland et al., 2006a, 2006b), can be inaccurate

as a result of a systematic error in the transformation from the

intended target location into a motor command. In this case,

the endpoint is systematically biased and does not coincide

with the target location. This occurs frequently, as is exemplified

by the regular misses of movements made with the unseen hand

(Woodworth, 1899). This could be related to the complicated

mechanics of the arm and the large number of muscles that

have to be controlled, which make it difficult to generate accu-

rate motor commands. Second, stochastic noise in central

movement planning (Churchland et al., 2006a, 2006b) and in

peripheral movement execution (Jones et al., 2002; van Beers

et al., 2004; Faisal et al., 2008), i.e., in the relay of motor

commands by motor neurons and in the conversion into

mechanical forces in muscles, will cause the actual motor output
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to differ from the intended output. I will refer to motor noise as the

total amount of noise added to the motor command during both

movement planning and execution. The result of this noise is that

the actual endpoint will differ from the endpoint if no noise had

been added. Consequently, there is a probability density of

movement endpoints given a certain ideal (i.e., before motor

noise is added) motor command (Figure 1A). I will refer to the

mean of this probability density as the aim point. When the prob-

ability density is Gaussian, this would be the endpoint if the

motor command was not corrupted by motor noise.

Motor noise complicates error correction because it makes it

impossible to know what the aim point of the previous movement

was. There are an infinite number of combinations of planning
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Figure 1. The Effect of Motor Noise and the Aim Point Correction

(APC) Model

(A) The effect of motor noise is that, given an ideal (i.e., before motor noise is

added) motor command, there is a probability density of movement endpoints

(gray cloud). The aim point is the location where the movement would end if the

motor command was not corrupted by motor noise.

(B) Three examples of different combinations of planning inaccuracy and effect

of motor noise in single movements that lead to the same movement error. In

the left plot, planning was perfect (the aim point coincides with the target), and

the error is entirely due to motor noise. In the middle plot, the effect of motor

noise was accidentally zero, and the error is entirely due to inaccurate plan-

ning. The right plot shows an example in which both planning and motor noise

have nonzero contributions. In all three plots, the cloud represents the proba-

bility density resulting from motor noise, and is centered on the aim point.

(C) Vector diagram of the APC model. The goal is to reach target xT. Since

movement planning is generally inaccurate, the aim point m(t) in movement t

will generally differ from the target location. As a result of motor noise, the

actual endpoint x(t) will differ from the aim point by a random amount r
ðtÞ
mot

(thin black arrow). The movement error e(t) (gray arrow) is the difference

between the endpoint and the target location. According to this model,

a correction is made by shifting the aim point an amount –Be(t) (bold black

arrow). The correction is proportional to the previous error; learning rate B

specifies the fraction of the error that is corrected for. Note that the direction

of the correction is not perfect because the brain does not know the contribu-

tion of planning inaccuracy to the observed error.
inaccuracy and effect of motor noise that could have produced

a particular error (Burge et al., 2008). The error could be entirely

due to motor noise, entirely to movement planning, or to a combi-

nation of both (Figure 1B). In the first case, no correction should

be made; in the second case, a large correction would be

required, whereas a smaller correction would be necessary in

the third case. Our brain, however, does not know the actual

contributions of these two sources to a particular error. It only

knows the error. How, then, does our brain make corrections?

Theories have been developed for trial-by-trial learning in the

presence of visuomotor or dynamic perturbations (Thorough-

man and Shadmehr, 2000; Baddeley et al., 2003; Donchin

et al., 2003; Diedrichsen et al., 2005; Cheng and Sabes, 2006,

2007; Smith et al., 2006; Burge et al., 2008). Some of these

models (Baddeley et al., 2003; Diedrichsen et al., 2005; Cheng

and Sabes, 2006, 2007; Burge et al., 2008) are particularly rele-

vant here because they include the effects of motor noise. When

the perturbation term is removed from these models, they make

predictions for trial-by-trial corrections in the absence of pertur-

bations but in the presence of motor noise. I will refer to the

model constructed this way, based on the models of Baddeley

et al. (2003), Diedrichsen et al. (2005), and Burge et al. (2008),

as the Aim Point Correction (APC) model. I will assume highly

reliable error feedback, so that the uncertainty herein can be

neglected.

The APC model (Figure 1C) is described by the following

equations:

xðtÞ = mðtÞ + r
ðtÞ
mot (1A)

eðtÞ = xðtÞ � xT (1B)

mðt + 1Þ = mðtÞ � BeðtÞ (1C)

The goal is to reach target location xT. Motor planning is gener-

ally inaccurate, so that for a particular movement t, the aim point

m(t) does not coincide with the target location. Equation 1A

states that the movement endpoint x(t) equals the sum of the

aim point and the effect of motor noise, r
ðtÞ
mot (thin black arrow

in Figure 1C), which is a random vector drawn from a zero-

mean Gaussian with covariance matrix Smot. Movement error

e(t) is the difference between the endpoint and the target location

(Equation 1B; gray arrow in Figure 1C). According to this model,

a correction is made by shifting the aim point in the opposite

direction as the error (Equation 1C; bold black arrow in

Figure 1C). Learning rate B defines the fraction of the error that

is corrected for. Note that all vectors in this paper represent loca-

tions that are expressed in extrinsic spatial coordinates.

RESULTS

Observed Learning
To examine whether the APC model describes how our brain

corrects for movement errors, I analyzed the statistics of series

of movement endpoints. In Experiment 1, eight subjects

produced series of 30 arm movements from a fixed start position

to a fixed visual target. Each subject produced 24 of such series,

all with the same start position, to targets in different directions
Neuron 63, 406–417, August 13, 2009 ª2009 Elsevier Inc. 407
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(Figure 2A). To allow subjects to position their finger quickly and

accurately on the start position, a cursor was shown at the finger

location when it was within 3 cm from the start position. The

visual feedback went off when the finger began to move to the

target. Immediately after movement completion, visual feedback

of the movement endpoint was given. The endpoint was shown

alongside the target, and, to motivate subjects, a score was

awarded based on the error (see inset Figure 2A).

All endpoints of a representative subject are shown in Fig-

ure 2A. As expected, there is variability in the endpoints, and

the mean endpoint in a series is generally close to the target.

In many cases, the first movement to a target (indicated by aster-

isks) was quite inaccurate. No systematic pattern emerged in the

direction of these large initial errors, both within and across

subjects. They could overshoot the target, undershoot it, and/

or their direction could be wrong. Uncertainty in the visual local-

ization of the target is unlikely to be the major source of these

errors, since their magnitude (often >2 cm) is much larger than

could be expected from localization uncertainty (standard devi-

ation about 6 mm, see Hansen and Skavenski, 1977; van Beers

et al., 1998). Biases in visual localization are also unlikely to

explain the errors because biases will not produce the wild vari-

ations of the errors that occur even between neighboring targets

(see the initial errors for the targets in the 10:30 and 11 o’clock

directions in Figure 2A). This suggests that the generation of

motor commands is the most likely source of the initial errors.

Apparently, movement planning can be rather inaccurate the first

time one moves to a target.

Large errors were generally made only in the first movement to

a target. This indicates that subjects corrected for initial errors in

later movements. Learning curves were constructed to quantify

the speed of learning. A plot of the error magnitude as a function

of the movement number in the series could serve as a learning

curve, but since endpoint distributions are anisotropic (Gordon

Figure 2. Results of Experiment 1

(A) The start position (dark gray disc in the center), the targets (light gray discs),

all the endpoints (small dots) and their 95% confidence ellipses of a represen-

tative subject (SG). Asterisks mark the endpoint of the first movement to

a target. Inset: the view that subjects had after completion of a movement,

with the start position (dark gray), the target (light gray), the endpoint (white),

and the score that was determined by the size of the error (discs not to scale).

(B) Observed mean Mahalanobis distance of the two-dimensional endpoints

as a function of the movement number in the series. The shaded area indicates

the across-subjects standard deviation. The dashed line at 2 represents the

expected value when all endpoints are drawn independently from an identical

two-dimensional Gaussian distribution.

(C) Observed mean Mahalanobis distance for the extent and direction compo-

nents of movement endpoints as a function of movement number. The dashed

line at 1 indicates the expected value when all numbers are drawn indepen-

dently from an identical one-dimensional Gaussian distribution.

(D) Observed mean ACFs and CCFs taking into account all 30 endpoints of

each series. Error bars denote the across-subjects standard deviation. ‘‘Ext’’

and ‘‘Dir’’ refer to the extent and direction component, respectively.

(E) Observed mean ACF25’s and CCF25’s that take into account only the last 25

endpoints of each series.

(F) The Mahalanobis learning curve predicted by the PAPC model. The shaded

area indicates the across-subjects standard deviation, as predicted by this

model.

(G) ACF25’s and CCF25’s as predicted by the PAPC model. Error bars denote

the across-subjects standard deviation, as predicted by this model.
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et al., 1994; van Beers et al., 2004; Figure 2A), such a curve

would mainly reflect learning of the movement extent and prac-

tically ignore learning of the movement direction. Instead, I

plotted the Mahalanobis distance (see Experimental Proce-

dures), which weights both components equally. It can be inter-

preted as the squared number of standard deviations that a given

endpoint differs from the mean endpoint in its series, while taking

the anisotropy into account. Since it is a normalized quantity, it

can be averaged across series and subjects, even when their

variance differs.

The mean Mahalanobis distance begins large and decreases

quickly to a smaller value, which is retained until the end of the

series (Figure 2B). The speed of learning was determined by

fitting exponentials to each subject’s mean Mahalanobis curve

(see Experimental Procedures). This produced a time constant

of 0.82 ± 0.25 movements (weighted average across subjects

±95% confidence interval), which suggests that on average

46% of the initial error had been corrected for in the next move-

ment.

It has been proposed that the direction and extent of a move-

ment are planned independently (Gordon et al., 1994; Krakauer

et al., 2000). Are errors in these two components corrected

differently? Figure 2C shows the mean learning curves for the

individual components, where the extent component is defined

as the component of the (two-dimensional) endpoints parallel

to the vector from the start position to the mean endpoint, and

the direction component is orthogonal to this. The mean time

constants were 0.67 ± 0.21 and 0.93 ± 0.31 movements for the

extent and direction components, respectively, and were not

significantly different from each other (two-tailed paired t test,

p > 0.5) or from the overall time constant (two-tailed paired

t tests, both p > 0.1).

The time constants alone give insufficient information to test

the APC model. The learning curves do not reveal what happens

after large errors have been corrected. The APC model predicts

that corrections will still be made, even when errors are small.

This implies that there will be a certain relation between the

endpoints of consecutive movements, or, more general,
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Figure 3. Predictions of the APC Model for Experiment 1

The time constant of the learning curve (A) and ACF25(1) averaged over the

extent and direction components (B) predicted by the APC model as a function

of B. The observed values are also shown, with shaded areas representing

95% confidence intervals of the mean. In both plots, the uncertainty in the

model predictions is so small that their 95% confidence intervals are fully

covered by the line.
between the endpoints of movements separated by a certain

lag (number of movements) k. Such relations are quantified by

serial correlations. Since the endpoints are two-dimensional

vectors, the serial correlations consist of two autocorrelation

functions ACF(k), one for each component, and two cross-corre-

lation functions CCF(k) between the components (see Experi-

mental Procedures). Here, the lag 1 correlations are the most

informative ones. The ACF(1) is positive when the endpoints of

consecutive movements tend to be close together, whereas it

is negative when consecutive endpoints tend to be far apart,

on opposite sides of the mean endpoint (see Figure 7C for exam-

ples). A zero ACF(1) implies that consecutive endpoints are inde-

pendent of one another. The CCF(1)’s express such relations

between the extent component of one endpoint and the direction

component of the previous or next one.

All ACFs and CCFs in this experiment are close to zero

(Figure 2D). Since the estimation of autocorrelations from short

time series is fundamentally biased (Marriott and Pope, 1954;

Kendall, 1954), it is impossible to test whether the ACFs differ

significantly from zero. It is nevertheless clear that the endpoints

of consecutive movements are not strongly dependent on one

another.

When the first movement to a target was inaccurate, the partial

correction for its error will give a positive contribution to the

ACF(1). Error-corrective learning in the ‘‘steady state’’ in which

errors are small can therefore be better identified from serial

correlations estimated from only the last 25 endpoints of each

series. These correlations, denoted by ACF25(k) and CCF25(k),

are also close to zero (Figure 2E). The observed ACF(1) and

ACF25(1) were not significantly different for the extent and direc-

tion components (p = 0.4 and p = 0.3, respectively, two-tailed

paired t tests).

Test of the APC Model
To test whether corrections were made in the way described by

the APC model, Monte Carlo simulations were run in which

corrections were made according to Equation 1 (see Experi-

mental Procedures). For the first movement in a series, an addi-

tional random vector r0, drawn from a zero-mean Gaussian with

covariance matrix S0, was added to the right hand side of Equa-

tion 1A to reflect the difficulty of planning the first movement to

a target. The model was evaluated by comparing the predicted

and observed time constant and ACF25(1) (averaged over the

two components). Learning rate B is the only free parameter of

the model (see Experimental Procedures). The predicted time

constant decreases with increasing B (Figure 3A). Around

B = 0.4, the predicted time constant matches the observed

one. However, the model predicts a negative ACF25(1) for this

value of B (Figure 3B), which clearly disagrees with the data.

Hence, there is no value of B that can reproduce both the time

constant and the autocorrelations. This means that the APC

model cannot explain how subjects made corrections.

Possible Explanation
A possible explanation for the failure of the APC model is that it

applies only to large errors and that subjects make no correc-

tions when errors are small. Such a strategy would lead to rapid

correction of large initial errors, followed by a constant, rather
Neuron 63, 406–417, August 13, 2009 ª2009 Elsevier Inc. 409
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accurate performance. Since according to this strategy no

corrections are made in the last 25 movements, the endpoints

of these movements would be independent of one another,

implying zero autocorrelation. This is exactly what was found.

Alternatively, corrections could be made throughout the entire

series, but in a different way than is described by the APC model

(see below). To distinguish between these possibilities, Experi-

ment 2 was conducted which was identical to Experiment 1 apart

from one factor. Now, subjects did not see their actual move-

ment endpoint, but the point midway between the actual

endpoint and the target. Subjects were unaware of this manipu-

lation and believed they saw the actual endpoints. If subjects do

not make corrections for small errors, their steady-state behavior

will be the same as in Experiment 1. The ACF25(1) will therefore

be the same in both experiments. In contrast, if subjects do

make corrections, their corrections will be too small because

they are based on error signals that convey only half the actual

error. Making smaller corrections will therefore cause consecu-

tive endpoints to be closer together than in Experiment 1, i.e.,

the ACF25(1)’s will be larger.

Subjects corrected for large initial errors also in this experi-

ment (Figure 4A). The ACF25(1) (Figure 4B) was larger than in

Experiment 1 for both components (extent, p = 0.004; direction,

p = 0.040; one-tailed paired t tests). This demonstrates that

subjects make corrections all the time, also when errors are
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Figure 4. Results of Experiment 2

(A) Observed mean Mahalanobis distance as a function of movement number,

plotted in the same format as Figure 2B.

(B) Observed mean ACF25’s and CCF25’s plotted in the same format as

Figure 2E.

(C) The Mahalanobis learning curve predicted by the PAPC model, plotted in

the same format as Figure 2F.

(D) ACF25’s and CCF25’s as predicted by the PAPC model, plotted in the same

format as Figure 2G.
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small. This is consistent with reports that subjects adapt to small

incremental perturbations of error feedback when each incre-

ment falls within the natural movement variability (Kagerer

et al., 1997; Ingram et al., 2000; Klassen et al., 2005; Magescas

and Prablanc, 2006).

Planned Aim Point Correction (PAPC) Model
The results suggest that humans make corrections for every

movement error, but they do that in a different way than is

described by the APC model. I will now present a new model,

the planned aim point correction (PAPC) model, that is physio-

logically plausible and that can reproduce the data. The key

difference between the two models is the different way in which

is dealt with noise that arises during central movement planning

(planning noise) and during peripheral movement execution

(execution noise).

According to the APC model, a correction is made by shifting

the aim point. A neural implementation of this model would thus

require the brain to represent aim points. It is, however, unlikely

that aim points are represented. Recall that the aim point is the

position where the finger would land had the motor command

not been corrupted by noise. However, motor command gener-

ation is a stochastic process that produces signals that vary from

movement to movement (Churchland et al., 2006a, 2006b). This

variability is captured by the term planning noise. Planning noise

should therefore not be understood as noise that is added to an

existing noise-free motor command, but it is present immedi-

ately when the motor command is generated. The supposed

noise-free motor command simply does not exist. As a result,

the aim point is probably not represented.

What signal could the brain use as an alternative for the aim

point? The best signals that it could use are actual central plan-

ning signals of the previous movement. These central planning

signals could be either the actually planned motor command,

i.e., the motor command that includes planning noise, or its cor-

responding endpoint, which I will refer to as the planned aim

point m
ðtÞ
pl . The brain can have access to the actually planned

motor command if it stored a copy of that command. It is widely

assumed that such efference copies of motor commands are

made because they are useful for canceling movement-induced

changes of sensory signals (von Holst and Mittelstaedt, 1950;

Sperry, 1950) and for feed-forward control of movement (Miall

and Wolpert, 1996). There is, however, no evidence that effer-

ence copies are stored and can be recalled later, which makes

this possibility speculative. Alternatively, the brain could store

the previous movement’s planned aim point. To achieve this,

a forward model (Miall and Wolpert, 1996) could use an efference

copy of the actual (noisy) motor command to generate an esti-

mate of the planned aim point.

It is not important here whether the brain stores efference

copies or planned aim points because both give rise to the

same model, the PAPC model. If the efference copy is stored,

this copy can be modified, based on the previous error, to

make the correction. A modified version of the efference copy

then acts as the motor command of the next movement. The

modification will give rise to new planning noise in the generation

of this command. If planned aim points are stored, the planned

aim point of the previous movement can be modified, based
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on the previous error, to implement the correction. The modified

aim point is then used to generate the motor command for the

next movement.

Both implementations lead to the same model equations. The

planned aim point m
ðtÞ
pl differs from the hypothetical aim point by

the effect of planning noise r
ðtÞ
pl (white arrow in Figure 5):

mðtÞ
pl = mðtÞ + rðtÞpl (2)

Here, r
ðtÞ
pl is a random vector drawn from a zero-mean Gaussian

with covariance matrix Spl = w Smot, where w is the fraction of the

total effect of motor noise that is added during planning.

The actual movement endpoint is then found by adding the

effect of execution noise r
ðtÞ
ex (thin black arrow in Figure 5):

xðtÞ = mðtÞ + r
ðtÞ
pl + rðtÞex (3)

where r
ðtÞ
ex is a random vector drawn from a zero-mean Gaussian

with covariance matrix Sex = (1 � w) Smot.

According to the PAPC model, corrections are made relative

to the previous planned aim point m
ðtÞ
pl (bold black arrow in

Figure 5):

mðt + 1Þ = mðtÞ
pl � BeðtÞ (4)

The aim point m(t) can be eliminated from Equations 2, 3, and 4,

which is consistent with the idea that aim points are not repre-

sented in the brain. The PAPC model is then formulated in terms

of planned aim points and takes the form of a linear dynamical

system:

m
ðt + 1Þ
pl = m

ðtÞ
pl � BeðtÞ + r

ðt + 1Þ
pl

xðtÞ = m
ðtÞ
pl + r

ðtÞ
ex

(5)

The PAPC model has two free parameters: learning rate B and

fraction w that specifies the fraction of the total effect of motor

noise that is added during planning. These parameters were esti-

mated for each subject from the observed time constant and

ACF25(1)’s (see Experimental Procedures). The best estimates

(Target)xT

(Aim point)m( t )(Actual
endpoint)

x( t )

(Error)e( t )

(New aim point)m( t +1)

Correction

(Effect of
planning noise)
rpl

( t )

(Effect of
execution noise)

rex
( t )

mpl
( t ) (Planned aim point)

Figure 5. The Planned Aim Point Correction (PAPC) Model

This vector diagram is a modification of Figure 1C and differs in two respects.

First, the effect of motor noise is decomposed into two random components,

one resulting from movement planning (r
ðtÞ
pl ) and one resulting from movement

execution (r
ðtÞ
ex ). Second, the correction is not made relative to the previous aim

point but relative to the previous ‘‘planned aim point’’ m
ðtÞ
pl = mðtÞ + r

ðtÞ
pl . Note that

the direction of the correction is not perfect because the brain does not know

the contribution of planning inaccuracy to the observed error.
averaged over subjects are (mean ± SEM): w = 0.21 ± 0.03 and

B = 0.38 ± 0.04. The Mahalanobis distance curve and serial

correlations found in Experiment 1 are reproduced accurately

for these mean values (Figures 2F and 2G; significance of differ-

ences between predictions and data: time constant, p = 0.9;

ACF25(1) of extent and direction, p = 0.5 and p = 0.6, respec-

tively, two-tailed t tests). The same parameter values also repro-

duce the results of Experiment 2 quite well (Figures 4C and 4D;

significance of differences: time constant, p = 0.4; ACF25(1) of

extent, p = 0.3; only the predicted ACF25(1) of direction is larger

than observed, p = 0.04, two-tailed t tests).

Experiment 3 was performed to further test the generality of

the model. This experiment was similar to Experiment 2, but

now the shown errors were not 50% smaller but 50% larger

than the actual errors. Again, subjects were not aware of this

manipulation. The model predicts a roughly similar learning

curve as in Experiments 1 and 2, and negative ACF25(1)’s of

about �0.17 (see Figures 6C and 6D). The negative autocorrela-

tions arise from the fact that the error signals are larger than the

actual errors, which will cause subjects to overcorrect and often

overshoot the target (relative to the previous endpoint). Most of

these predictions are confirmed by the data. The observed

learning curve (Figure 6A) is quite similar to that of the other

experiments, and the observed time constant is not significantly

different from the predicted value (p > 0.05, two-tailed t test). The
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Figure 6. Results of Experiment 3

(A) Observed mean Mahalanobis distance as a function of movement number,

plotted in the same format as Figure 2B.

(B) Observed mean ACF25’s and CCF25’s plotted in the same format as

Figure 2E.

(C) The Mahalanobis learning curve predicted by the PAPC model, plotted in

the same format as Figure 2F.

(D) ACF25’s and CCF25’s as predicted by the PAPC model, plotted in the same

format as Figure 2G.
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ACF25(1) of the direction component is negative (Figure 6B) and

closely matches the predicted value (p = 0.8, two-tailed t test).

However, the ACF25(1) of extent is not negative but close to

zero (Figure 6B) and differs significantly from the predicted value

(p = 0.001, two-tailed t test). Possible explanations of this

discrepancy are given in the Discussion.

Finally, it is worth paying attention to the estimated values of

the model parameters. The value of w suggests that from the

endpoint variability that results from motor noise, about 21% is

due to planning and about 79% to execution. The estimated

learning rate of 0.38 implies that 38% of each error is corrected

for in the planning of the next movement. Why 38%? For this

model, the theoretical endpoint variance Var(x) and ACF(1) are

(see Experimental Procedures):

VarðxÞ= w + 2Bð1�wÞ
Bð2� BÞ TrðSmotÞ (6A)

ACFð1Þ= 1� B� Bð2� BÞð1�wÞ
w + 2Bð1�wÞ (6B)

where Tr denotes the matrix trace. These functions are plotted as

a function of B for w = 0.21 in Figures 7A and 7B. The variance
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Figure 7. Influence of Learning Rate B in the PAPC Model

(A) Theoretical endpoint variance (Equation 6A) as a function of B, for w = 0.21,

and Tr(Smot) = 68 mm2.

(B) Theoretical ACF(1) (Equation 6B) as a function of B, for w = 0.21.

(C) ‘‘Planned aim points’’ m
ðtÞ
pl in simulated series for B = 0.1, B = 0.4, and

B = 0.9 (in all cases, w = 0.21). Lines connect endpoints of consecutive move-

ments. The same set of random numbers was used for each B.
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reaches a minimum for B = 0.40, which is not significantly

different from the value estimated from the data (p > 0.6, two-

tailed t test). The learning rate used by the brain apparently mini-

mizes the endpoint variance.

The planned aim points m
ðtÞ
pl in a simulated series of 30 move-

ments are plotted for three values of B (0.1, 0.4, and 0.9) in

Figure 7C. All plots were generated using the same set of random

numbers. For small B, the planned aim point changes slowly.

Since corrections (term Be(t) in Equation 5) are small, the

changes of the planned aim point are mainly determined by plan-

ning noise (term r
ðt + 1Þ
pl ). Without the error correction term, the

planned aim point would describe a random walk. This explains

why the changes of this point are often not directed toward the

target and why the autocorrelation is positive and why the vari-

ance is large. For large B, the planned aim point changes rapidly.

The changes are now mainly determined by the correction term.

The correction is, however, generally not in the correct direction

(see Figure 5). The direction would be correct if the correction

was applied to the previous endpoint, but it is applied to the

previous planned aim point. Large corrections are therefore

often counterproductive. Consider for instance the case that

planning was perfect (i.e., the planned aim point coincided with

the target location) but that an overshoot was produced as a

result of execution noise. Planning will then be adjusted so as

to reduce the movement extent. The expected extent of the

next movement will therefore correspond to an undershot. This

explains the negative autocorrelation and the relatively large

variance for large B.

For intermediate B (0.4), the deleterious effects of small and

large B cancel. The optimal value of B that minimizes the variance

is the value for which the autocorrelation vanishes, because any

nonzero autocorrelation causes additional variance. The

observed small autocorrelations can hence be seen as an indica-

tion that the brain uses a strategy that minimizes the endpoint

variance. Note that this does not mean that the planned aim point

m
ðtÞ
pl (or even the hypothetical aim point m(t)) remains constant

(Figure 7C). It is impossible to fix these because the brain does

not know the contributions of planning inaccuracy, planning

noise and execution noise to the observed error. The best it can

do is to minimize the variability in the planned aim points, and

therefore in the endpoints, and that is achieved when B is optimal.

DISCUSSION

This study used a novel and simple method to study how our

brain uses errors in previous movements to adjust planning of

future movements. This method does not involve visuomotor

or dynamic perturbations but takes advantage of the natural

movement variability. In experiments with perturbations,

subjects not only adjust their movement planning, but they

also have to estimate and predict the perturbations. The actual

correction strategy can therefore be better identified from tasks

that do not involve perturbations. Time series analysis of move-

ment endpoints in the absence of perturbations proved to be

a powerful method.

To evaluate how the quality of the identification in this study

compares to that of perturbation studies, one can compare the

estimates of the learning rate. The mean estimate of 0.38 in
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this study agrees well with the estimates in perturbation studies

(Scheidt et al., 2001; Baddeley et al., 2003; Cheng and Sabes,

2007; Scheidt and Stoeckmann, 2007). However, the coefficient

of variation of this estimate (the across-subject standard devia-

tion divided by the mean) was only 28% in the present study,

whereas it was equal to or greater than 50% in perturbation

studies (Cheng and Sabes, 2007; Scheidt et al., 2001). This

confirms that the perturbation-free method developed here is

more efficient for identifying the learning strategy.

The learning strategy identified here is fundamentally different

from the strategy assumed in the APC model (Baddeley et al.,

2003; Diedrichsen et al., 2005; Burge et al., 2008) and in models

that neglect motor noise altogether (Thoroughman and Shad-

mehr, 2000; Donchin et al., 2003; Smith et al., 2006). According

to the APC model, we make corrections relative to the previous

movement’s aim point, i.e., the point where the finger would have

landed in the absence of motor noise. The brain, however,

cannot use this strategy because there is motor noise, as early

as in the generation of motor commands in motor and premotor

areas (Churchland et al., 2006a, 2006b). As a result, the aim point

is unlikely to be represented in the brain. Instead, the brain prob-

ably represents the movement endpoint corresponding to the

actually planned command, which includes the stochastic noise

in movement planning. A useful strategy would therefore be to

store this planned aim point, or the motor command, and modify

that on the basis of the error when planning a new movement.

This idea forms the basis of the PAPC model. Making corrections

relative to the planned aim point rather than the aim point leads

to an increased autocorrelation of movement endpoints (cf.

Figures 3B and 7B), which is necessary to reproduce the data.

This increase is a direct consequence of the assumption that

corrections are made by modification of central planning signals

of the previous movement. The effect of the previous move-

ment’s planning noise is then retained, while new noise is added

in the planning of the next movement. The effects of planning

noise therefore accumulate over movements, giving rise to an

increased autocorrelation. As a result, the planned aim point is

not constant but displays random changes even in the steady

state when errors are small (see Figure 7C). The slow random

drifts in the tuning curves of motor cortical neurons that have

been observed in this steady state (Rokni et al., 2007) could be

a neural correlate of these changes.

Before discussing the PAPC model in more detail, it is impor-

tant to consider the recent idea that motor adaptation is the

combined effect of two distinct processes (Smith et al., 2006).

One process learns slowly but retains information well, whereas

the other has a large learning rate but poor retention. Should the

PAPC model be formulated as a two-state model, rather than the

single-state model proposed here? In the two-state models,

there are two processes, each having a learning rate and

a capacity for retention, specified by retention rate A that defines

how quickly the state decays back to its baseline level. Such

a baseline level is meaningful in perturbation studies, as it spec-

ifies the state prior to the perturbations, but it is not a meaningful

concept in the present experiments. Accordingly, the only

sensible value for the retention factor is A = 1, for both states,

implying no decay. However, the two-state model than reduces

to a single-state model with A = 1 and a learning rate equal to the
sum of the two individual learning rates. Hence, two-state and

single-state models are identical in the absence of perturbations.

It is, however, possible that a generalization of the PAPC model

to a situation with perturbations is better described by a two-

state than a single-state model. Future investigations can

explore this possibility.

Can alternative models be constructed that can reproduce the

data? The difference between the PAPC and the APC model is

that the effect of planning noise has been added, which raises

the endpoint autocorrelation. A similar effect could be achieved

by adding a different signal with positive autocorrelation. Theo-

retically, it is possible that the estimate of target location or

that of movement error is corrupted by noise with a positive auto-

correlation. So, removing the planning noise from the PAPC

model, and adding positively autocorrelated noise to the esti-

mate of target location or that of movement error could lead to

a model that can reproduce the data. However, no studies

have estimated the autocorrelations in these noise sources, so

assuming them to be positive is somewhat arbitrary. In contrast,

the positive autocorrelation arises naturally in the PAPC model

as a result of using the previous motor signals to plan the next

movement.

How does the PAPC model compare to the currently popular

Bayesian models that have been used to account for motor

learning and adaptation in response to perturbations (Korenberg

and Ghahramani, 2002; Kording et al., 2007; Berniker and Kord-

ing, 2008; Burge et al., 2008; Wei and Körding, 2009)? Bayesian

models are the most basic of generative models and describe

learning at a rather abstract level. In contrast, the PAPC model

describes learning at a lower level, in terms of standard con-

structs and terms from motor control such as motor commands,

efference copies, planning noise, and execution noise. By

combining these terms in a simple, physiologically plausible way,

a linear dynamical system emerges that describes how the brain

makes corrections to a motor plan. A linear dynamical system

also forms the basis of the Kalman filter, which is a commonly

used type of Bayesian model (Korenberg and Ghahramani, 2002;

Baddeley et al., 2003; Kording et al., 2007; Burge et al., 2008).

Hence, it is probably possible to construct Bayesian models that

are described by the same equations as the PAPC model. Thus,

although such a Bayesian model and the PAPC model derive

from different principles, they are mathematically identical. The

PAPC model can therefore be interpreted as a Bayesian model

that is not described at the abstract level but at the lower, phys-

iological level. As a result, this model indicates how Bayesian

models for motor learning could be implemented in the brain,

and as such it could spur new neurophysiological research aimed

at identifying the neural implementation of Bayesian models. This

applies also to other models that are described at the higher,

abstract level, such as the model used by Cheng and Sabes

(2006, 2007). The PAPC model is a special case of that more

general model, which also includes two distinct noise sources.

Whereas Cheng and Sabes (2006, 2007) referred to these as

general output (or performance) noise and state (or learning)

noise, they are made explicit in the PAPC model as planning

and execution noise.

In the PAPC model, corrections are made relative to the

previous movement’s planned aim point. Two different neural
Neuron 63, 406–417, August 13, 2009 ª2009 Elsevier Inc. 413
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implementations are possible. The planned aim point could be

represented via a stored efference copy of the motor command,

or it could be stored directly as estimated by a forward model.

The present results cannot distinguish between these possibili-

ties. The first option is speculative as there is no evidence that

efference copies are stored. It is however well possible that

they are stored as this can be done relatively easily by storing

only a few parameters. Motor commands can be encoded as

combinations of a small number of muscle synergies, and only

a few parameters are needed to represent even a time-varying

combination of such synergies (d’Avella et al., 2006). There is

in fact little doubt that the brain does store time-varying signals,

as songbirds are known to store representations of birdsong

(Troyer and Doupe, 2000). Interestingly, the idea of storing effer-

ence copies, and later recalling and modifying them as is

proposed here, is comparable to the role that efference copies

are thought to play in song learning in songbirds (Troyer and

Doupe, 2000; Crapse and Sommer, 2008). The alternative way

to implement the PAPC model involves a forward model that

generates an estimate of the planned aim point. Neurons in the

posterior parietal cortex have been found that could serve as

a forward model (Mulliken et al., 2008). This implementation of

the PAPC model is nevertheless also speculative as there is no

evidence that estimates of planned aim points are stored and

later modified. Future research is required to determine the

actual neural implementation of the model.

This and other studies (Scheidt et al., 2001; Baddeley et al.,

2003; Cheng and Sabes, 2007; Scheidt and Stoeckmann,

2007) suggest that our brain corrects about 38% of each error

in the planning of the next movement. The present study is the

first that explains this value: it is the learning rate for which the

variance in movement endpoints is minimal. The near-zero auto-

correlation of movement endpoints can be seen as a hallmark of

a variance-minimizing strategy. The value of 38% results from

the relative proportions of planning and execution noise. The

learning rate can be different in other tasks as these relative

proportions can vary between tasks. The question arises why

our brain would minimize the endpoint variance. One could argue

that motor learning should be more concerned about rapid

correction of large errors, for instance by using a larger learning

rate (Figure 7C). However, the learning mechanism is not only

active after large errors, but it is always active, also in the steady

state when errors are small. A larger learning rate would cause

the average error in the steady state to be unnecessarily large.

In other words, it would make our movements less precise

than is physiologically possible, and this is likely to be more

harmful to our functioning or to an animal’s survival value than

being a little slow with correcting large errors. A variance-mini-

mizing strategy could also explain part of the two failures of

the PAPC model reported here. The observed lag 1 autocorrela-

tion of the direction component in Experiment 2 and of the extent

component in Experiment 3 were closer to zero than predicted.

Although subjects were not aware that the shown endpoints

were not veridical, their motor systems may have detected that

something was wrong (for instance by detecting discrepancies

between expected and seen endpoints), and adjusted the

learning rate such that the endpoint variance was minimized

under the new circumstances.
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In the PAPC model, learning rate B is a scalar. The model could

easily be generalized to allow B to be a matrix. That would for

instance make it possible to have different learning behavior

for the extent and direction components. However, neither the

time constant nor the autocorrelations differed between these

components. The experimental results thus imply that B is a

scalar. Another generalization could be to allow B to vary with

the size of the error. If, for instance, B is increased for large errors

and remains the same for small errors, large errors would be cor-

rected faster, whereas the steady state behavior would remain

the same. This is however not consistent with the data because

it would lead to a different learning curve. Indeed, a study in

which the learning rate was explicitly estimated as a function

of the error size suggests that the learning rate is constant for

the error sizes in Experiments 1 and 2, whereas for larger errors

it is decreased rather than increased (Wei and Körding, 2009).

This effect also offers another explanation why the observed

autocorrelation of the extent component in Experiment 3 was

about zero, and not negative as predicted by the PAPC model.

All of these results together suggest that in natural movement

behavior (with no perturbations), learning rate B is a scalar that

does not depend on the size of an error. The learning strategy

is therefore easy to implement. There is no need to know the

planning and execution variances. Just correcting about 38%

of each error will produce the observed behavior. The actual

value of B could be learnt from the experience of repeated

movements.

As a by product, this study produced estimates of the relative

contributions of movement planning and movement execution to

the total amount of motor noise. Although these contributions

have not been estimated before, contributions of 21% and

79% of planning and execution, respectively, are consistent

with the results of earlier studies on the sources of motor noise

(Jones et al., 2002; van Beers et al., 2004; Churchland et al.,

2006a, 2006b) and they agree also with the (rougher) estimates

of the relative proportions of state and output noise by Cheng

and Sabes (2007). The numbers might suggest that planning is

a relatively unimportant source. However, planning may have

substantial effects on the variability in movement velocity

(Churchland et al., 2006a), and it has a sizeable effect on the

endpoint autocorrelation (Figure 3B). Taking the effects of plan-

ning noise into account is therefore crucial when estimating the

learning strategy from the trial-by-trial behavior in any motor

learning task.

This study identified the strategy adopted by our brain to

correct for movement errors of the unseen hand. A similar

strategy could be used in the darts problem mentioned in the

Introduction; aiming for the point 4 cm left of the bull’s eye could

be a good tactic. The importance of the strategy reaches

however much further, as this strategy is likely to underlie error

correction in many motor tasks. Corrections will be made by

modification of planning signals from previous movements in

any task that involves repeated movements, and that will most

likely happen in accordance with the strategy identified here.

The PAPC model could therefore underlie correction of move-

ment planning for the seen hand, with the modification that the

error signal will be related to some earlier part of the movement.

The strategy could also model motor learning in the presence of
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perturbations if an appropriate perturbation term is added. Other

generalizations could include movements of other body parts

and temporal and rhythmic movement tasks, for which the

distinct roles of planning and execution noise are well estab-

lished (Wing and Kristofferson, 1973). In all of these cases, the

probabilistic nature of motor control is likely to explain how our

brain makes and keeps movement planning accurate.

EXPERIMENTAL PROCEDURES

Experiments

Five male and three female subjects between 17 and 26 years old participated

in Experiment 1, after providing informed consent and with approval from the

Institutional Review Board. All subjects reported being right handed and were

unaware of the purposes of the study. They made reaching movements with

their right hand on a table (98 3 55 cm) while the position of the index fingertip

was recorded by an Optotrak Certus system (Northern Digital) at 300 Hz.

Subjects did not have direct vision of their arm and the table because they

looked in a mirror placed midway between the table and a projection screen

(above and parallel to the table). Small colored discs (4 mm radius) projected

on the screen against a black background by an LCD projector (resolution

1280 3 720 pixels) defined the start position (purple) and the targets (yellow)

and could also indicate the finger location (red or green). The start position

was always the same, about 35 cm straight ahead of the waist. The finger posi-

tion cursor was only shown at the beginning of a trial to allow subjects to place

their finger quickly and accurately on the start location and to prevent drift of

the perceived finger location throughout an experimental session (Smeets

et al., 2006). The finger cursor appeared (red) when the finger was within

3 cm from the start location and turned green when it had been within

0.5 cm for 1 s. At the same moment the target appeared. Subjects were

instructed to make a quick, uncorrected movement to the target. The finger

cursor went off when the finger speed exceeded 2 cm/s. As a result, subjects

received no informative visual feedback about the movement trajectory

(<1 mm was shown). The movement endpoint was defined as the location

where the finger speed first dropped below 2 cm/s. This location was shown

immediately (red disc), along with a score (see inset of Figure 2A), which

was determined by the distance from the target. One second later, the target

and feedback went off and the next trial started.

An experiment consisted of 24 series of 30 movements each. The targets

were at 10 cm from the start location in equally spaced directions. The same

target was used for all movements in a series. The target of the first series

was randomly chosen straight to the left or right. Each later target direction

differed 105 degrees from the previous direction in the counter clockwise

direction. Series were separated by breaks of 10 s. Prior to the experiment,

each subject practiced the task for several minutes (with a different target

than in the first series).

Experiments 2 and 3 were identical to Experiment 1 apart from the fact that

not the actual endpoint was shown, but the endpoint that corresponded to an

error that was 50% smaller (Experiment 2) or 50% larger (Experiment 3) than

the actual error. Subjects were not informed about these manipulations, and

postexperimental questioning confirmed that none of them had been aware

that the feedback was not veridical. All eight subjects participated in Experi-

ment 2; six of them participated in Experiment 3.

Data Analysis

The data analysis was completely based on two-dimensional movement

endpoints. A small fraction of the movements (0.56%, 0.26%, and 0.35% in

Experiments 1, 2, and 3, respectively) was discarded from the analysis

because the recording had failed.

The Mahalanobis distance D(t) of movement number t in a series was

calculated as

DðtÞ =
�
xðtÞ � x

�T
S�1

�
xðtÞ � x

�
(7)

where x(t) is the endpoint of movement t, x and S are the mean and covariance

matrix of all endpoints in the series, respectively, and T and –1 denote the
matrix transpose and inverse, respectively. Alternatively, one could replace

xðtÞ � x in Equation 7 by xðtÞ � xT , i.e., take the distances relative to the target

position rather than the mean endpoint. This produced slightly larger distance

measures but similar time constant estimates. Therefore, only the results using

Equation 7 are reported.

Time constants of the learning curves, and their 95% confidence intervals,

were estimated for individual subjects using nonlinear least-squares regres-

sion. The function ða� bÞexpð�t=tcÞ+ b was fitted to the Mahalanobis

distances averaged over the 24 series, where t is the movement number,

a and b are constants and tc is the time constant. Because the reliability

(half the width of the confidence interval) of these estimates varied across

subjects, a weighted average over subjects was calculated by weighting

each subject’s time constant by the inverse of the squared reliability.

The (sample) cross-correlation function CCF(k)[i, j] between components

i and j at lag k was calculated as
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t = 1

�
x
ðt + kÞ
j

�2

� 1
n�k

�Pn�k

t = 1

x
ðt + kÞ
j

�2
s (8)

where x
ðtÞ
i denotes component i of the endpoint of movement t, and n is the

number of endpoints considered (30 or 25). The method developed by

Marshall (1980) was used to deal with missing values. The (sample) autocorre-

lation function ACF(k)[i] of component i at lag k was found as: ACF(k)[i] =

CCF(k)[i, i].

Model Simulations

Each Monte Carlo simulation consisted of 2000 sets of 24 simulated series of

30 movements each, corresponding to 2000 subjects performing a full exper-

iment. Equation 5 was implemented to simulate a series in which errors were

corrected according to the PAPC model. This involved drawing one random

vector r0 �N(0, S0) (i.e., from a zero-mean Gaussian with covariance matrix

S0) to reflect the difficulty of planning the first movement to a target, 30 random

vectors r
ðtÞ
pl �N(0, Spl) to reflect the effect of planning noise, and 30 random

vectors r
ðtÞ
ex �N(0, Sex) to reflect the effect of execution noise. This implies

that, besides learning rate B, the elements of three covariance matrices were

free parameters. However, the observations that the Mahalanobis distance,

ACF(1) and ACF25(1) were not different for the extent and direction components

suggest that S0, Spl, and Sex were, up to scaling factors, equal to each other.

This justifies the introduction of w to define the relative scaling of the planning

and execution noise matrices as Spl = w Smot and Sex = (1-w) Smot. Since the

analysis involved normalized quantities only, the exact values of the elements

of the covariance matrices are irrelevant. The scaling of S0 was a free param-

eter, and was chosen as S0 = 4 Smot because then the observed mean

Mahalanobis distance of the first movement in Experiment 1 was reproduced.

Simulations showed that the resulting time constant, ACF and ACF25 were

virtually independent of this scaling factor in a wide neighborhood around the

value used. As a result, B and w were effectively the only free parameters.

Simulations of the APC model were identical to those of the PAPC model,

with w set to 0. Here, B was effectively the only free parameter.

Estimation of Model Parameters

Model simulations were performed for values of B and w between 0.1 and 0.8,

and time constants and ACF25(1)’s were estimated from these. These esti-

mates were well approximated by third order polynomial regressions as a

function of B and w. Parameters B and w were then estimated for each subject

individually by finding the parameter values for which the sum of the squares of

the normalized difference between observed and predicted (by the regres-

sions) values of the time constant, the ACF25(1) of extent and the ACF25(1) of

direction, was minimized. Normalization of the differences was achieved by

dividing each difference by the reliability of the observed value. Note that the

potentially more powerful method of maximum likelihood estimation, which

can be implemented using the expectation-maximization algorithm (Cheng

and Sabes, 2006), could not be used for parameter estimation as it produces

biased estimates for the short time series used here.
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For each component (extent or direction), the model can be reformulated in

terms of the errors e(t):

eðt + 1Þ = ð1� BÞeðtÞ + r
ðt + 1Þ
pl � rðtÞex + rðt + 1Þ

ex (9)

The error autocovariance g(k) at lag k then is

gðkÞ= E
	
eðtÞeðt + kÞ
= ð1� BÞgðk � 1Þ+ E

h
r
ðtÞ
pl eðt�kÞ

i
� E

	
rðt�1Þ
ex eðt�kÞ
+ E

	
rðtÞex eðt�kÞ


(10)

where E½f � denotes the expectation of f. For k = 0 and k = 1, the autocovariance

is

gð0Þ= ð1� BÞgð1Þ+ s2
pl + ð1 + BÞs2

ex

gð1Þ= ð1� BÞgð0Þ � s2
ex

(11)

where s2
pl and s2

ex denote the variance due to planning and execution, respec-

tively. This system of equations has as solutions Equation 6B and

VarðeÞ= gð0Þ=
s2

pl + 2Bs2
ex

Bð2� BÞ =
w + 2Bð1�wÞ

Bð2� BÞ s2
mot (12)

Equation 6A follows from Equation 12 under the assumption that corrections

are made independently in the extent and direction components. This

assumption is justified by the observations that the cross-correlations were

zero and that the time constants, ACF(1)’s and ACF25(1)’s did not differ

between the two components.
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