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Complexity of neural systems often makes impracticable explicit
measurements of all interactions between their constituents. In-
verse statistical physics approaches, which infer effective couplings
between neurons from their spiking activity, have been so far
hindered by their computational complexity. Here, we present 2
complementary, computationally efficient inverse algorithms
based on the Ising and ‘‘leaky integrate-and-fire’’ models. We
apply those algorithms to reanalyze multielectrode recordings in
the salamander retina in darkness and under random visual stim-
ulus. We find strong positive couplings between nearby ganglion
cells common to both stimuli, whereas long-range couplings ap-
pear under random stimulus only. The uncertainty on the inferred
couplings due to limitations in the recordings (duration, small area
covered on the retina) is discussed. Our methods will allow real-
time evaluation of couplings for large assemblies of neurons.

inference and inverse problems � multielectrode recordings �
neural couplings

A vertebrate retina is a structured, complex network of
interacting neurons that process visual input stimuli at the

photoreceptors into an output pattern of action potentials of the
retinal ganglion cells (1–2). It is now a well-established fact that
retinal cells process information in a collective fashion: The
firing of one ganglion cell is correlated with the firing pattern of
other cells (3–4). Multielectrode recordings have made acces-
sible hours-long, simultaneous spiking activity of tens of retinal
ganglion cells and thus have become a powerful tool to inves-
tigate the information processing performed by a vertebrate
retina (5–7). The analysis of pairwise correlations in the activity
has revealed different patterns of synchrony between 2 cells that
have been related to different retina circuits (7).

Analyzing the concerted activity of all of the recorded cells is,
however, a very challenging task. Recently Schneidman et al. (8)
and Shlens et al. (9) pointed out that correlations in the firing
activity of cell populations can be reconstructed from the
average firing rates, fi, and 2-cell correlations, cij, alone. The
theoretical model, which has been used to generate the frequen-
cies of all possible 2N spiking configurations for a system of N
neurons, is the well-known Ising model. It is characterized by a
reduced set of �N2 parameters: N ‘‘fields,’’ hi, experienced by
individual cells, and N(N � 1)/2 ‘‘couplings,’’ Jij, between pairs
of cells. Computing the parameters hi and Jij from the firing
patterns can be viewed as an example of the inverse statistical
physics method.

The existence of a low-dimensional parameterization of the
retinal activity (8–11) is an interesting and encouraging result.
Naively, one may be tempted to assign to the inferred parameters
a simple interpretation: The fields could represent the external
stimuli, and the couplings could reflect the physiological inter-
actions between the cells. However, because most of the neural

circuitry (all cells in intermediate layers and most of the cells in
the ganglion layer) is not recorded, the inferred fields and
couplings are only ‘‘effective’’ quantities, and many questions
remain unanswered. First, how do the effective couplings depend
on the visual stimulus? Second, to what extent are the inferred
couplings affected by the incomplete sampling of the activity,
both from temporal (finite duration of the recordings) and
spatial (small area of the retina covered by the electrode array)
points of views? Third, do the couplings strongly depend on the
model used for the inference? The main difficulty in addressing
these questions in a systematic manner is connected with
the computational complexity of the applied inverse statistical
algorithm.

In the present work, we propose 2 efficient algorithms to
calculate the effective couplings from the spiking activity of a
population of neurons. The first method is based on the above-
mentioned Ising model, the second one on the well-known
‘‘leaky integrate-and-fire’’ (I&F) model. We then use these
algorithms to characterize the effective couplings between gan-
glion cells from previously published recordings of the
salamander retinal activity under different visual stimuli.

Results
Ising and I&F Models. Existing algorithms for inverse Ising prob-
lems are based on time-consuming learning schemes (11–12). It
is possible, however, to drastically improve inverse Ising methods
if one takes advantage of the fact that the neurons are more often
silent than active. This situation corresponds to the behavior of
the Ising model at high fields. Based on a high-field expansion
of the Ising thermodynamic potential at fixed fi and cij, we have
developed an efficient algorithm, which calculates the couplings,
as well as their relative accuracy, in a time polynomial in N
[Methods and supporting information (SI) Appendix, Section 1].
This means in practice that for a typical recording of the activity
of N � 32 ganglion cells in the salamander retina, N(N � 1) �
103 couplings can be inferred (on a personal computer) in a
couple of minutes rather than in many hours.

The Ising approach takes into account correlations in the
‘‘same time bin’’ (of the order of 20 ms) but completely ignores
time-delayed correlations. We have thus developed a second
approach based on the I&F model (13–15) (Methods and SI
Appendix, Section 3). I&F is a dynamical model describing spike
generation by a neuron in the presence of the synaptic inputs
from other neurons; couplings are pairwise but are not a priori
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symmetric. Using techniques from statistical field theory, we
have devised an efficient inference procedure for calculating the
couplings, Gij, from all of the S recorded spikes, in a time
polynomial in both N and S. For the recording mentioned above
(S � 105 spikes) the running algorithm time is of the order of 20 s
on a personal computer.

As an example of potential application, we reanalyze 3 re-
cordings from salamander ganglion cells: (i) a 2,000-s-long
recording of the spontaneous activity of 32 cells in total darkness
(5); (ii) a 4,450-s-long recording of the same 32 cells in the same
retina illuminated with randomly flickering bright squares (5)
(the locations of the receptive field centers of those cells are
known); and (iii) a recording from 40 cells in another retina
presented with a 120-s-long natural movie repeated 20 times (8).

Both the Ising and I&F models are approximations to the real
neural activity. We have checked that multicell correlations,
calculated in the Ising model within the same time bin, are rather
faithfully reproduced, although slightly overestimated (SI Ap-
pendix, Section 2). The I&F model, on the other hand, despite
its simplicity, is capable of reproducing some important features
of the longer-time correlations between spiking events (SI
Appendix, Section 4).

Correlations Versus Interactions. The task of inferring couplings
from the dataset is more complex than the long-established
process of analyzing correlations in the firing activity (3–7). The
coupling between 2 cells is indeed not only a function of the
activity of the pair itself but depends on the activity of all of the
recorded cells. It is, however, interesting to compare the cou-
plings inferred through the Ising model and the correlation
indices (Methods) previously defined (6) in the analysis of
multielectrode array data (see SI Appendix, Section 4). The
logarithm of the correlation index is the first contribution to the
Ising coupling in our large-field expansion. This 2-cell approx-
imation to the coupling corresponds to calculating the coupling
only from the average firing rates and correlation of the 2 cells
in the pair (see Methods). As shown in Fig. 1, some Ising
couplings Jij can be accurately approximated from their 2-cell
approximation. In general, however, the coupling between 2 cells
cannot be deduced directly from the correlation of their firing
activities, because this correlation may result from indirect
couplings via other neurons. By adding the consecutive expan-
sion terms to this 2-cell approximation, one can systematically
generalize the correlation index analysis by including correla-
tions within the larger clusters of cells (Methods). We have found
that pairs of cells with positive and large correlation indices have,
in general, large couplings with values close to their 2-cell
approximation, whereas pairs with positive and small correlation
indices may have negative couplings (SI Appendix, figure 5). The
presence of negative couplings is an interesting finding that
cannot be deduced from the analysis of the data in terms of
correlations (see histogram of couplings, and of their 2-cell
approximations in SI Appendix, figures 3 and 4).

Note that the difference between couplings and correlations
indices and the size of the clusters of cells necessary for an
accurate inference depend, in general, on the structure of the
neural circuit.

Comparison of Couplings Obtained in Dark and Flicker Conditions.
Although the cell activities are different in flicker and dark
conditions, many pairs have similar Ising couplings Jij in both
conditions (Fig. 2); this is the case both for strong positive
couplings (such as pair ‘‘a,’’ whose cells often spike together
within a time window �t � 20 ms), and for several negative
couplings (e.g., pair ‘‘b,’’ showing no correlation). Note, how-
ever, that few large and positive couplings under flicker stimulus
have small or even negative values in dark (e.g., pair ‘‘‘c,’’ with
a strong correlation in flicker and anticorrelation in dark), and

few positive couplings in the dark have negative values under
flicker conditions (e.g., pair ‘‘d,’’ whose cells are positively
correlated but with a long delay �20 ms). The difference of
behaviors of pairs a, b, c, and d between the 2 stimuli presumably
correspond to different classes of physiological interactions, as
appears from the full-time histogram of cross-correlations.

Comparison Between I&F and Ising Couplings. The presence of
numerous strong positive couplings is corroborated by the I&F
analysis (Fig. 3). In the I&F model, Gij is rarely equal to Gji, but
the couplings are grouped along the symmetry axis. Overall
asymmetry of couplings is larger in dark than in flicker condi-
tions (Fig. 3 and SI Appendix) The symmetrized I&F interactions
(Gij � Gji)/2 are proportional to positive Ising couplings Jij, but
the agreement between the Ising and I&F models is poorer for
negative couplings, especially under flicker stimuli, because the
Ising model ignores correlations with delays larger than �t (e.g.,
pair d of Fig. 2). We find this discrepancy to be particularly
important for structured stimuli, such as natural movie, which
generally lead to larger delays in the spiking activity (Fig. 3).

Dependence of Couplings on Removal of Cells from the Recordings.
Multicellular recordings of neurons interrogate only a small
portion of retinal ganglion cells. To study how restricting the
number of measured neurons affects the inferred couplings, we
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Fig. 1. Network of couplings responsible for the measured correlations.
Interaction paths in 3 selected pairs of cells i,j with positive correlations cij,
among 32 cells recorded under flicker stimulus (data courtesy of M. Meister,
ref. 5). Direct couplings are represented by full lines, indirect couplings by
dashed lines. Line widths are proportional to the intensities of the couplings
they carry (couplings �0.3 in absolute value are omitted). The fraction of the
correlation cij because of the direct coupling Jij is indicated for each pair. (A)
A direct, strong, and positive interaction between the 2 cells of the pair
accounts for most of the measured correlation. The 2-cell contribution to
coupling, Jij

(2) � (log CIij)/4, where CIij is the so-called correlation index (Meth-
ods and ref. 7) is Jij

(2) � 0.66, an accurate approximation to the true coupling,
Jij � 0.70. (B) A substantial fraction of the correlation between the 2 cells of the
pair results from strong, positive interactions through other cells. The cou-
pling cannot be approximated from the correlation index: For this pair Jij

(2) �
0.8, whereas Jij � 0.5. To obtain the correct value of the coupling, our
expansion must take into account subsets with 4 cells at least (Methods). (C)
Extreme case of positively correlated cells with a strong, negative direct
interaction. The positive correlation between the 2 cells of the pair results
from several interaction paths going through 1 or more other cells. For this
pair Jij

(2) � 0.3 whereas Jij � �0.3.
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‘‘removed’’ a portion of the recorded cells and recalculated Jij.
Within a linear response approximation, the removal of a cell
does not change couplings beyond 600 �m (the data are limited
to distances �1.4 mm). However, couplings are often affected by
removal, or inclusion, of nearby cells (SI Appendix, Sections 6
and 7). We conclude that in order for the couplings between
central cells to be reliable, the electrode arrays have to be dense
enough (with spacing typically �40 �m) and have to probe most
ganglion cells in a surrounding region �1 mm.

Dependence of Couplings on Distance Between Cells. Fig. 4 shows the
Ising and I&F couplings between pairs of ganglion cells as a
function of the distance between their receptive field centers for
dark and flicker conditions. The analyzed recordings do not lead
to any clear dependence of the couplings on the cell type,

probably because most recorded cells (80%) are of the OFF type.
We therefore group all cells together, independently of their
type. The results are compatible with the conclusions of Meister
et al. (6) based on the study of pairwise correlations. The
dependences of the Ising and I&F couplings on distance are very
similar, although, as explained in Fig. 3, the Ising negative
couplings have larger amplitudes than the I&F couplings. We
observe that whereas strong positive couplings are found at small
distances (�500 �m) both in dark and flicker conditions, the
positive couplings at larger distances (up to 1,000 �m) exist
mainly in flicker but not in dark conditions and are hence
stimulus induced. At the same time, negative couplings, includ-
ing the few conserved interactions identified above, are acting at
distances �200 �m. The absence of negative interactions at short
distances in dark and in flicker conditions could come from the
homogeneity in the recorded cell types.

Spatial Networks of Couplings. Spatial information about the
couplings can be depicted in form of 2D maps in the retinal plane
obtained by connecting the receptive field centers with lines
representing the couplings. Remarkably, the maps of the stron-
gest couplings obtained with the I&F and the Ising inverse
statistical approaches include largely the same pairs of cells (Fig.
5). The map of the strongest couplings in dark conditions (Fig.
5 A and C) has a simple connectivity: with short-range couplings
between neighboring cells. In contrast, the strong interactions
present in flicker and absent in dark (e.g., pair c) are long range
(Fig. 5 B and D). The appearance of these couplings seems to be
at odds with recent studies in primate retina, which have found
that the quasitotality of the informational entropy of spikes can
be accounted for by assuming only interactions between adjacent
cells (9).

Discussion
We have presented 2 computationally efficient inverse statistical
approaches, thereby establishing a solid basis for the rapid,
low-dimensional parameterization of neural activity. We have
classified the inferred couplings with respect to their sign,
dependence on the stimulus, on the inference model, and their
spatial range. Although most pairwise correlations are positive,
both the Ising and I&F models predict the existence of negative
couplings, which can be long range and stimulus dependent. In
addition to the stimulus-dependent couplings, we have located
strong, positive, short-range couplings, which are similar both in
the dark and under flicker stimuli.

A crucial issue connected with this low-dimensional parame-
terization of neural activity remains: Can the effective couplings
Jij be given a simple physiological interpretation (2)? For in-
stance, it will be important to explore the physiological meaning
of the long-range couplings, which appear under flicker stimuli,
and could be, e.g., mediated by amacrine cells. It would be also
interesting to see whether symmetric I&F couplings correspond
to direct interactions between neurons (e.g., via gap junctions)
(7). Additional physiological measurements could be performed
to explore the underlying nature of the interneuronal couplings.

Most of the inferred couplings are expected to reflect the
effective interactions through the intermediate retina layers,
which are not easily accessible to measurement and the circuitry
of which cannot be reconstructed (1–2). Yet, effective couplings
between ganglion cells could give important insights on the way
the retina encodes and transmits visual information. The com-
putational efficiency of our inverse statistical approaches should
make possible experiments in which the couplings are calculated
in real time, while the firing activity is being recorded. Visual
stimuli could be adjusted during experiments to explore partic-
ular aspects of retinal function. This possibility is not restricted
only to multielectrode recordings in vertebrate retina: The same
approach could be also used to analyze the activity of other
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Fig. 2. Ising couplings and cross-correlation histograms for dark and flicker
stimuli. (A) Dependence of Ising couplings Jij on visual stimulus. Activities of 32
cells were recorded in dark and under flicker stimuli on the same retina (data
courtesy of M. Meister). The uncertainty of the coupling values, because of the
limited amount of recorded data, can be calculated by using the inverse Ising
algorithm (see SI Appendix, Section 1); the couplings, for which the relative
uncertainty is �30%, are depicted in black (called ‘‘reliable’’), all others
(‘‘unreliable’’) in yellow. The figure shows a comparison of couplings in dark
versus in flicker for all cell pairs (i,j). Bin size is �t � 20 ms. Statistical errors are
exemplified for 4 pairs of cells (marked in red and labeled a–d). Strong positive
couplings are more reliable because the 2 cells spike often during the recorded
interval. (B) Cross-correlation histograms for pairs a–d of A. Histograms of the
delays between spiking times of the cell pairs a–d recorded in dark (black) and
flicker conditions (red). Pair a: The 2 cells in dark and flicker often spike
together within a few tens of milliseconds. Pair b: Absence of correlation
between the activity of the 2 cells both in flicker than in dark. Pair c: Negative
correlation in the dark and positive correlation in flicker in a time window of
some tens of milliseconds. Pair d: Positive correlations with a delay of �20 ms
in dark and 40 ms in flicker.
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neuronal systems, such as the recordings from slices of vertebrate
cortex (12).

Methods
Algorithm for the Inverse Ising Problem. Data are encoded into bit configura-
tions: si

� � 1 if cell i is active in bin �, 0 otherwise, where time bins are of width
�t; � � 1,2,…,B is in the index of the time bin in the recording of duration B �
�t. In the Ising model, the log-likelihood of a N-bit configuration (in the same
bin) is

log P like	s1, s2, . . . ,sN�
hi� ,
Jij�� � 2 �
i

h is i � 4 �
i�j

J ijs is j

� F
hi� ,
Jij�� , [1]

where the parameters hi and Jij are called, respectively, effective fields and
couplings; the value of F[{hi},{Jij}], called free energy in statistical physics, is
such that the probabilities of the 2N configurations sum up to 1. The effective
fields and couplings must be inferred to reproduce the experimentally mea-
sured average activities, pi � �si�, where pi � fi � �t is the probability that cell
i fires in a bin, and cell–cell correlations, pij � �sisj� here ��� denotes the average,

with the probability Plike. Those equations are ill defined because of imperfect
sampling, e.g., Jij would be infinite if cells i and j never spike together in the
set of B configurations. To avoid this problem, we introduce a Gaussian prior
over the parameters and infer the effective fields and couplings through the
maximization of the Bayesian log-posterior probability
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Fig. 3. Symmetrized I&F couplings (Gij � Gji)/2 ver-
sus Ising couplings Jij for dark (Left), flicker (Middle),
and natural move (Right) conditions. Reliable cou-
plings are depicted in black, unreliable in yellow; red
labels refer to the same 4 cell pairs as in Fig. 2. Solid
lines represent the best linear fits for positive and
negative reliable couplings. For positive couplings, a
linear relationship is well verified for the 3 conditions
with the same slope (of �0.6). The slope depends on
the parameters of the models such as the time bin �t
for Ising model and the membrane leak conductance
g of the I&F model (here �t � 20 ms, g � 0). See SI
Appendix, Section 5 for a calculation of the slopes, as
a function of �t. Negative couplings are character-
ized by a linear fit with different slopes; moreover, in
flicker and natural movie conditions, couplings dis-
play a larger dispersion around the linear fit. The
difference between the slopes for positive and negative couplings and the larger dispersion for negative couplings can be understood by considering the
distributions of the delays between spikes (SI Appendix, Section 4). Pairs of cells with positive couplings often fire pairs of correlated spikes separated by a few
tens of milliseconds (e.g., pair c in flicker, and pair a in both flicker and dark, see Fig. 2), whereas the separation is typically larger for negatively coupled cells
(e.g., pair d in flicker), especially in flicker and natural move conditions. Thus, the I&F model (here with the leak conductance g � 0) takes into account all temporal
correlations for both positively and negatively coupled cells, whereas the Ising model (here with �t � 20 ms) does it only in the former case.
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here are the maps obtained from the largest couplings in the Ising and I&F
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dashed lines. Long-range couplings (range �500 �m) are shown in blue; they
are present in flicker, but absent in the dark. Maps of weak or negative
couplings have a very different structure, see SI Appendix, Section 6.
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log Ppost	
hi� ,
Jij�� � 2 �
i

h ipi � 4 �
i�j

J ijp ij � F
hi� ,
Jij��

�
�

2 � �
i

h i
2 � �

i�j

J ij
2� , [2]

where � is expected to be of the order of 1/B (SI Appendix, Section 1).
Because the calculation of the free energy F, Eq. 1, for a given set of fields

and couplings requires a computational effort growing exponentially with
the number N of cells, Ppost cannot be directly maximized from the definition
(Eq. 2) when N exceeds, say, 15. Fortunately, we need to know F for large fields
only: The firing probability pi is small because the bin width �t (�20 ms) is
much smaller than the average interspike interval (�1 s for dark and flicker
recordings). We have extended large-field expansions existing in statistical
physics to: (i) tackle the case of nonuniform (cell-dependent) couplings and
fields, and (ii) perform the minimization over the (large) fields and the
couplings in Eq. 2 to express F in terms of the firing probabilities pi and
correlations pij.

The outcome of the procedure is that the coupling Jab can be decomposed
into a sum of contributions coming from all clusters of k � 2 distinct cells
including cells a and b,

Jab 
pi�,
pij�� � �
k�0

N�2 �
ii�i2�. . .�ik

Jab
	k�2�a, b, i1, i2, . . . , ik;
pi�,
pij��.

[3]

The first term in the expansion is Jab
(2) � 1

4
logCIab, where CIab � pab/(papb) is the

correlation index of cells a and b (SI Appendix, Section 1) and is called here the
2-cell approximation to the coupling. Terms with k � 1 correspond to network
contributions to Jab: Informally speaking, Jab

(k�2)[a,b,i1,i2,…,ik] is the contribu-
tion to the coupling between cells a and b that cannot be obtained from the
knowledge of the activities of smaller subsets of those k � 2 cells.

Our expression for Jab
(k�2)[a,b,i1,i2,…,ik] is an infinite series in powers of the

connected correlation cij � pipj. Although we are not able to obtain a closed
analytical expression we can show the following fact. Assume that all firing
probabilities are small, that is, pi � �, for some small positive �. Then the
contribution from a cluster of k � 2 cells to the effective coupling Jab is of the
order of �k and decreases very quickly with k. This property allows us to
truncate the sum in Eq. 2. In practice, we numerically sum up the series and
calculate the contributions to the couplings coming from all clusters with k �
2 � 7 cells. A similar procedure gives the expansion of the fields hi.

Notice that the above algorithm not only provides us with the most likely
values for the couplings and fields but also with the uncertainty on those
values because of the finite number of recorded data. The error estimates for
the couplings are obtained from the inverse of the Hessian matrix of log Ppost

(Fisher information matrix), see SI Appendix, Section 1.

Algorithm for the Inverse I&F Problem. In the I&F model, the membrane
potential of each cell obeys the following equation,

C
dVi

dt
� �gVi � I syn � I i � 	 i, [4]

where g is the leak conductance of the membrane, C is the capacitance, Isyn is
the current because of synaptic inputs from the other registered cells,

Isyn	 t� � �
j	�i�

Gij �
l

K	 t � t jl� , [5]

where tjl is the time at which cell j emits its lth spike. The integration kernel K(t)
vanishes for t � 0 (causality) and for t � ts where ts is the synaptic integration
time; the integral of K over the [0;ts] interval is normalized to unit. The synaptic
strength Gij, which may be positive or negative, measures the overall change
in the potential of cell i resulting from a spike emitted by cell j. The current
coming from the other cells is modeled as a white noise process, with average
value Ii, and Gaussian fluctuations

�	i	t�� � 0, �	i	t�	j	t��� � 
2�ij�	t � t�� [6]

uncorrelated from cell to cell. When the potential Vi exceeds the threshold
value Vth, cell i emits a spike and the potential is reset to its rest value (equal
to 0). Up to a rescaling of the couplings and currents we can set Vth � C � 1
without loss of generality; g can then be interpreted as the inverse of the
leaking time of the membrane.

Eqs. 4-6 implicitly define the likelihood P[{tjl}{Gij,Ii}] that our population of
N neurons emit spikes at times {tjl} given the couplings Gij and the average
currents Ii. In the absence of a priori probability on the couplings and currents,
the most likely values for the latter is found through the maximization of P. In
principle, P can be calculated through the resolution of many Fokker–Planck
equations, one for each spike in the dataset, associated to 1-dimensional
Ornstein–Uhlenbeck processes with moving boundaries. In practice, this ap-
proach and related numerical approximations (15) are inadequate to process
datasets with hundreds of thousands of spikes.

We have, therefore, resorted to an approximation for P, asymptotically
exact when the amplitude 
 of the synaptic noise Eq. 6 tends to zero: P is then
dominated by the contribution coming from particular trajectories V*i(t) of the
potentials, called classical paths in physics (16) and optimal paths in large-
deviation theory (17). The difficulty in finding the optimal potentials V*i(t)
consists in determining whether and when they touch the threshold (without
crossing it) at intermediate times t � tik (18). We have devised a fast and
analytical procedure to calculate the optimal potentials, and thus the prob-
ability P, for a population of coupled cells, see SI Appendix, Section 3. As the
likelihood P is a convex function of Gij and Ii the couplings and currents with
maximal probability are easily found by using a local ascent procedure, e.g.,
the Newton–Raphson algorithm, see SI Appendix, Section 3.

The procedure is able to determine N � (N � 1) couplings and N currents
from S spikes in a computational time scaling as S � N2. The algorithm has been
tested on artificially generated data from networks with known couplings and
currents with up to N � 160 cells and S � 107 spikes. The inferred couplings are
largely independent on the initial conditions over the potentials used in the
I&F simulation. For moderate noise levels, the interactions are correctly in-
ferred, with error bars of the order of 1/�S.
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