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Reducing neuronal networks to discrete dynamics
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Abstract

We consider a general class of purely inhibitory and excitatory–inhibitory neuronal networks, with a general class of network architectures,
and characterize the complex firing patterns that emerge. Our strategy for studying these networks is to first reduce them to a discrete model. In the
discrete model, each neuron is represented as a finite number of states and there are rules for how a neuron transitions from one state to another.
In this paper, we rigorously demonstrate that the continuous neuronal model can be reduced to the discrete model if the intrinsic and synaptic
properties of the cells are chosen appropriately. In a companion paper [W. Just, S. Ahn, D. Terman. Minimal attractors in digraph system models
of neuronal networks (preprint)], we analyse the discrete model.
c© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Oscillatory behaviour arises throughout the nervous system.
Examples include the thalamocortical system responsible for
the generation of sleep rhythms [2–5], networks within the
basal ganglia that have been implicated in the generation of
Parkinsonian tremor [6,7], and networks within the olfactory
bulb of mammals, or antennal lobe of insects [8–10]. Each of
these systems has been modelled as an excitatory–inhibitory
neuronal network and each model displays complex firing
patterns. Thalamocortical models, for example, may generate
clustered activity in which the network breaks up into
subpopulations of cells, or clusters; neurons within each cluster
fire in near synchrony, while cells within different clusters fire
out-of-phase with each other. A recently proposed model for
neuronal activity within the antennal lobe of insects [9] displays
dynamic clustering: cells fire during distinct episodes and
during each episode some subpopulation, or cluster, of cells fire
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in near synchrony. However, the membership of clusters may
change so that two cells may fire together during one episode
but they do not fire together during some other subsequent
episode.

Several papers have used dynamic systems methods to anal-
yse synchronous and clustered activity in excitatory–inhibitory
networks [11–18]. However, very few papers have studied
mechanisms underlying dynamic clustering. Moreover, previ-
ous papers have typically considered small networks with very
simple architectures. It remains poorly understood how popula-
tion rhythms depend on the network architecture.

Here we consider a general class of excitatory–inhibitory
networks, with a general class of architectures, and characterize
the complex firing patterns that emerge. Our strategy for
studying these networks is to first rigorously reduce them
to a discrete model. In the discrete model, each neuron is
represented by a finite number of states and there are rules for
how a neuron transitions from one state to another. In particular,
the rules determine when a neuron fires and how this affects the
state of other neurons.

The goal of this paper is to demonstrate that certain types
of neuronal models can, in fact, be rigorously reduced to the
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discrete model. In a companion paper [1], we analyze the
discrete model. By studying the discrete model, we are able to
characterize properties of the dynamics of the original neuronal
system. We demonstrate in [1], for example, that these networks
typically exhibit a large number of stable oscillatory patterns.
We also determine how properties of the attractors depend on
network parameters, including the underlying architecture.

This paper is organized as follows. In the next section,
we describe the neuronal model and introduce the two types
of networks we are going to study: purely inhibitory and
excitatory–inhibitory networks. In Section 3, we introduce the
basic fast/slow analysis that will be used throughout the paper.
We also consider some simple networks that will motivate
the discrete dynamics. The discrete model is formally defined
in Section 4. In Section 5, we briefly describe why it may
not be possible, in general, to reduce a purely inhibitory
network to the discrete model. The main analysis is given in
Section 6 where we find conditions on parameters for when
an excitatory–inhibitory network can be rigorously reduced to
the discrete model. The results of numerical simulations are
presented in Section 7 and there is a discussion of our results
in the last section.

2. The neuronal model

A neuronal network consists of three components. These
are: (1) the individual cells within the network; (2) the synaptic
connections between cells; and (3) the network architecture. We
now describe how each of these components is modelled. The
models are written in a rather general form since the analysis
does not depend on the specific forms of the equations. A
concrete example is given in Section 7.

Individual cells

We consider a general two-variable model neuron of the
form

dv

dt
= f (v, w)

dw

dt
= εg(v, w). (1)

Here, v represents the membrane potential of the cell, w

represents a channel gating variable and ε is a small, positive,
singular perturbation parameter. We assume that the v-nullcline
{ f = 0} defines a cubic-shaped curve and the w-nullcline {g =

0} is a monotone increasing curve. Moreover, f > 0 ( f < 0)

below (above) the v-nullcline and g > 0 (<0) below (above)
the w nullcline.

We further assume that the v- and w-nullclines intersect
at a unique fixed point p0. If p0 lies along the left branch
of the v-nullcline, then p0 is stable and the cell is said to
be excitable. In the oscillatory case, p0 lies along the middle
branch and, if ε is sufficiently small, then the cell exhibits stable
oscillations. In the limit ε → 0, the limit cycle approaches
the singular trajectory shown in Fig. 1. For most of this paper,
we will assume that individual cells, without any coupling, are
excitable.
Fig. 1. Singular trajectory for an oscillatory cell. Note that the fixed point
p0 lies along the middle branch of the cubic-shaped v-nullcline. During the
silent and active phase, the singular trajectory lies on the left and right branch,
respectively, of the v-nullcline. Transitions between the silent and active phase
take place when the trajectory reaches a left or right knee of the v-nullcline. For
most of the paper, we assume that the cell is excitable; that is, p0 lies along the
left branch of the v-nullcline.

Synaptic connections

A pair of mutually coupled neurons is modelled as:

dvi

dt
= f (vi , wi ) − gsyns j (vi − vsyn)

dwi

dt
= εg(vi , wi )

dsi

dt
= α(1 − si )H(vi − θ) − βsi (2)

where i and j are 1 or 2 with i 6= j . Moreover, gsyn represents
a constant maximal conductance, s j corresponds to the fraction
of open synaptic channels, and α and β represent rates at which
the synapse turns on and turns off. Note that s j depends on
the presynaptic cell. To simplify the discussion, we will assume
H(v) is the Heaviside step function.

Note that the coupling between cells is through the synaptic
variables si . Suppose, for example, that cell 1 is the presynaptic
cell. When cell 1 fires a spike, its membrane potential v1 crosses
the threshold θ and this results in activation of the synaptic
variable s1. More precisely, s1 →

α
α+β

at the rate α + β. This
then turns on the synaptic current to cell 2. When cell 1 is silent,
so that v1 < θ , then s1 turns off at the rate β.

Synapses may be either excitatory or inhibitory. This
depends primarily on the synaptic reversal potential vsyn. We
say that the synapse is inhibitory if vsyn < vi (t), i = 1, 2,
along solutions of interest. In the excitatory case, vsyn > vi (t).

Synapses may also be either direct or indirect. In a direct
synapse, the postsynaptic receptor contains both the transmitter
binding site and the ion channel opened by the transmitter as
part of the same receptor. In an indirect synapse, the transmitter
binds to receptors that are not themselves ion channels. Direct
synapses are typically much faster than indirect synapses. The
synapses we have considered so far are direct since they activate
as soon as a membrane crosses the threshold. We model indirect
synapses as described in [13]. We introduce a new independent
variable xi for each cell, and replace (2) with the following
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equations for each (xi , si ):

dxi

dt
= εαx (1 − xi )H(vi − θ) − εβx xi (3)

dsi

dt
= α(1 − si )H(xi − θx ) − βsi .

The constants αx and βx are assumed to be independent of
ε. The variable x corresponds to a secondary process that is
activated when transmitters bind to the postsynaptic cell. The
effect of the indirect synapses is to introduce a delay from the
time one cell jumps up until the time the other cell feels the
synaptic input. For example, if cell 1 fires, a secondary process
is turned on when v1 crosses the threshold θ . The synapse s1
does not turn on until x1 crosses some threshold θx ; this takes a
finite amount of time since x1 evolves on the slow time scales,
like the wi .

Network architecture

We will be interested in two types of networks; these
are purely inhibitory (I -) networks and excitatory–inhibitory
(E–I -) networks. First we consider I -networks. Then the
network architecture can be viewed as a directed graph
D = 〈VD, AD〉. The vertices correspond to the neurons;
for convenience of notation, we assume that VD = [n] ≡

{1, . . . , n}. If there is an arc (or directed edge) e = 〈i, j〉, then
cell i sends inhibition to cell j . This network is modelled as:

dvi

dt
= f (vi , wi ) − gsyn(vi − vsyn)

∑
s j (4)

dwi

dt
= εg(vi , wi )

dsi

dt
= α(1 − si )H(vi − θ) − βsi .

We are assuming that the cells are homogeneous so that the
nonlinear functions f and g do not depend on the cell i . The
sum in (4) is over all presynaptic cells; that is, { j : 〈 j, i〉 ∈ AD}.
Here we assume that vsyn is chosen so that the synapses are
inhibitory.

Now consider E–I -networks. We assume that there are two
populations of cells. These are the excitatory (E-) cells and the
inhibitory (I -) cells. The E-cells send excitation to some subset
of I -cells. The I -cells send inhibition to some subset of E-cells
as well as to I -cells. In the analysis which follows, we will need
to assume that inhibitory synapses, corresponding to I → E
and I → I connections, are indirect, while E → I connections
are realized by direct synapses. Fig. 2 shows the network. In
Section 6.1, we write the equations.

3. Some example networks

We now consider some rather simple examples of inhibitory
networks. These examples will be used to describe the sorts of
solutions that we are interested in. The examples will also allow
us to explain how the dynamics corresponding to the system of
differential equations will be reduced to a discrete model. It will
first be necessary to introduce some notation.
Fig. 2. An excitatory–inhibitory network. Each I -cell sends inhibition to some
subset of E-cells as well as to I -cells. Each E-cell sends excitation to some
subset of I -cells.

3.1. Some notation

Let Φ(v, w, s) ≡ f (v, w)− gsyns(v − vsyn). Then the right-
hand side of the first equation in (4) is Φ(vi , wi ,

∑
s j ) where

the sum is over all cells presynaptic to cell i . If gsyn and s are
not too large, then each Cs = {Φ(v, w, s) = 0} defines a cubic-
shaped curve. We will sometimes write C(K ) to denote the
cubic corresponding to synaptic input from K other active cells.
We express the left branch of C(K ) as {v = ΦL(w, K )} and the
right branch of C(K ) as {v = ΦR(w, K )}. Suppose that the left
and right knees of C(K ) are at w = wL(K ) and w = wR(K ),
respectively.

Throughout this paper, we will use geometrical singular
perturbation methods to analyse solutions. That is, we construct
singular trajectories for the limit when ε = 0. Recall, for
example, the singular trajectory for the single oscillatory cell
shown in Fig. 1. While the cell is in either the silent or active
phase, the singular trajectory lies on either the left or right
branch of the cubic-shaped v-nullcline, respectively. The jump
up to the active phase or the jump down to the silent phase
occurs when the singular trajectory reaches the left or right knee
of the v-nullcline.

In larger networks, the singular trajectory corresponding to
each cell will also lie along either the left or right branch of a
cubic-shaped v-nullcline during the silent or active phase. The
jumps up and down between the silent and active phases occur
when a singular trajectory reaches the left or right knee of some
cubic. One can view the synaptic input as moving the cubic-
shaped nullcline up or down, meaning that there is a family of
cubic-shaped nullclines, depending on the synaptic inputs si .
Which cubic a cell lies on depends on how many active cells it
receives synaptic input from.

3.2. Post-inhibitory rebound

It is well known that two cells coupled through mutual in-
hibition can generate antiphase oscillations through the mech-
anism known as post-inhibitory rebound. This phenomenon
arises in a variety of neuronal systems [19,20]. Along an an-
tiphase solution, the cells take turns firing action potentials;
when one cell jumps down, it releases the other cell from in-
hibition and that other cell then jumps up. This mechanism will
play a central role in our analysis of larger networks. For this
reason, we will briefly describe the geometrical construction of
a singular trajectory corresponding to the antiphase solution.

The singular trajectory is shown in Fig. 3. There are
two trajectories; these correspond to the projections of
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Fig. 3. Post-inhibitory rebound. The cells take turns firing. When one cell
jumps down, it releases the other cell from inhibition. If, at this time, the
inhibited cell lies below the left knee of C0, then the inhibited cell will jump
up to the active phase.

(v1, w1) and (v2, w2) onto the (v, w)-phase plane. Note that
each cell, without any coupling, is excitable. The w-nullcline
intersects both C0 and C1 along their left branches. Moreover,
cells cannot fire unless they receive inhibitory input first.

We now step through the construction of the singular
trajectory corresponding to the antiphase solution. We begin
with cell 1 at the right knee of C0 ready to jump down. We
further assume that cell 2 is silent and lies along the left branch
of C1 below the left knee of C0. When cell 1 jumps down,
s1 → 0. Note that s1 → 0 instantaneously with respect to the
slow time scale. Since (v2, w2) lies below the left knee of C0,
cell 2 exhibits post-inhibitory rebound and jumps up to the right
branch of C0.

Cell 2 then moves up the right branch of C0 and cell 1
moves down the left branch of C1 towards p1. Eventually, cell
2 reaches the right knee of C0 and jumps down. If at this time,
cell 1 lies below the left knee of C0, then it jumps up due to
post-inhibitory rebound. The roles of cell 1 and cell 2 are now
reversed. The cells continue to take turns firing when they are
released from inhibition. Note that the time each cell spends in
the active phase must be sufficiently long. This gives the silent
cell enough time to evolve along the left branch of C1 to below
the left knee of C0 so that it is ready to jump up when it is
released from inhibition.

3.3. A larger inhibitory network

The next example network consists of seven cells and the
network architecture is shown in Fig. 4. All connections are
assumed to be inhibitory with direct synapses. Two different
responses, for the same parameter values but different initial
conditions, are shown in the figure. Each response consists of
discrete episodes in which some subset of the cells fire in near
synchrony. These subsets change from one episode to the next;
moreover, two different cells may belong to the same subset
for one episode but belong to different subsets during other
episodes. These solutions correspond to dynamic clustering.
Note that cells fire due to post-inhibitory rebound.

Consider, for example, the solution labelled (A). During the
first episode, cells 1 and 6 fire action potentials and the cells
that fire during the second episode are 4 and 5. After this
Fig. 4. An example inhibitory network with seven cells. The left panel shows
the graph of the network architecture. Cell 1, for example, sends inhibition
to cells 4 and 5. Subsets or clusters of cells fire in distinct episodes. Each
horizontal row in the middle panels represents the time course of a single
cell. A black rectangle indicates when the cell is active. In the right panel, we
keep track of which cells fire during each subsequent episode. The equations
and parameters used are precisely those described in Section 7 except g I

syn =

.4, αx = 1, βx = 4, I = 16 for the E-cells and I = 10 for the I -cells.

transient period, the response becomes periodic. Note that the
cells which fire during the third episode are cells 2, 3 and 7.
These are precisely the same cells that fire during the eighth
episode. This subset of cells continues to fire together every
fifth episode.

Now consider the solution labelled (B). This solution has
the same periodic attractor as the solution shown in the first
panel, although the initial response is different. These two
solutions demonstrate that two responses may have different
initial transients but approach the same periodic attractor. There
are, in fact, many periodic attractors. In the next section, we will
demonstrate that this example exhibits seven periodic attractors.

4. The discrete model

As the examples presented in the previous section illustrate,
solutions of the neuronal model may consist of discrete
episodes. During each episode, some subset of cells fire in near
synchrony; moreover, this subset changes from one episode to
another. This suggests that we can reduce the neuronal model
to discrete dynamics that keeps track of which cells fire during
each discrete episode. In this section, we shall formally define
the discrete dynamics. We then define what it means that the
neuronal system can be reduced to the discrete model. We will
then state the main result of this paper. In later sections, we
shall describe conditions for when the neuronal model can be
rigorously reduced to the discrete model. In [1], we embark
upon a rigorous analysis of the discrete model.

4.1. Definition of the discrete model

First we consider a purely inhibitory network. In order to
derive the discrete dynamics, we need to make two assumptions
on solutions of the neuronal model. Later we will describe when
parameters in the neuronal model can be chosen so that these
assumptions are satisfied. The first assumption is that there is a
positive integer p such that every cell has refractory period p.
That is, if a cell fires during an episode then it cannot fire during
the next p subsequent episodes. The second assumption is that



328 D. Terman et al. / Physica D 237 (2008) 324–338
Fig. 5. Discrete dynamics corresponding to the network shown in Fig. 4.
a cell must fire during an episode if it received inhibitory input
from an active cell during the previous episode and if it has not
fired during the previous p episodes.

Consider, for example, the example shown in the first panel
of Fig. 4. Here, p = 1. Cells 1 and 6 fire during the first
episode. Both of these cells send inhibition to cells 4 and 5 so,
by the second assumption, both of these cells must fire during
the second episode. During the third episode, cells 2, 3 and 7
fire. Note that cell 2 sends inhibition to cell 7; however, cell
7 cannot fire during the fourth episode because it fired during
the third. Continuing in this manner, we can determine which
subset of cells fire during each subsequent episode.

We now formally define the discrete model. Assume that we
are given a directed graph D = 〈VD, AD〉 and a positive integer
p. The vertices of D signify neurons and an arc 〈v1, v2〉 ∈ AD
signifies a synaptic connection from neuron v1 to neuron v2.
We associate a discrete-time, finite-state dynamical system SN
with a network N = 〈D, p〉. A state −→s of the system at the
discrete time κ is a vector −→s (κ) = [P1(κ), . . . , Pn(κ)] where
Pi (κ) ∈ {0, 1, . . . , p} for all i ∈ [n]. The state Pi (κ) = 0 of
neuron i is interpreted as firing at time κ .

The dynamics on SN is defined as follows:

(D1) If Pi (κ) < p, then Pi (κ + 1) = Pi (κ) + 1.
(D2) If Pi (κ) = p, and there exists a j ∈ [n] with Pj (κ) = 0

and 〈 j, i〉 ∈ AD , then Pi (κ + 1) = 0.
(D3) If Pi (κ) = p and there is no j ∈ [n] with Pj (κ) = 0 and

〈 j, i〉 ∈ AD , then Pi (κ + 1) = p.

Recall that a cell ‘fires’ when Pi (κ) = 0. (D1) implies that after
a cell fires, its state Pi increases by one unit each episode until
Pi = p; at this time, the cell is ready to fire again. (D2) implies
that if a cell is ready to fire at time κ , then it will do so at time
κ + 1 if it receives input from some cell that has fired at time κ .
Finally, (D3) states that even if a cell is ready to fire, it will not
do so unless it receives input from some active cell.

Note that the dynamic system SN can be viewed as a directed
graph on its state space. This state transition digraph is different
from D, the network connectivity graph. If there are n cells,
then there are (p + 1)n states. For the example discussed in
Section 3.3, there are seven cells and p = 1. Hence, there
are 128 states. The entire directed graph corresponding to the
discrete dynamics is shown in Fig. 5. In the figure we have
changed notation in order to simplify it. At each node, we list
those cells which fire; these are the cells with Pi = 0.

Now consider an E–I -network. We formally reduce this to
an I -network by constructing a directed graph D whose nodes
correspond to the E-cells. Suppose that there are n E-cells
which we label as {Ei : i ∈ [n]}. For any i, j ∈ [n], we assume
that there is an arc 〈i, j〉 ∈ D if there is an I -cell, say Ik , such
that there exist both Ei → Ik and Ik → E j connections. Now
that we have the network connectivity graph D, we can consider
the discrete-time dynamic system SN = 〈D, p〉 defined above.

The definition of the discrete dynamics for the E–I -network
is based on two assumptions. Suppose that Ei and E j are any
E-cells and Ik is any I -cell such that there exist both Ei → Ik
and Ik → E j connections. The first assumption is that if Ei
fires during an episode, then so will Ik . The second assumption
is that if Ik fires during an episode, then E j will fire during the
next episode if and only if it has not fired during the previous p
episodes.

4.2. Reduction from the neuronal model to the discrete model

Our goal is to find conditions on parameters for when the
neuronal system generates dynamics that is consistent with a
discrete model. Here we give a more precise definition for what
it means that the neuronal system can be reduced to the discrete
model. We only consider purely inhibitory networks in this
subsection; a similar definition holds for E–I -networks.

Consider any network with any fixed architecture and fix p,
the refractory period. We can then define both the continuous
neuronal and discrete models, as was done in the preceding
sections. Let −→s be any state of the discrete model. We then
wish to show that there exists a solution of the neuronal system
in which different subsets of cells take turns jumping up to the
active phase. The active cells during each subsequent episode
are precisely those determined by the discrete orbit −→s (κ), and
this exact correspondence to the discrete dynamics remains
valid throughout the trajectory of the initial state. We will say
that such a solution realizes the orbit predicted by the discrete
model. This solution will be stable in the sense that there is a
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neighbourhood of the initial state such that every trajectory that
starts in this neighbourhood realizes the same discrete orbit.

4.3. The main result

We now formally state our main result.

Theorem. Suppose we fix n, corresponding to the size of
the network, and p, the refractory period. Consider any
excitatory–inhibitory network such that both the number of E-
cells and the number of I -cells are bounded by n. Assume
that the E-cells and the I -cells are modeled by the equations
that satisfy the assumptions spelled out in Section 6.4. We
further assume that there is all-to-all coupling among the I -
cells, the excitatory synapses are direct and the inhibitory
synapses are indirect. Finally, we consider any architecture of
E → I and I → E connections. We can then define both
the continuous and the discrete models, as was done in the
preceding sections. Then there are intervals for the choice of the
intrinsic parameters of the cells and the synaptic parameters so
that:

1. Every orbit of the discrete model is realized by a stable
solution of the differential equations model.

2. Every solution of the differential equations model eventually
realizes a periodic orbit of the discrete model. That is, if
X (t) is any solution of the differential equations model, then
there exists T > 0 such that the solution {X (t) : t > T }

realizes a periodic orbit or a steady state of the discrete
model.

We remark that the intrinsic and synaptic parameters will not
depend on the network architecture. Hence, every orbit of the
discrete model, for any network architecture, can be realized by
a solution of the neuronal model. Moreover, every attractor of
the differential equations model corresponds to a periodic orbit
of the discrete model.

In Section 7 we give a concrete example of equations that
satisfy the assumptions spelled out in Section 6.4. As we
shall see in the proof of the theorem, what is important are
the positions of the left and right knees of the cubic-shaped
nullclines, the rates at which the slow variables evolve during
the silent and active phases and the strengths of the synaptic
connections.

The proof of the Theorem is constructive in the sense that we
give precise bounds on the parameters. In particular, the proof
leads to an estimate for the time-duration corresponding to each
episode of the discrete model (see inequality (16)).

5. A problem with inhibitory networks

We now discuss an example that illustrates difficulties that
arise in I -networks. This example suggests that it is not
possible, in general, to reduce the dynamics of an I -network
to a discrete model. In the next section, we demonstrate that
these difficulties can be overcome in E–I -networks.

Consider the inhibitory network shown in Fig. 6. The
discrete dynamics predicts that there is a solution in which the
Fig. 6. An example network used to illustrate difficulties that arise with
inhibitory networks.

Fig. 7. A singular trajectory corresponding to the network shown in Fig. 6.
(Left Panel) Cells 1 and 2 and cells 3 and 4 are initially close to each other with
cell 1 at a right knee ready to jump down. (Right Panel) The trajectory until cell
2 reaches a right knee and jumps down.

Fig. 8. The sets Jk used in the analysis. Here, p = 2. Cells in J0 evolve in
the active phase until they jump down to lie in J1. During this time, cells in J1
move to J2. Note that only those cells in J2 that receive inhibition move to J0.
The rest remain in J2.

network breaks up into two clusters; cluster A consists of cells
1 and 2 and cluster B consists of cells 3 and 4. There is actually
no problem in demonstrating that such a solution exists. This
solution is very similar to the antiphase solution described in
the preceding section. The clusters take turns jumping up to the
active phase when they are released from inhibition by the other
cluster.

We next consider the stability of this solution. The following
analysis will, in fact, suggest that this solution is not stable. In
order to discuss stability, we need to define a notion of distance
between two cells. Here, we define the distance between cells
(v1, w1) and (v2, w2) to be simply |w1 − w2|.

Suppose we start so that cells within each cluster are very
close to each other as shown in Fig. 7. Note that Cluster A is
active and lies along the right branch of C1. Cell 1 is at a right
knee ready to jump down. Cluster B is silent and lies along the
left branch of C1 very close to the point p1 where C1 intersects
the w-nullcline. We now step through what happens once cell 1
jumps down. We will demonstrate that instabilities can arise in
both the jumping-down and jumping-up processes.

When cell 1 jumps down, it stops sending inhibition to cells
2 and 3. Cell 3 responds by jumping up to the active phase. Cell
2, on the other hand, moves to the right branch of C0. During
the next step, cells 2 and 3 move up the right branch of C0,
while cell 1 moves down the left branch of C2 and cell 4 move
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down the left branch of C1. During this time, both the distances
between cells 1 and 2 and between cells 3 and 4 increase. This
continues until cell 2 reaches the right knee of C0 and jumps
down. At this time, cell 4 jumps up. Then both cells 1 and 2
lie in the silent phase and cells 3 and 4 are active. However,
cells within each cluster are further apart from each other than
they were initially. This expansion in the distance between cells
within each cluster may continue and destabilize the clustered
solution.

Note that we have not rigorously demonstrated that the
network shown in Fig. 6 cannot reproduce the dynamics
predicted by the discrete model for some choice of parameter
values. The analysis shows that instabilities can arise in the
singular limit as ε → 0. On the other hand, numerical
simulations indicate that it may be possible to choose
parameters (with ε bounded away from zero) so that this
network does reproduce the discrete dynamics. However, the
dynamics is quite sensitive to changes in parameter values. In
contrast, for the excitatory–inhibitory networks described in the
next section, we are able to rigorously prove that under certain
conditions the network will always reproduce the dynamics of
the discrete model.

6. E–I-networks

We now consider E–I -networks and find conditions when
they generate dynamics corresponding to that of the discrete
model.

6.1. The equations

The architecture of E–I -network is shown in Fig. 2. Recall
that the E-cells send excitation to some subpopulation of I -
cells, while the I -cells inhibit some subpopulation of E-cells.
We will need to assume that each I -cell sends inhibition to
every I -cell, including itself. The excitatory synapses are direct,
while the inhibitory synapses are indirect.

The equations for the E-cells can then be written as

dvi

dt
= f (vi , wi ) − gI E SI E (vi − v I

syn)

dwi

dt
= εg(vi , wi )

dsi

dt
= α(1 − si )H(vi − θ) − βsi

(5)

and the equations for the I -cells can be written as

dv I
i

dt
= f I (v

I
i , w I

i ) − gE I SE I (v
I
i − vE

syn)

−gI I SI I (v
I
i − v I

syn)

dw I
i

dt
= εgI (v

I
i , w I

i )

dx I
i

dt
= εαx (1 − x I

i )H(v I
i − θI ) − εβx x I

i (6)

ds I
i

dt
= αI (1 − s I

i )H(x I
i − θx ) − βI s I

i

Here,

SI E =

∑
s I

j , SE I =

∑
s j , and SI I =

∑
s I

j

where each sum is taken over the corresponding presynaptic
cells. The reversal potentials vE

syn and v I
syn correspond to

inhibitory and excitatory synapses, respectively. Note that we
are assuming that all of the excitatory cells are the same, as
well as all of the inhibitory cells; however, the excitatory cells
need not be the same as the inhibitory cells.

6.2. Strategy

Suppose we are given an E–I -network as described in
Section 6.1 and a positive integer p, corresponding to the
refractory period. Let SN be the discrete-time dynamic system
as defined in Section 4. Here we describe our strategy for
showing that the neuronal model reproduces the dynamics of
the discrete model. The analysis will be for singular solutions.
Along the singular solution, all of the cells lie on either the
left or right branch of some cubic during the silent and active
phase, respectively, except when a cell is jumping up or down.
In order to construct the singular solutions, we first introduce
a slow time variable η = εt and then set ε = 0. This leads
to reduced equations for just the slow variables. The reduced
equations determine the evolution of the slow variables as a cell
evolves along the left or right branch of some cubic. Once we
construct the singular solutions, it is necessary to demonstrated
that these singular solutions perturb to actual solutions of (5)
and (6) with ε > 0. This analysis is straightforward but rather
technical and we will not present the details here. A similar
analysis can be found in [14].

We will construct disjoint intervals Jk = (W 1
k , W 2

k ), k =

1, . . . , p, and J0 = (0, W0) with the following properties. Let
−→s (0) = (P1, P2, . . . , Pn) be any state of the discrete model.
Assume that when η = 0,

(A1) If Pi (0) = k, then wi (0) ∈ Jk .
(A2) If Pi (0) = 0, then Ei lies in the active phase.
(A3) If Pi (0) > 0, then Ei lies in the silent phase.
(A4) Every I -cell lies in the silent phase ready to jump up.
(A5) Each x I

i (0) ≤ θx .

Then there exists T∗ > 0 such that when η = T∗,

(B1) If Pi (1) = k, then wi (T∗) ∈ Jk .
(B2) If Pi (1) = 0, then Ei lies in the active phase.
(B3) If Pi (1) > 0, then Ei lies in the silent phase.
(B4) Every I -cell lies in the silent phase ready to jump up.
(B5) Each x I

i (T∗) ≤ θx .
(B6) The only E-cells that are both active and jump down in

the interval [0, T∗] are those with Pi (0) = 0.

Fig. 8 shows the intervals Jk for the case p = 2 and illustrates
how E-cells move through these regions between times η = 0
and η = T∗.

In (A4) and (B4), we state that the I -cells are “ready to jump
up.” By this we mean that each I -cell will jump up to the active
phase if it receives excitatory input from some active E-cell.
A more precise condition that the I -cells must satisfy will be
given shortly, once we introduce some more notation.
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Note that we can then keep repeating this argument to
show that the solution of the neuronal model realizes the orbit
predicted by the discrete model.

6.3. Slow equations and some notation

The first step in the analysis is to reduce the dynamics of
each cell to equations for the slow variables. We introduce the
slow variable η = εt and then let ε = 0 to obtain the reduced
equations

0 = f (vi , wi ) − gI E SI E (vi − v I
syn)

ẇi = g(vi , wi )

0 = α(1 − si )H(vi − θE ) − βsi (7)

0 = f I (v
I
i , w I

i ) − gE I SE I (v
I
i − vE

syn) − gI I SI I (v
I
i − v I

syn)

ẇ I
i = gI (v

I
i , w I

i )

ẋ I
i = αx (1 − x I

i )H(v I
i − θI ) − βx x I

i

0 = αI (1 − s I
i )H(x I

i − θx ) − βI s I
i .

Differentiation is with respect to η.
We assume that αx is sufficiently large; in particular, αx �

βx . It follows that if v I
i > θI , then x I

i → αx/(αx + βx ) ≈ 1,
while if v I

i < θI , then x I
i decays at the rate βx . Note that

once an I -cell stops firing, there is a delay, which we denote
as ∆, until it releases other cells from inhibition. This delay is
determined by the slow variables, x I

i ; if αx is sufficiently large,
then

∆ ≈ −
1
βx

ln θx . (8)

The first and fourth equations in (7) state that the E- and I -
cells lie on some cubic. Which cubic a cell lies on depends on
the number of inputs it receives from active presynaptic cells.
Note that if Ei is active, so that vi > θi , then si = α/(α +β) ≡

σE . If Ii is active, and x I
i > θx , then s I

i = αI /(αI + βI ) ≡ σI .
Suppose that Ei receives input from J active I -cells, and Ii
receives input from K active E-cells and M active I -cells. Then

SI E = JσI , SI E = KσE and SI I = MσI .

Let

Φ(v, w, J ) ≡ f (v, w) − gI E (JσI )(v − v I
syn),

ΦI (v, w, K , M) ≡ f I (v, w) − gE I (KσE )(v − vE
syn)

− gI I (MσI )(v − v I
syn).

Then the first and fourth equations in (7) can be written as

Φ(vi , wi , J ) = 0 and ΦI (v
I
i , w I

i , K , M) = 0.

If gI E , gE I and gI I are not too large, then these define cubic-
shaped curves denoted by C(J ) and C(K , M), respectively. We
express the left and right branches of C(J ) as {v = ΦL(w, J )}

and {v = ΦR(w, J )} and the left and right knees of C(J ) as
w = wL(J ) and w = wR(J ), respectively. The left and right
branches, along with the left and right knees, of C(K , M) can
be expressed as wL(K , M) and wR(K , M), respectively.
We can now write the second and fifth equations of (7) as

ẇi = g(Φξ (wi , J ), wi ) (9)

ẇ I
i = gI (Φ I

ξ (w I
i , K , M), w I

i ).

Here, ξ = L or R depending on whether the cell is silent or
active. These are scalar equations for the evolution of the slow
variables wi and w I

i .

6.4. Assumptions

In many neuronal models, the nonlinear function g(v, w) is
of the form

g(v, w) = (w∞(v) − w)/τ(v) (10)

where w∞(v) is nearly a step function. We assume that g(v, w)

is of this form. Moreover, there exist V1 < V2 and constants
τ1 and τ2 such that if v < V1, then w∞(v) = 0 and τ(v) = τ1;
if v > V2, then w∞(v) = 1 and τ(v) = τ2.

We need to assume that the nullclines are such that E-cells
can fire due to post-inhibitory rebound. We assume that C(0)

intersects the w-nullcline at some point, pA = (vA, wA), where
V1 < vA < V2. Moreover, the left knee of C(0) is at some point
(vL(0), wL(0)) where wL(0) > 0.

We also assume that the left branches of the inhibited cubics
lie in the region where v < V1. Finally, we assume that the right
branches of each cubic C(J ) for J ≥ 0 lie in the region v > V2.

These assumptions imply that the slow dynamics (9) do not
depend on which cubic the cell lies on, unless the cell is on the
uninhibited cubic C(0). That is, if Ei lies in the silent phase,
and this cell receives some inhibitory input, then wi satisfies
the simple equation

ẇ = −w/τ1. (11)

We will assume that V2 − V1 is small. Hence, even if Ei does
not receive any inhibitory input, then, except in some small
neighbourhood of the fixed point pA, wi also satisfies (11). If
Ei is active, then wi satisfies

ẇ = (1 − w)/τ2. (12)

Similarly, we assume that gI (v, w) can be written as

gI (v, w) = (w I
∞(v) − w)/τ I (v).

Moreover, there exist constants V I
1 < V I

2 , τ I
1 and τ I

2 such that
if v < V I

1 , then w I
∞(v) = 0 and τ I (v) = τ I

1 ; if v > V I
2 ,

then w I
∞(v) = 1 and τ I (v) = τ I

2 . For each cubic C(K , M) that
is inhibited (M > 0) or does not receive excitation (K = 0),
the part of the left branch above the v-axis lies in the region
v < V I

1 . The right branch of each cubic lies in the region
v > V I

2 .

Finally, we need to assume that an I -cell will fire only
when it receives excitatory input from an E-cell and it does
not receive inhibitory input from some other I -cell. This will
be the case if the nullclines corresponding to the I -cells are as
shown in Fig. 9. Suppose that the left knee of C I (K , M) is at
w I

L(K , M); recall that K and M are the number of excitatory
and inhibitory inputs that the I -cell receives. We assume that
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Fig. 9. Assumptions on the nullclines for the I -cells.

w I
L(K , M) < 0 if either K = 0 or M ≥ 1. Moreover,

w I
L(K , 0) > 0 if K ≥ 1.
We can now give a more precise statement of (A4). We

assume that when η = 0, every I -cell lies in the silent phase
with w I

i (0) < w I
L(1, 0). For the assumptions just given, this

implies that each I -cell will jump up to the active phase if it
receives input from an active E-cell. A more precise statement
of (B4) is that when η = T∗, every I -cell lies in the silent phase
with w I

i (T∗) < w I
L(1, 0).

6.5. Analysis

We now step through the solution keeping track of where
cells are in phase space. We must keep track of where and
when cells jump up and down and where they lie along the
left branches of cubics in the silent phase. The sets Jk and the
constant T∗ will be defined as they are needed in the analysis.
When do I -cells jump up?

We note that when one I -cell jumps up, it sends inhibition to
every I -cell, including itself. However, because the inhibitory
synapses are indirect, there is a delay from when one I -cell
jumps up or down and other I -cells receive or are released
from the resulting inhibition. These delays are modeled by the
auxiliary variables xi . At time η = 0, the last of these variables
crosses the threshold for releasing all I -cells from inhibition.
For this reason, all of the I -cells are able to jump up when
η = 0, as long as they receive excitatory input. Let I 0 be those
I -cells that receive input from at least one Ei with Pi (0) = 0.
We have assumed in (A4) that each of these cells lies below the
left knee of C(1, 0). It follows that every cell in I 0 is induced to
jump up precisely when η = 0.

We note that one potential problem is that when an I -cell,
say (v I

i , w I
i ), jumps up and v I

i crosses the threshold θI , then
inhibition to all of the I -cells is turned back on. Hence, some
of the I -cells that receive excitatory input may be induced to
“turn around” and return to the silent phase. Note that it is the
middle branch of the corresponding cubic that separates those
I -cells that will return to the silent phase from those that will
continue to jump up to the active phase: I -cells that lie to the
left of the middle branch will return to the silent phase, while
I -cells to the right of the middle branch will continue to jump
up. For this reason, we need to choose θI so that it is to the
right of the middle branch of the corresponding cubics. This
will guarantee that inhibition is not turned back on until the
I -cells are committed to fire.
When do I -cells jump down?

Note that active I -cells may lie on different cubics and jump
down at different right knees. Choose constants w I

R(min) <

w I
R(max) so that when an I -cell jumps down, it does so with

w I
R(min) < w < w I

R(max). Each I -cell in I 0 jumps up at
η = 0 with 0 < w < w I

L(1, 0). Moreover, while in the active
phase, w I (η) satisfies

ẇ I
= (1 − w I )/τ I

2 .

It follows that every I -cell in I 0 jumps down at some time Ti jd
that depends on the cell and always satisfies

TI ≤ Ti jd ≤ TI + δI (13)

where

TI = τ I
2 ln

1 − w I
L(1, 0)

1 − w I
R(min)

and

δI = τ I
2 ln

1 − w I
R(min)

(1 − w I
R(max))(1 − w I

L(1, 0))
. (14)

We will need to assume that δI < ∆. Later we will find
conditions on parameters for when this is the case. Let T I

∗ be
the time when the last I -cell in I 0 jumps down.

The set J0 and the constant T∗

Let W0 = 1 + (wL(0) − 1)e−δI /τ2 ,

J0 = (0, W0) and T∗ = T I
∗ + ∆. (15)

It follows from (13) that

TI + ∆ ≤ T∗ ≤ TI + ∆ + δI . (16)

Note that T∗ corresponds to time-duration of an episode in
the discrete model. Hence, (16), together with (8) and (14),
gives a precise estimate of the lengths of these episodes.

When do E-cells jump down?
Consider those E-cells, Ei , with Pi (0) = 0. Recall that these

E-cells are initially active. Here we estimate when these E-cells
jump down. Suppose that the maximum number of I -cells that
an E-cell receives input from is M . Then when an E-cell jumps
down, it does so with wR(M) ≤ w ≤ wR(0). Moreover, when
η = 0, each wi ∈ [0, W0] and, while in the active phase, the
slow variables wi satisfy (12). It follows that the E-cells jump
down at some time Tejd that satisfies

TE ≤ Tejd ≤ TE + δE . (17)

where

TE = τ2 ln
1 − W0

1 − wR(M)
and

δE = τ2 ln
1 − wR(M)

(1 − wR(0))(1 − wL(0))
. (18)

We will need to assume that E-cells that jump up remain
active until time T∗ when all I -cells are released from
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inhibition. This will be the case if the following inequality
holds.

δI < TE . (19)

We also need to assume that all E-cells that are active in a
given episode jump down before the end of the episode, which
translates into

TE + δE < TI + ∆ − δI . (20)

Later, we find conditions on parameters for when this is the
case.

The sets Jk
We now define the sets Jk for k > 0. To do this, we

need to estimate the positions of the E-cells at time T∗. Let
Ek = {Ei : Pi (0) = k}.

First consider a cell Ei = (vi , wi ) that initially lies in E0.
Note that Ei jumps down at some Tejd and then lies in the silent
phase for all times η with Tejd < η < T∗. While in the silent
phase, wi satisfies (11). Hence

wi (T∗) = wi (Tejd)e−(T∗−Tejd)/τ1 .

The position at which Ei jumps down satisfies wR(M) ≤

wi (Tejd) ≤ wR(0). Moreover, Tejd satisfies (17) and T∗ satisfies
(16). Therefore

W 1
1 ≤ wi (T∗) ≤ W 2

1

where W 1
1 = wR(M)e−K1/τ1 , W 2

1 = wR(0)e−K2/τ2 ,

K1 = TI − TE + ∆ + δI and K2 = TI − TE + ∆ − δE .

Let J1 ≡ [W 1
1 , W 2

1 ]. We have shown that if Ei ∈ E0, then
wi (T∗) ∈ J1.

We now consider the other E-cells. For 1 ≤ k < p, let

W 1
k+1 = W 1

k e−(TI +∆+δI )/τ1 and W 2
k+1 = W 2

k e−(TI +∆)/τ1 .

Similarly, let

W 1
0 = W 1

pe−(TI +∆+δI )/τ1 and W 2
0 = W 2

pe−(TI +∆−δI )/τ1 .

If k 6= p, let Jk = (W 1
k , W 2

k ). If k = p, let Jp = (wL(0), W 2
p).

Here, we assume that

W 2
0 < wL(0) < W 1

p < wA < W 2
p . (21)

(Recall that the fixed point along C0 lies at pA = (vA, wA).)
This assumption will be verified later (see inequality (23) or
Step 4 of Section 6.7). We also assume that as long as wi >

W 2
p, (vi , wi ) lies in the region where wi satisfies (11); that is,

vi < V1. The latter will be the case if V1 is sufficiently close to
V2, as we assumed in Section 6.4.

Suppose that Ei ∈ Ek , 1 ≤ k < p, and wi (0) ∈ Jk . It follows
from (21) that Ei lies in the silent phase for 0 ≤ η ≤ T∗. Using
(16) and the definition of Jk+1, we conclude that wi (T∗) ∈

Jk+1.
It remains to consider those E-cells in Ep. Suppose that

wi (0) ∈ Jp. There are two cases to consider. First suppose that
Ei does not receive inhibitory input from an I -cell in I 0. Then,
using (21), (vi , wi ) approaches the fixed point pA and wi (η)

remains in Jp.
Now suppose that Ei does receive inhibitory input from an
I -cell in I 0. We need to show that Ei jumps up at some time
η < T∗ and then lies in J0 when η = T∗. To do this, we
estimate the time at which Ei is released from inhibition. Recall
that the I -cells in I 0 jump down at some time Ti jd that satisfies
(13). Moreover the last I -cell in I 0 jumps down at T I

∗ . Hence,
E-cells are released from inhibition at some time Teju that
satisfies

TI + ∆ ≤ Teju ≤ T ∗

I + ∆ ≡ T∗ (22)

From the definitions, wi (TI + ∆) ≤ W 2
0 . It then follows from

(21) that Ei jumps up at some η ∈ [TI + ∆, T∗].
Finally, we need to show that wi (T∗) ∈ J0. Note that when

Ei jumps up, wi (Teju) < wL(0). Moreover, wi (η) satisfies
(12) for Teju ≤ η ≤ T∗. It follows from (16) and (22) that
T∗ − Teju < δI . Hence,

wi (T∗) = 1 + (wi (Teju) − 1)e−(T∗−Teju)/τ2

< 1 + (wL(0) − 1)e−δI /τ2 ≡ W0.

Clearly, wi (T∗) > 0. It now follows that wi (T∗) ∈ J0.

Property (B2)
As remarked above, T∗ − Teju < δI , thus all E-cells that are

induced to jump up between times 0 and T∗ do so in the interval
(T∗−δI , T∗]. By (19), these cells will still be in the active phase
at time T∗, and Property (B2) follows.

Where are the I -cells when η = T∗?
For the proof of (B4), recall that the last I -cell jumps

down when η = T ∗

I . Hence, all of the I -cells are released
from inhibition when η = T ∗

I + ∆. From the assumption
of Section 6.4 it follows that since all I -cells still receive
inhibitory input between times T ∗

I and T ∗

I + ∆, the I -cells
cannot fire in this interval, and must remain in the silent phase,
for η ≤ T ∗

I + ∆ = T∗. In order to guarantee that when η = T∗,
all the I -cells lie below the left knee of C I (1, 0), we assume
that the I -cells have fast refractory periods. In particular, the
time it takes for the I -cells to evolve in the silent phase from
their jump-down positions to below the left knee of C I (1, 0) is
less than ∆. This will be the case if τ I

1 is sufficiently small.

Properties (B5) and (B6)
Property (B5) follows from our choice of T ∗

I as the time
when the last I -cell jumps down and the assumption that αx �

βx . The latter implies that the xi for the last I -cell to jump down
can be assumed to cross the threshold at time T∗ = T ∗

I + ∆.
Property (B6) follows from the fact that the next E-cell to

jump up after time η = 0 can do so only after the first I -cell
that jumped up at time 0 has released its inhibition.

6.6. Choosing parameters

Here we demonstrate how to estimate the various constants
needed in the analysis in terms of parameters in the model.
These estimates will demonstrate how one needs to choose
the positions of the left and right knees of the cubic-shaped
nullclines, the time-constants τ1, τ2, τ

I
1 and τ I

2 , and the delay
∆ defined in (8).
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First consider TE and δE , which are given in (18). We must
choose parameters so that δI < TE < TE + δE < TI + ∆ −

δI and δI < ∆. We note that in many neuronal models, the
right knees depend weakly on synaptic coupling. An example
is given in the next section. If this is the case, then

wR(0) ≈ wR(M) and w I
R(min) ≈ w I

R(max).

If we further assume that wL(0) and w I
L(1, 0) are both close

to 0, it follows that both δE and δI can be made to be as
small as we please. In particular, δI < ∆. We can guarantee
that TE + δE < TI by choosing the time constants τ2 and τ I

2
appropriately.

We next compute the W 1
k and W 2

k . After some calculation,
we find that

W 1
p = wR(0)e−[p(TI +∆+δI )−TE ]/τ1

W 2
p = wR(M)e−[p(TI +∆)−δE −TE ]/τ1

W 2
0 = wR(M)e−[(p+1)(TI +∆)−δI −δE −TE ]/τ1 .

We need to choose parameters so that

W 2
0 < wL(0) < W 1

p . (23)

To get some idea when this is the case, we will consider, as
above, the limiting case in which δE = δI = 0. In particular, all
of the E-cells jump down at the same position, which we denote
as wR , and all of the I -cells jump down at the same position,
which we denote as w I

R . We further let wL(0) = wL . Then (23)
becomes

wRe−[(p+1)(TI +∆)−TE ]/τ1 < wL < wRe−[p(TI +∆)−TE ]/τ1 .

This is satisfied if
wL

wR
e−TE /τ1 < e−p(TI +∆) <

wL

wR
e(TI +∆−TE )/τ1

or

τ1

TI + ∆
ln

wR

wL
−

TI + ∆ − TE

TI + ∆
< p

<
τ1

TI + ∆
ln

wR

wL
+

TE

TI + ∆
. (24)

Note that τ1 ln(wR/wL) is the time it takes for a solution of
(11) starting at wR to reach wL . Hence, one can interpret (24)
as saying that p is roughly the ratio of the times that an E-cell
spends in the silent phase and an I -cell spends in the active
phase.

We have shown that in the limiting case when all right knees
coincide and thus δE = δI = 0, we can have δI < TE <

TE + δE < TI < TI + ∆ − δI and δI < ∆. Since these
numbers depend continuously on the positions of the knees,
the inequalities will continue to hold if wR(0) ≈ wR(M) and
w I

R(min) ≈ w I
R(max).

Positions of the right knees
We have assumed that the positions of the right knees depend

weakly on the synaptic inputs. This is often the case in neuronal
models and here we demonstrate why. Consider an E-cell,
(v, w). Recall that along a cubic-nullcline,

f (v, w) − gsynS(v − vsyn) = 0 (25)
where S now represents the total synaptic input. If we let
w = W (v, S) denote the cubic-nullcline, plug this into (25)
and differentiate with respect to v, then we find that at (v, w) =

(v, W (v, S)),

fv + fw
∂W

∂v
− gsynS = 0.

At the right knee, ∂W
∂v

= 0 and, therefore,

fv = gsynS. (26)

We now write the position of the right knee as (vR(S), wR(S)).
Plugging this into (25) and differentiating with respect to S, we
find that

fvv
′

R(S)+ fww′

R(S)− gsyn(vR(S)− vsyn) − gsynSv′

R(S) = 0.

Together with (26), this implies that

w′

R(S) =
gsyn(vR(S) − vsyn)

fw(vR, wR)
.

We need to choose parameters so that w′

R(S) is small. To do
this, we need to estimate fw(vR, wR). To get a sense of how
large fw is, we now consider the concrete example presented in
the next section. For that example

fw = gNaw3
∞(v − vNa) − 4gK w3(v − vK ).

It follows that we can make w′

R(S) as small as we please by
choosing gsyn sufficiently small and choosing either gNa or gK ,
or both, sufficiently large. For the example presented in the
next section, we find that at the right knees, w ≈ 0.5, v ≈

0, and w∞(v) ≈ 1. It then follows that w′

R(S) ≈ 0.005.

6.7. An alternative way of choosing parameters

Here we describe an alternative way of choosing suitable
parameters. Rather than having nullclines with all right knees
close together, we will only require that their positions are
bounded away from 0 and 1. Specifically, we assume that there
are positive numbers 0 < a < c and 0 < b so that for every
ρ > 0 we can choose the nullclines for the E-cells in such a
way that a < wR(0) < c, wR(0)

wR(M)
≤ b and 0 < wL(0) < ρ. Let

d =
a
b . Note that our assumptions imply that d < wR(M) < c.

On the other hand, we may need very small values for the
parameter βx , which is consistent with the rest of our argument,
but places a restriction of a very slow release from inhibition on
E–I -networks.

The construction focuses on the choice of five parameters:
τ1, τ2, τ

I
1 , τ I

2 ,∆. The parameter ∆ does not depend on any of
the other four parameters; according to Eq. (8), we can make ∆
any positive number we want if we choose a suitably small βx
for a given threshold θx . Moreover, the parameters τ1, τ2, τ

I
1 , τ I

2
do not influence the shapes or relative positions of the nullclines
and their knees.

We choose parameters in the following sequence of steps:

Step 1: Choose parameters so that the v- and w-nullclines
for the I -cells have the desired shapes and are in the correct
relative positions; in particular, so that the knees are in the
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required relative positions. This does not place constraints on
τ1, τ2, τ

I
1 , τ I

2 ,∆.

Step 2: We will initially require that the nullclines for the E-
cells satisfy our assumptions regarding the bounds a, b, c and
are such that wL(0) < d

4 . Let τ2 = 1, and choose τ I
2 small

enough so that δI
τ2

= δI < ln 1−d/4
1−d/2 . In particular, δI <

− ln(1−d/2). In view of the definition of W0, the latter implies
that 1 − W0 > 1 − d/2. In view of (18) and the bounds on the
knees this in turn implies that

ln(1 − d/2) − ln(1 − d) < TE < − ln(1 − c) (27)

and

δE < − ln(1 − c) − ln(1 − d/4). (28)

Note that 1−d/4
1−d/2 <

1−d/2
1−d . Thus δI < ln 1−d/2

1−d , and in view
of the first inequality in (27), this will ensure that δI < TE .
After this step, TI and δI are fixed.

Step 3: The refractory period p was fixed at the outset. Now fix
τ1 sufficiently small so that δI

τ1
> − ln b. Eventually we will

have − ln b > ln wR(0) − ln wR(M). This will ensure that
W 2

k+1 < W 1
k for all k. Now choose a preliminary value of ∆ that

is sufficiently large so as to ensure that W 2
k+1 < W 1

k for all k <

p and W 2
0 < W 1

p . Here ∆ > 4p(TI + TE + δI + δE ) will do for
a quick and dirty estimate, where TE and δE can be replaced by
the upper bounds in (27) and (28). Finally, let ρ be sufficiently
small so that ρ ≤ W 1

p = wR(0)e−[p(TI +∆+δI )−TE ]/τ1 and

ρ < d
4 after this initial choice of ∆. In order to assure the

inequality ρ ≤ W 1
p , we can replace wR(0) by its lower bound a

and TE by its upper bound − ln(1 − c).

Step 4: Choose the v-nullclines for the E-cells in such a way
that wR(0)

wR(M)
< b, a < wR(0) < c, and 0 < wL(0) < ρ.

This assures that wL(0) < W 1
p and the endpoints W j

k of our
intervals are in the correct relative position. If W 2

0 < wL(0)

after this initial choice of ∆ we are done; if not, increase the
∆ a little bit more (which will move both W 2

0 and W 1
p down

without changing the strict order relation between the interval
endpoints) until we have W 2

0 < wL(0) < W 1
p . Choose the w-

nullclines for the E-cells in such a way that W 1
p < wA < W 2

p
and V2 − V1 is sufficiently small.

Step 5: Fix τ I
1 “sufficiently small” as required in the last line of

the proof of (B4) in Section 6.5.

6.8. Completion of the proof of the theorem

We have so far shown that every orbit of the discrete model is
realized by a stable solution of the differential equations model.
In particular, the continuous dynamics realizes the discrete
dynamics on trajectories that start in some open subset of the
state space of the ODE model. This open subset is characterized
by the conditions (A1)–(A6) given in Section 6.2. It is still
not clear how solutions that start outside of this subset behave.
We now prove that every solution of the differential equations
model eventually realizes a periodic orbit of the discrete model.
This then will complete the proof of the theorem.
We start from any initial state at time η = 0 and define time
η1 as follows: If no I -cell is active at time 0, let η1 = 0. If some
I -cells are active at time 0, then all I -cells receive inhibition,
and no additional I -cells can jump up until the last currently
active I -cell jumps down. Let η1 be the time when the last
I -cell that was active at time 0 jumps down. Now let η2 ≥ η1
be the earliest time when the last I -cell releases its inhibition. If
at that time no E-cells are active or jump up exactly at η2, then
no I -cells will jump up at time η2, and no E-cells will jump
up subsequently to η2. In this case, there will be no subsequent
firing, and the system will reach a state with all E-cells in the
interval Jp, which corresponds to the steady state of the discrete
system.

If at time η2 some E-cells are active or jump up, then those
I -cells that are ready to fire and receive excitation will jump
up at time η2. Let η2 < η3 < · · · < η2+p be the subsequent
times when all I -cells are released from inhibition. If at any
of these times no E-cells are active, then we are back to the
situation described in the previous paragraph. Notice that for
every i = 1, . . . , p we must have

TI + ∆ < η2+i − η2+i−1 < TI + ∆ + δI .

This implies that at time η2+p all I -cells will have moved to
the region where they are ready to fire if they are released from
inhibition and receive excitation.

Now consider the E-cells at time η2+p. We distinguish
two cases. If an E-cell has never been active between times
[η2, η2+p] it will have had plenty of time to move to the
interval Jp. The same is true for the E-cells that were active
at time η2 and did not fire again before η2+p. If an E-cell
did jump up at any time in the interval (η2, η2+p], it must
have received inhibition from an I -cell that was active in this
interval and would have jumped up at some time in an interval
(η2+i − δI , η2+i ] for some i = 1, . . . p. Now our previous
analysis applies to such cells and shows that at time η2+p
this E-cell must be in the interval Jp−i . We have now shown
that (A1)–(A6) given in Section 6.2 are satisfied at time η2+p.
We can now use the analysis given in the previous sections to
conclude that the continuous model realizes the discrete model
for η > η2+p.

7. A concrete example

Here we give a concrete example of a neuronal model. Even
though the connectivity of this network is much weaker than
the connectivity assumed in proving the results of Section 6,
numerical experiments indicate that this network still reliably
generates firing patterns consistent with the predictions of the
discrete dynamics. The model consists of populations of both
excitatory and inhibitory cells. The equations for each can be
written as:

dv

dt
= −gL(v − vL) − gNaw3

∞(v)(.5 − w)(v − vNa)

− gK w4(v − vK ) + I

dw

dt
= ε(w∞(v) − w)/τ(v) (29)
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Fig. 10. Solutions of the discrete model (left) and neuronal model (right) for a network of 100 excitatory and 100 inhibitory cells. Each E-cell effectively inhibits
nine other E-cells chosen at random. In this example, the refractory period is one and the length of the attractor is nineteen. The top panels show the full network
and the bottom panel shows a blow-up of the rectangular regions highlighted in the top panel. In the right panels, the bright areas indicate when a neuron fires; the
dark areas indicate when a neuron receives inhibition.
where gL = 2.25, gNa = 37.5, gK = 45, vL = −60, vNa =

55 and vK = −80 represent the maximal conductances and
reversal potentials of a leak, sodium and potassium current,
respectively. Moreover, ε = .04, I = 0, m∞(v) = 1/(1 +

exp(−(v + 30)/15)) and w∞(v) = 1/(1 + exp(−(v + 45)/3)).
The function τ(v) can be written as τ(v) = τ1 + τ2/(1 +

exp(v/.1)) where τ1 = 4 and τ2 = 3 for each E-cell and τ1 =

4.5 and τ2 = 3.5 for each I -cell. The synaptic connections are
modelled as in (3); however, in this model, we do not have the
I -cells send inhibition to each other. We also assume that both
the excitatory and inhibitory synapses are indirect. Here we take
gsyn = 0.15, g I

syn = 0.2, vsyn = 0 and v I
syn = −100. Moreover,

αx = 1.2 and βx = 4.8 for both the inhibitory and excitatory
indirect synapses. To simplify the equations, we assume that
the synaptic variables si and s I

i turn on and off instantaneously;
that is, each si satisfies s′

i = H(vi −θ) where H is the Heaviside
step-function and θ = 0.1 is some threshold. A similar equation
holds for each s I

i .
Fig. 10 shows an example in which there are 100 excitatory

and 100 inhibitory cells. Each E-cell has a refractory period
of one and sends excitation to one I -cell and each I -cell sends
inhibition to nine E-cells, chosen at random. We show solutions
of both the neuronal model and the corresponding discrete
model. Note that the cells that fire during each episode are
exactly the same. After a transient of 2 cycles, there appears
to be a stable attractor of 19 episodes.

8. Discussion

In this paper, we have demonstrated that it is possible to
reduce a large class of excitatory–inhibitory networks to a
discrete model. In a companion paper [1], we analyse the
discrete dynamics and characterize when these networks exhibit
a large number of stable firing patterns. Analysis of the discrete
model also allows us to determine how the structure of firing
patterns depend on the refractory period, the firing threshold,
and the underlying network architecture.

The class of E–I -networks considered in this paper arises
in many important applications. These include models for
thalamocortical sleep rhythms [2–5], models for synchronous
activity in the basal ganglia [6,7] and models for oscillations
seen in a mammal’s olfactory bulb or an insect’s antennal
lobe (AL) [8,9]. Each of these systems may exhibit rhythmic
activity in which some subpopulation of cells fires in
synchrony. Experimental recordings from neurons within
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the AL demonstrate that the network may exhibit dynamic
clustering in which different subpopulations of cells take turn
firing; moreover, the membership of these subpopulations may
change from one episode to another. As the examples in
Sections 3.3 and 7 demonstrate, this sort of firing pattern
arises naturally in the neuronal networks considered here. The
analysis of the discrete model given in [1] examines how the
tendency of the network to exhibit dynamic clustering depends
on network architecture.

In order to reduce the neuronal model to the discrete model,
we needed to make a number of assumptions on the network.
In particular, we assumed that the inhibitory connections are
indirect and the inhibitory cells have a very short refractory
period. These assumptions are motivated by previous models
for excitatory–inhibitory networks in the thalamus responsible
for the generation of sleep rhythms [3]. In those models, the
indirect synapses correspond to slow GABAB inhibition and the
inhibitory cells do indeed have a very short refractory period.
In fact, the concrete model presented in Section 7 is based on
models for sleep rhythms generated by excitatory–inhibitory
networks within the thalamus [3,4].

The analysis in Section 6 gives precise estimates on the
parameter values so that the differential equations model
reproduces the discrete dynamics. One may expect that it
becomes increasingly more difficult to satisfy these estimates as
the refractory period, p, or the size of the network, n, increases.
This is true for p; however, the results are robust for a large
class of arbitrarily large networks. For larger values of p, we
must keep an increasing number of clusters separated along
the left branch of the cubic-nullclines. Numerical simulations
suggest that the largest value of p for which we can robustly
reproduce the discrete dynamics is p = 5. Of course, the
theorem states that this is possible for any value of p. However,
this result requires that the singular parameter ε be very small.
If p is too large, then we may have to choose ε so small that it
is impossible to generate the desired behaviour.

The estimates given in Section 6 do not depend as crucially
on the size of the network. Note that p is an intrinsic parameter
of individual cells and does not depend on n. The only potential
problem is if two cells within the same active cluster receive
a significantly different amount of synaptic input from other
active cells. The amount of synaptic input determines the right
knee at which a cell jumps down; the estimates given in
Section 6 depend on the maximum possible separation between
these right knees. Therefore, as long as active cells receive
approximately the same amount of synaptic input, our results
do not depend on the size of the network.

Our analysis demonstrates that it may not be possible to
rigorously reduce the continuous neuronal model to a discrete
model in purely inhibitory networks, but this is possible in
excitatory–inhibitory networks. A critical role of the additional
layer of inhibitory cells in the E–I -network is to stabilize the
timings of the firing of cells within each cluster. We note that the
example discussed in Section 5 demonstrates that instabilities
may arise during the jumping-up and jumping-down processes.
That is, because cells within the same cluster may jump down
at different times and at different right knees, the distances
between these cells may increase. Moreover, these cells may
release other cells from inhibition at different times and this
may result in expansions in the distances between cells that
jump up to the active phase. These types of expansions are
in general also possible in E–I -networks because active cells
within both the excitatory and inhibitory populations may also
jump down at different right knees. It is, therefore, not obvious
what advantages E–I -networks have over purely inhibitory
networks. Note, however, that in our analysis of E–I -networks,
all of the I -cells jump up at the same time. This follows from
the assumption that the inhibitory synapses are indirect and
there is all-to-all coupling between the inhibitory cells. Because
all of the I -cells jump up at the same time, we were able to
derive a priori bounds on when different I -cells jump down
and then release E-cells from inhibition. (See inequalities (13)).
This leads to an a priori bound on the possible expansion of the
distances between cells during the jumping-down process and
this, in turn, leads to an a priori bound on possible expansion
during the jumping-up process. We remark that it is possible
to weaken the assumption of all-to-all coupling among the I -
cells in cases in which the underlying network architecture has
some special structure; in particular, all-to-all coupling among
simultaneously active I -cells is sufficient. It is likely that even
this assumption can be further weakened. In the numerical
simulation shown in Fig. 10, for example, there is no coupling
among the I -cells.

There have been numerous studies of clustering, dynamic
clustering and transient synchrony in neuronal networks [12–
18]. Previous work has typically considered smaller networks
or larger networks with symmetries imposed on the network
architecture; this includes all-to-all coupling. In these networks,
dynamic clustering often emerges due to the presence of
structurally stable heteroclinic cycles [10,15]. This is in contrast
to the mechanism described in this paper which involves
rebound properties of the excitatory cells. Our results hold for
a more realistic neuronal model, we consider a completely
general class of network architectures and the reduction to
the discrete model leads to a complete characterization of
the network behaviour. We note that the clustering that may
appear in the I -network considered in Section 4 appears
to be unstable to perturbations of some clusters but not to
others. This is similar to results presented in [15] where
phase oscillator models were considered. Fast–slow analysis
has been used in many studies of neuronal systems. This
approach was used in [21], for example, where the analysis
of the firing of a single excitable neuron, subject to stochastic
input trains, was reduced to a discrete time Markov chain
analysis. Finally, reproducible sequence generation in a class
of excitatory–inhibitory network with random connections was
studied in [16]. In that network, it was found that the highest
likelihood for the existence of a stable limit cycle was close the
regime of balanced excitatory–inhibitory input to each cluster;
transient behaviour was more likely far from the region of
balanced input. The results presented in [1] demonstrate that
for the network considered in the present paper, the existence
of stable limit cycles or the existence of long or short transients,
does not depend on a balance of excitatory and inhibitory input
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in the underlying E–I -network. Instead, long transients are
more likely in networks with sparse connectivity, while short
transients and a large number of stable limit cycles arise in
networks with a dense connectivity. We note that the networks
considered here and in [16] are quite different so that the
different conclusions are not surprising.

Discrete models such as the one presented here have been
proposed in numerous other studies of neuronal dynamics and
other biological systems. If the refractory period of each neuron
is one, then our model is an example of a Boolean dynamical
system similar to the ones proposed as models for gene
regulatory networks [22]. The relationship between network
connectivity and “typical” network dynamics can be studied by
investigating Random Boolean Networks (RBNs) [22], and a
similar approach has been taken in [1]. We note, however, that
the discrete model considered here is not random in the sense
of RBNs. This is because once the architecture of the network
is fixed, the dynamics of the discrete model is completely
determined. The results in [1] demonstrate that the discrete
model considered in this paper has properties that are in sharp
contrast with those of RBNs. For example, in the study of
Random Boolean Networks, a distinction is made between
two types of behaviour, called the ordered regime and the
chaotic regime. Results on RBNs show that the network tends
to become more chaotic, and hence less ordered, as the average
number of inputs to the Boolean regulatory functions increase.
Moreover, the attractors tend to be very few and very long in the
chaotic regime. The results in [1] demonstrate that the dynamics
of our discrete model becomes more ordered, as measured by
the length and number of attractors, as the average degree of
connectivity either decreases below or increases above a certain
threshold.
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