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This letter presents a study of the correlation between the eigenvalue
spectra of synaptic matrices and the dynamical properties of asymmet-
ric neural networks with associative memories. For this type of neural
network, it was found that there are essentially two different dynamical
phases: the chaos phase, with almost all trajectories converging to a single
chaotic attractor, and the memory phase, with almost all trajectories be-
ing attracted toward fixed-point attractors acting as memories. We found
that if a neural network is designed in the chaos phase, the eigenvalue
spectrum of its synaptic matrix behaves like that of a random matrix (i.e.,
all eigenvalues lie uniformly distributed within a circle in the complex
plan), and if it is designed in the memory phase, the eigenvalue spectrum
will split into two parts: one part corresponds to a random background,
the other part equal in number to the memory attractors. The mechanism
for these phenomena is discussed in this letter.

The statistical properties of the eigenvalues of random matrices have been
of great interest and a major focus in mathematics and physics (Metha,
2006). One of the well-known achievements is the Wigner semicircle law
(Verbaarschot & Zirnbauer, 1984), which states that for N-dimensional real
symmetric matrices whose elements are drawn from a gaussian distribu-
tion with zero mean and variance 1/N, the eigenvalues distribute over a
finite interval (−2, 2) with average density ρ(λ) = (2π)−1(4 − λ2)1/2. Such
investigation has been subsequently generalized to the asymmetric cases.
It is found that the eigenvalues of asymmetric random matrix uniformly
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lie within one circle in the complex plane (Girko, 1984), and the circle
changes to an ellipse if partial symmetry is considered (Sommers, Crisanti,
Sompolinsky, & Stein, 1988). Since the pioneering work of Wigner in the
1950s, the eigenvalue spectra of random matrices have been proven to be
valuable for understanding the dynamical behaviors of systems far from
equilibrium (Brody et al., 1981). Particularly, they may provide useful clues
about the behavior of feedback neural networks (Crisanti & Sompolinsky,
1987; Rajan & Abbott, 2006).

A feedback neural network is composed of N artificial neurons connected
to each other through synaptic matrix J i j (i, j = 1, . . . , N) and evolves ac-
cording to given dynamical principles. The most commonly used dynamical
principle, which is also adopted in this letter, is expressed as

Si (t + 1) = sgn(hi (t)), hi (t) =
N∑

j=1

J i j Sj (t), i = 1, . . . , N, (1)

where Si (t) ∈ {+1,−1} represents the state of ith neuron at time t and hi (t)
is the local field. The feedback neural network belongs to an important
type of dynamical system. In the view of statistical mechanics, they can
be regarded as disordered magnetic systems (Schuster, 2001); therefore, the
dynamic and thermodynamic properties have attracted extensive attention
(Amit, Gutfreund, & Sompolinsky, 1985). In view of practical application,
they have the capability of content-addressable memory (Hopfield, 1984),
promising great potential in associative memory (Kohonen, 1984) and pat-
tern recognition (Zhao, 2004; Jin & Zhao, 2005).

Relevant research on the correlation between eigenvalue spectrum of
synaptic matrix and dynamical behavior of feedback neural network, to
the best of our knowledge, can be traced back to the work of Crisanti
and Sompolinsky (1987). They found in Hopfield neural networks that the
maximal eigenvalue of synaptic matrix would define the critical tempera-
ture at which the spin-glass state emerged. Subsequent studies show that
for a symmetric neural network with associative memories, the minimal
eigenvalue defines a threshold value of neuron gain above which the sys-
tem converging to a fixed-point attractor or not is not guaranteed (Waugh,
Marcus, & Westervelt, 1990). Recently Rajan and Abbott (2006) studied
the eigenvalue spectra of random matrices constructed by excitatory and
inhibitory columns that satisfy different probability distributions. It was
found that eigenvalues of those matrices would also lie within a circle if a
certain balance condition is satisfied (Troyer & Miller, 1997) but would not
distribute uniformly unless the variances of different distributions were
equal. They suggest that the appearance of eigenvalues at the edge of a
circle implies the existence of slow-oscillating and long-lasting modes.

Though much work has been done, there is still a lack of direct evi-
dence to attest that the eigenvalue spectrum of a synaptic matrix can reflect
the dynamical behavior of a feedback neural network, just like that for the
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billiard system (Baker, Schubert, & Stifter, 1998). In this letter, we study
the eigenvalue spectra of synaptic matrices of asymmetric neural networks
with associative memories. The intrinsic correlation between the eigenvalue
spectrum of a synaptic matrix and the dynamical behavior of the neural net-
work is our focus. Such an investigation was first proposed by one of the
authors (Zhou, 2002).

For feedback neural networks with associative memories, one basic prob-
lem is to find a synaptic matrix J i j , which guarantees that a given set
of p memories {ξμ

i } (i = 1, . . . , N, μ = 1, . . . , p) is a fixed-point attractor
of the system. To be a fixed-point attractor, the memory should satisfy
{ξμ

i = sgn(
∑N

j=1 J i jξ
μ

j ), i = 1, . . . , N} as its dynamical principle, equation 1,
or equivalently,

hμ

i ≥ κ, hμ

i = ξ
μ

i

⎛
⎝ N∑

j=1

J i jξ
μ

j

⎞
⎠ , i = 1, . . . , N, (2)

with κ > 0. The existence probability of such a matrix has been studied
carefully as the functions of the parameter κ , the storage ratio α = p/N, the
memory correlativity, and the symmetry of synaptic matrix (Gardner, 1988;
Gardner, Gutfreund, & Yekutieli, 1989). In spite of this, the explicit solution
of J i j is practically obtained by the so-called learning rules (Hagan, Demuth,
& Beale, 2002).

Two types of learning rules are considered in this letter. The first one is the
generalized perceptron rule (Gardner, 1988). This is a local iterative rule by
which the randomly initialized synaptic matrices are continuously updated
until all of the memories satisfy equation 2. Its convergence follows from
a generalization of the perceptron convergence theorem (Minsky & Papert,
1969). The second one is the Monte Carlo adaptation (MCA) rule (Zhao,
2004). This is also an iterative improvement rule. Unlike the generalized
perceptron rule, it is a global algorithm. When this rule is used, each update
of the synaptic matrix is the optimal choice for all of the memories. The
MCA rule is more effective and flexible in designing neural networks with
a discrete synaptic matrix (Gutfreund & Stein, 1990). Both the generalized
perceptron rule and the MCA rule can be applied to design asymmetric
neural networks with controllable κ .

The parameter κ is significant (Gardner, 1988). Recent studies have
shown that the dynamical behaviors of asymmetric neural networks de-
signed by the MCA rule are quite different in different ranges of κ (Zhao,
2004). Generally, this parameter can be divided into three intervals, re-
spectively, corresponding to three different dynamical phases: (1) a chaos
phase, in which the neural network has a chaotic attractor coexisting with
memories; (2) a memory phase, in which the memories are the only sta-
ble attractors; and (3) a mixture phase, in which metastable fixed-point
attractors appear to coexist with the memories. The discovery of these
dynamical phases provides an important motivation for our research. In
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Figure 1: Results of neural networks with hμ

i = κ . (a) Ptotal versus κ . (b) Eigen-
value spectrum with κ = 0.95. (c) Eigenvalue spectrum with κ = 1.05. (d) Eigen-
value spectrum with κ = 1.15.

fact, they are a fundamental behavior of asymmetric neural networks with
associative memories. To illustrate this statement, we study the dynami-
cal behaviors of neural networks designed by the generalized perceptron
rule.

In the beginning, the extreme case of condition 2, hμ

i = κ (i = 1, . . . , N),
for all memories, is considered. To obtain an expectant synaptic matrix, the
relaxation version of the generalized perceptron rule (Gardner et al., 1989)
is employed,

J (m+1)
i j = J (m)

i j + 1
N

(
κ − hμ

i

)
ξ

μ

i ξ
μ

j , i, j = 1, . . . , N, (3)

where m indicates the number of iterations.
First we confirm the dynamical phases in neural networks designed by

equation 3. For this purpose, we compute the percentage of random initial
states converged to those memories under the evolution of equation 1,
denoted by Ptotal , with different κ as in Zhao (2004). The results are shown
in Figure 1a for the case of p = 10 and N = 1000. Each Ptotal is obtained
by averaging over 10 independent systems. Each system is prepared in the
following way. Initialize the synaptic matrix, for convenience of analysis,
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whose elements are restricted by

〈J i j 〉 = 0,
〈
J 2

i j

〉 = 1
N

, (4)

where 〈· · ·〉 represents an average of the distribution; randomly select p
system states to be memories; iteratively apply equation 3 while keeping
equation 4 until |hμ

i − κ| < 10−6 is achieved for all the memories. For each
prepared system, we check 10,000 random initial states to get Ptotal . As
usual, state {−ξ

μ

i } is equivalent to {ξμ

i } for the symmetry of equation 1. The
same parameters are also used in the following numerical calculation.

Figure 1a indicates that the parameter κ can be divided into three ranges
with two turning points, κ1 ≈ 1.0 and κ2 ≈ 2.0. In detail, in the range of
κ ≤ κ1, Ptotal = 0; in the range of κ1 < κ ≤ κ2, Ptotal = 1; beyond κ2, the value
of Ptotal decreases with the increase of κ . Further studies show that the
dynamical behaviors of neural networks designed in those different ranges
are similar to those reported in Zhao (2004). In other words, these three
ranges correspond to the chaos phase, the memory phase, and the mixture
phase, respectively. Here, we emphasize that Ptotal = 0 means that almost
all the random initial states are attracted to the chaotic attractor, and the
memories are locally stable; Ptotal = 1 means that almost all the random
initial states are attracted to the memories, which are globally stable.

We then compute the eigenvalue spectra of synaptic matrices designed
by equation 3 with different κ as proposed above. Some typical results are
shown in Figure 1. It can be seen that the eigenvalue spectrum in the chaos
phase is essentially different from that in the memory phase. In the chaos
phase, the eigenvalue spectrum behaves much like that of the asymmetric
random matrix (Girko, 1984): all eigenvalues uniformly lie within a circle of
complex plane as shown in Figure 1b. In the memory phase, the eigenvalue
spectrum splits into two parts, as shown in Figure 1d. The first part still
lies inside the circle, called the noise part; the second part lies outside, in the
information part. Further studies show that the eigenvalue spectrum splits if
and only if κ > κ1 and that the eigenvalues belonging to the information part
are equal in number to the memories. The mechanism of these phenomenon
is presented in the following.

The synaptic matrix J i j with hμ

i = κ can be written as

J i j = κ J d
i j + J r

i j . (5)

As long as p remains finite, the randomly selected memories are effectively
orthogonal or linearly independent in the thermodynamic limit (N → ∞).
For this case, the matrix J d

i j can be obtained by the Hebbian rule J d
i j =

1
N

∑p
μ=1 ξ

μ

i ξ
μ

j ; therefore, it is symmetric with 〈J d
i j 〉 = 0 and 〈(J d

i j )
2〉 = p

N2

(McEliced, Posner, Rodemick, & Venkatesh, 1987). Suppose that the matrix
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Figure 2: Eigenvalue spectra of (a) matrix J d
i j and (b) matrix J r

i j with hμ

i = 1.05.

J i j is asymmetric and satisfies equation 4; then matrix J r
i j is also asymmetric,

and one may easily find that 〈J r
i j 〉 = 0 and 〈(J r

i j )
2〉 = 1

N (1 − ακ2) because
〈J d

i j J r
i j 〉 = 0 as N → ∞.

One can derive ξ
μ

i (
∑N

j=1 J d
i jξ

μ

j ) = 1 and ξ
μ

i (
∑N

j=1 J r
i jξ

μ

j ) = 0 from the
Hebb rule and equation 5 for all of the memories {ξμ

i }(μ = 1, . . . , p) with
i = 1, . . . , N. This means that all memories are common eigenvectors of
matrix J d

i j and matrix J r
i j with eigenvalues λd

μ = 1 and λr
μ = 0, respec-

tively. Furthermore, the remaining eigenvectors of matrix J r
i j , denoted by

{ζ l
i }(l = p + 1, . . . , N), are also the eigenvectors of matrix J d

i j with eigen-
values λd

l = 0 because
∑N

i=1 ξ
μ

i ζ l
i = 0. Therefore, matrix J d

i j has only two
degenerate eigenvalues: 0 and 1 (Waugh et al., 1990). To get a better visual
impression, they are plotted on the λ ∼ λ plane, as shown in Figure 2a.
On the other hand, according to knowledge of the eigenvalue spectra of
random asymmetric matrices (Girko, 1984; Rajan & Abbott, 2006), one may
learn that all the eigenvalues of matrix J r

i j uniformly lie within a circle of
the complex plane as shown in Figure 2b, centered at the origin with radius
R = (1 − ακ2)

1
2 . It implies that the radius of the circle decreases with the

increase of k for a fixed storage ratio α.
Based on the preceding analysis, we know that the common eigenvectors

of J r
i j and J d

i j are also the eigenvectors of J i j (= κ J d
i j + J r

i j ) with eigenvalues
λi = κλd

i + λr
i . That is, the eigenvalue spectrum of matrix J i j is a linear

superposition of the eigenvalue spectra of matrix J d
i j and matrix J r

i j . When
parameter κ satisfies

κ > (1 − ακ2)
1
2 , (6)

the eigenvalue spectrum of matrix J i j splits into two parts because there
are p eigenvalues that lie outside the circle with radius R = (1 − ακ2)

1
2 . One

may obtain κ > 0.99 in the case of α = 0.01, which is consistent with our
numerical results κ > κ1 ≈ 1.0. In fact, for finite p, it is true that κ > 1.0
when N → ∞.
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Since synaptic matrix J i j can be expressed by the linear superposition
of symmetric matrix J d

i j and random asymmetric matrix J r
i j , the local field

acting on the ith neuron can be expressed as

hi = κ

N∑
j=1

J d
i j Sj +

N∑
j=1

J r
i j Sj . (7)

It implies that the state of ith neuron can be regarded as the result of
competition between two mechanisms. Considering only the effect of matrix
J d

i j , one may define

H = −κ

2

N∑
i, j=1

J d
i j Si Sj , (8)

which has been proven to be monotonic decreasing and behaves as the
Hamiltonian of the neural networks described by equation 1 (Hopfield,
1984). The effect of matrix J r

i j is as follows. Since 〈J r
i j 〉 = 0 and 〈(J r

i j )
2〉 =

1
N (1 − ακ2) while |Sj | = 1, the second term on the right-hand side of equa-
tion is a sum of N independent and identically distributed random variables
with zero mean and variance 1

N (1 − ακ2). The central limit theorem tells us
that all (

∑N
j=1 J r

i j Sj ) satisfy the gaussian distribution with zero mean and
variance (1 − ακ2) when N → ∞. As a consequence, the asymmetric feed-
back neural network described by equation 1 with hμ

i = κ is equivalent to
the kinetic Ising model (Glauber, 1963) with Hamiltonian (see equation 8)
and effective temperature β = 1/(1 − ακ2)

1
2 .

It is known that under the kinetic Ising model, the state of a system
approaches the equilibrium Gibbs-Boltzmann distribution,

P(S) = exp(−β H(S))
Z

(9)

even when the initial condition is away from equilibrium. Thus, the dynam-
ical behaviors of the neural networks mentioned above can be analyzed by
the equilibrium statistical mechanics after a sufficiently long time from the
random initial states. The corresponding partition function is

Z = Trs exp(−β H) = Trs exp

(
β̃

2N

p∑
μ=1

( N∑
i=1

ξ
μ

i Si

)2
)

, (10)

with β̃ = κ/(1 − ακ2)
1
2 . Here, Trs is the sum over all possible state S.

Such a system has been studied intensively by applying mean-field the-
ory (Amit et al., 1985). It is found that the system changes from the para-
magnetic to the ferromagnetic phase when β̃ > 1, that is, κ > (1 + α)−1/2.
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Figure 3: Results of neural networks with hμ

i ≥ κ . (a) Ptotal versus κ .
(b) Eigenvalue spectrum with κ = 0.55. (c) Eigenvalue spectrum with κ = 0.65.
(d) Eigenvalue spectrum with κ = 0.75.

In the paramagnetic phase, the overlaps mμ = 1
N

∑N
i=1 Siξ

μ

i between the
equilibrium state and the memories are 0. In the ferromagnetic phase, the
overlaps are given by mμ = 1 when 1 < β̃ < 1

0.461 , that is, (1 + α)−1/2 < κ <

(0.4612 + α)−1/2, while the metastable state appears for β̃ > 1
0.461 . Notice that

the condition for phase transition is the same as equation 6, under which
the eigenvalue spectrum of synaptic matrix splits into two parts. That is, the
paramagnetic phase intrinsically corresponds to the chaos phase, while the
ferromagnetic phase corresponds to the memory phase and mixture phase,
in agreement with our numerical experiments.

By decomposing the synaptic matrix, we have shown that the asymmet-
ric neural network described by equation 1 with hμ

i = κ is equivalent to
the kinetic Ising model described by equation 8 with effective temperature
β = 1/(1 − ακ2)

1
2 in the case of N → ∞ and finite p. As a consequence, the

eigenvalue spectrum of the synaptic matrix behaves much like that of an
asymmetric random matrix if the dynamical behavior of the neural network
is irregular, but it splits into two parts if the dynamical behavior of the neu-
ral network is regular. Actually, this correspondence is quite universal. It
is found not only in the case of hμ

i = κ but also in the case of hμ

i ≥ κ with
different types of synaptic matrices, as shown in the following.

Figure 3 shows the results of neural networks designed by the orig-
inal generalized perceptron rule, J (m+1)

i j = J (m)
i j + 1

N ε
μ

i ξ
μ

i ξ
μ

j , where ε
μ

i =
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Figure 4: Results of neural networks designed by the MCA rule. (a) Ptotal versus
κ . (b) Eigenvalue spectrum with κ = 24. (c) Eigenvalue spectrum with κ = 28.
(d) Eigenvalue spectrum with κ = 32.

θ [κ(
∑N

j=1 J 2
i j )

1
2 − hμ

i ] and θ (x) is the step function (Gardner, 1988). The
synaptic matrices satisfy equation 2: hμ

i ≥ κ . Here condition 4 still holds.
Comparing Figure 3 with Figure 1, one can notice that the main results
obtained in the case of hμ

i ≥ κ are qualitatively the same as those obtained
in the case of hμ

i = κ . In detail, the parameter κ can also be delimited into
three intervals, as shown in Figure 3a, corresponding to the chaos phase,
the memory phase, and the mixture phase, respectively. The eigenvalue
of synaptic matrices uniformly lies within a circle of a complex plan in
the chaos phase, as shown in Figure 3b. The eigenvalue spectrum of the
synaptic matrix splits into the “noise part” and the “information part” in
the memory phase, as shown in Figure 3d. The main difference is κ1 ≈ 0.6
in the case of hμ

i ≥ κ , while κ1 ≈ 1.0 in the case of hμ

i = κ . We emphasize
that eigenvalues belonging to the information part are no longer equal to
each other in the case of hμ

i ≥ κ .
Figure 4 shows the results of neural networks designed by the MCA rule.

Here, we keep |J i j | = 1 as in Zhao (2004); therefore, the synaptic matrix
satisfies 〈J i j 〉 = 0 and 〈J 2

i j 〉 = 1 in the thermodynamic limit. Condition 4 is
satisfied for this case. There is no qualitative difference between Figure 4
and Figure 3, except that κ1 ≈ 26 and the radius of the noise part is R =
(N − ακ2)1/2 in Figure 4.
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In conclusion, we have studied the intrinsic correlation between the
eigenvalue spectra of synaptic matrices and dynamical behavior of asym-
metric neural networks with associative memories. It has been found that
the eigenvalue spectra behave like those of random matrices if the net-
work’s behavior is chaotic after a sufficiently long time from the random
initial states, but they split into two parts if the network’s behavior is reg-
ular. Moreover, this phenomenon depends on neither the distribution of
local field hμ

i caused by the memories nor the value range of the synap-
tic matrix J i j ; it is quite universal. The mechanism of such phenomena has
been carefully studied. We discovered that the asymmetric neural networks
with hμ

i = κ are equivalent to the kinetic Ising model at an appropriate tem-
perature. This equivalence results in direct correspondence between the
eigenvalue spectrum and the dynamical behavior observed in asymmetric
neural networks. It would be interesting to extend the results of this work
to a more general case.
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