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Interlinked positive feedback loops are frequently found in biological signaling pathways. It is intriguing to
study the dynamics, functions, and robustness of these motifs. Using numerical simulations and theoretical
analysis, here we explore the sensitiveness and robustness of positive feedback loops with various time scales.
Both single and dual loops can behave as a bistable switch. We study the responses of five types of bistable
switches to noisy stimuli. The noise-induced transitions between two states are discussed in detail by using
energy landscape. The dual-time switch, consisting of interconnected fast and slow loops, is both sensitive to
stimuli and resistant to fluctuations in stimulus. This provides a novel mechanism for creating optimal bistable
switches and memory modules. Our results also suggest that the dual-time switch can act as a ubiquitous motif
with sensitive robustness in biological systems.
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I. INTRODUCTION

The notion of feedback is one of the most fundamental
concepts in cell signaling �1,2�. Signaling systems that in-
clude strong positive feedback have the potential to exhibit
bistability and hysteresis �3,4�. A bistable system can alter-
nate between two discrete steady states and convert continu-
ous stimuli into discontinuous switchlike responses �5�. Bi-
stability plays essential roles in important cellular processes
such as differentiation �6–8� and cell cycle progression
�9,10�.

A single positive feedback loop with some ultrasensitivity
is considered sufficient to act as a bistable switch �3,4,11�.
However, multiple interconnected positive feedback loops
are frequently found in subnetworks of large cellular and
genetic networks �12–14�, regulating such processes as Xe-
nopus oocyte maturation �8�, polarization of yeast cells �9�,
and calcium signaling in mammals �15�. An issue thus arises
concerning why interlinked loops rather than single loops are
exploited in such signaling networks. A recent study provides
a clue �12�: connecting fast and slow positive feedback loops
produces a dual-time switch, which can be rapidly inducible
and robust to noise in stimulus. By contrast, a single fast or
slow loop is separately responsible for the speed of switching
and the stability of switches. Moreover, linking two loops of
the same kind brings no overall advantage over having a
single loop. But it is worth noting that the dual-loop switch
in Ref. �12� operates in a monostable regime. Thus, it is
interesting to explore whether interlinked loops can exhibit
bistability and have performance advantages over single
loops.

It is well known that there exists noise in biological sys-
tems due to environmental fluctuations and the inherent sto-
chastic nature of biochemical processes �16�. Since small
changes in stimulus can be amplified by positive feedback
�17,18�, noise may drive a bistable switch to undergo sto-
chastic transitions between two steady states �11,16,19–21�.

This may impose constraints on the bistable switch acting as
a memory unit �3,4,7,22�. For example, cells have to “re-
member” that they are differentiated long after the differen-
tiation stimulus has been withdrawn �7�. On the other hand,
robustness is believed to be an essential property of biologi-
cal organisms �23�. Thus, it is intriguing to investigate how
to enhance the robustness of bistable switches through reduc-
ing noise-induced transitions.

Motivated by the above considerations, here we explore
the sensitiveness and robustness of bistable switches by us-
ing numerical simulation and theoretical analysis. We con-
struct models to describe the dynamics of both single and
dual interlinked positive feedback loops, which can behave
as a bistable switch. We study the responses of five types of
bistable switches to noisy stimuli. Noise-induced transitions
between two states are investigated in detail by using energy
landscape. We find that the switch composed of interlinked
fast and slow loops is both sensitive to stimuli and resistant
to noise. This provides a novel mechanism for creating opti-
mal bistable switches and may be of wide applicability in
cell signaling. The paper is organized as follows. In Sec. II,
mathematical models of single and dual loops are given. We
describe the responses of five types of bistable switches to
noisy stimuli in Sec. III. A discussion and conclusion are
presented in Sec. IV.

II. MODEL

Because biochemical networks underlying cellular func-
tions are far too complex, the analysis of networks, under
some conditions, can be best achieved through mathematical
modeling. In the present study, mathematic models are de-
veloped to describe the dynamics of both single and dual
positive feedback loops. A coarse-grained level of descrip-
tion is adopted while neglecting molecular details.

We discuss two cases, respectively. In the case of a one-
loop switch �Fig. 1�a��, a mutual activation of A and output
comprises a positive feedback loop. This module is extracted
from many realistic biological circuits. A signaling protein
A� could be converted into an activated form A by a process
catalyzed by a stimulus S. For example, the stimulus S could
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be a kinase, and the conversion of A� to A could be due to
phosphorylation. A could be converted back to A� through
phosphatase. In the case of a two-loop switch �Fig. 1�b��, a
second loop is introduced and both interact through a mutual
activation of B and output. The dynamic equations for the
one-loop and two-loop switches are similar to those in Ref.
�12�.

�i� One-loop switch

dCout

dt
= konCA�1 − Cout� − kof fCout + kout-min, �1�

�A
dCA

dt
= �k1S + k2

Cout
n

Cout
n + ec50

n ��1 − CA� − CA + kmin. �2�

�ii� Two-loop switch

dCout

dt
= kon�CA + CB��1 − Cout� − kof fCout + kout-min, �3�

�A
dCA

dt
= �k1S + k2

Cout
n

Cout
n + ec50

n ��1 − CA� − CA + kmin, �4�

�B
dCB

dt
= �k1S + k2

Cout
n

Cout
n + ec50

n ��1 − CB� − CB + kmin. �5�

Here all parameters and variables are dimensionless. CA, CB,
and Cout represent the concentrations of the loop compo-

nents, respectively, and S denotes the stimulus strength. �A
��B� is the time constant of the switch, determining its re-
sponsiveness. For the one-loop switch, we assume either fast
��A=2� or slow ��A=100� kinetics for the activation and in-
activation of A. For the two-loop switch, we assume either
fast kinetics for both the A and B loops, slow kinetics for
both loops, or fast kinetics for the A loop and slow kinetics
for the B loop. They are called the two-fast-loop, two-slow-
loop, and dual-time switches, respectively.

It has been previously demonstrated that signaling cas-
cades with ultrasensitive stimulus-response curves are impor-
tant for converting gradual changes into all-or-none re-
sponses �3�. Here the positive feedback from output to A �B�
is characterized by the Hill function, where the Hill coeffi-
cient n quantifies the ultrasensitivity. As we shall see, this
can make switches more robust to fluctuations in stimulus.

The parameters are kon=1, kof f =0.3, k1=0.1, k2=0.3,
kout-min=0.003, kmin=0.01, n=4, and ec50=0.35 for the one-
loop switch or 0.5 for the two-loop one. It is noted that we
choose the values of parameters so that both the one-loop
and two-loop switches can operate in a bistable regime. This
is fundamentally different from the case in Ref. �12� where
the two-loop switches act as monostable units. We have also
tested other sets of parameter values and found that the con-
clusions drawn in this paper hold true provided that the loops
act as bistable switches.

It is well known that cells operate in a noisy environment
and that noise may interfere with cellular bistability. Here
noise is introduced in the form of S=S0�1+��t��. This is to
model random fluctuations contained in the upstream signal.
For simplicity, ��t� is assumed to be Gaussian white with
zero mean—i.e., ���t��=0 and ���t���t���=2D��t− t��, where
D is referred to as the noise intensity.

Numerical simulations of stochastic differential equations
are carried out by using a second-order algorithm �24�, and
the integration time step is 0.01. We perform 1000 runs with
different noise seeds for each experiment, and each run is to
describe the dynamic behavior of one cell in a population of
1000 cells. Here we study the responses of five types of
switches to noisy stimuli and explore their stability by ana-
lyzing distinct patterns of noise-induced transitions between
two states. We also use energy landscapes to facilitate the
study of noise effects.

III. RESULTS

A. Responses of switches to noise-free stimuli

We first study the responses of switches to noise-free
stimuli. A system behaves as a bistable switch if it has two
stable fixed points in the appropriate parameter regime. Fig-
ure 2�a� shows the bifurcation diagram for the one-loop
switch as a function of S. The two saddle-node bifurcation
points E and F enclose a bistable region. For any S within
this region, the switch has two stable solutions and one un-
stable solution, which are represented by solid and dash-
dotted lines, respectively. The switch therefore exhibits hys-
teresis, which is characteristic of bistable systems. When
moving rightwards along the lower stable branch by increas-

A A′

Output Output′

Stimulus
(a)

A A′ B′ B

Output Output′

Stimulus
(b)

FIG. 1. Schematic illustration of the model. �a� The one-loop
switch. A mutual activation of A and output comprises a positive
feedback loop, and the activation of A is catalyzed by a stimulus.
�b� The two-loop switch. A second loop is added through a mutual
activation of B and output. The activation of B is also catalyzed by
the stimulus.
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ing S, Cout remains inactive until SF=0.371. If S is further
increased, the lower stable fixed point vanishes and the
switch moves towards the upper stable branch, correspond-
ing to an on state. If S is then decreased, the switch proceeds
along the upper stable branch until SE=0.231 and another
transition occurs, bringing the switch back to the lower
branch, an off state. Similar behavior is observed in Fig. 2�b�
for the two-loop switch. It acts as a bistable switch when
0.061�S�0.224. In contrast, the two-loop switches in Ref.
�12� always operate in a monostable regime.

Hysteresis is of the potential importance in biological
switching. First, it reduces the probability that a switch will
repeatedly flip back and forth between two states when the
stimulus is hovering near its threshold value �3�. Second, it
provides a potential mechanism for biochemical memory.
During the maturation of Xenopus oocyte, for example, the
p42 MAPK/Cdc2 system can keep a long-term memory of a
transient differentiation stimulus �7�.

Sensitiveness and robustness are two important aspects
when evaluating the performance of a bistable switch �25�.
We illustrate the responses of five types of switches to a step
stimulus in Fig. 3. Each switch is initially settled in an off
state and then undergoes transition to an on state driven by
the stimulus. We define response time tr as the time required
for Cout to reach the midpoint between its initial and steady-
state values. The one-slow-loop switch turns on slowly with
tr=47.2, whereas the fast one flips simultaneously with tr
=3.2 �Fig. 3�a��. Similar behavior is observed in Fig. 3�b� for
the two-slow-loop �with tr=34.7� and two-fast-loop �with tr
=2.4� switches. Obviously, the two-loop switches initiate
slightly faster than the corresponding one-loop ones. In ad-
dition, the dual-time switch, consisting of interlinked fast
and slow loops, still flips rapidly with tr=4.4 because of the
kinetic property of its fast loop. Thus, the fast loop is critical
for the sensitiveness of switching. Robustness of the
switches to fluctuations in stimulus will be investigated in
the following.

B. One-loop switches

A bistable system always exhibits some degree of hyster-
esis, meaning that it is harder to flip the system from one
state to the other than it is to maintain the system in its
flipped state �3,4�. Under some conditions, however, stochas-
tic effects can equilibrate the two states, reducing the poten-
tial of a switch for memory storage �11,22�. In this section,
we explore noise-induced transitions between two states in
the one-loop switch and their effect on the switch’s stability.

We assume that a population of 1000 cells is simulta-
neously driven by S�t� with the same S0 and D but different
noise seeds. Figure 4�a� illustrates the responses of three
cells to the stimulus with S0=0.28 and D=0.8. Note that S0
=0.28 is intermediate within the bistable regime �cf. Fig.
2�a��. In the case of �A=2, cells randomly switch back and
forth between the on and off states. The time interval during
which a cell resides in either of the two states also varies
considerably among cells. Therefore, the one-fast-loop
switch is destabilized in the presence of noise.

We can monitor the state of the population by computing
a histogram of Cout at each moment. Figure 4�b� depicts time
series of the histograms for two different initial conditions.
Solid and dashed curves represent that all cells are initially
settled in the lower and upper steady states for S0=0.28 in
the deterministic case, respectively. As time evolves, both
histograms disperse around their initial distribution, widen
and shorten, and change from unimodal to bimodal distribu-
tions. After a long period of time, two histograms converge
to nearly the same bimodal distribution; that is, the final state
is totally independent of its initial state. Thus, frequent tran-
sitions undermine the memory capability of the one-fast-loop
switch.

To reveal the mechanism underlying noise-induced tran-
sitions and to quantify the stability of bistable switches, we
introduce the concept of energy landscape �21,22�. Using a
quasi-steady-state approximation, we set the right-hand side

FIG. 2. Bifurcation diagram of output for �a� the one-loop
switch and �b� the two-loop switch as a function of stimulus
strength. Both switches exhibit bistability and hysteresis in the ap-
propriate regime of S.

FIG. 3. Responses of switches to a step stimulus jumping from
0 to 3 at time t=200. �a� The one-loop switch with �A=100 �solid
line� or �A=2 �dashed line�; �b� the two-loop switch with �A=�B

=100 �dotted line�, or �A=�B=2 �dashed line�, or �A=2 and �B

=100 �solid line�. The dash-dotted line indicates the midpoint be-
tween the initial and steady-state values of Cout.
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of Eq. �2� to zero so that CA is treated deterministically as a
function of Cout. Then Eq. �1� can be rewritten in the form

dCout

dt
=

1

�
�f�Cout� + g�Cout���t�� , �6�

f�Cout� = kon	1 −
1 − kmin

1 + k1S0 + k2
Cout

n

Cout
n + ec50

n 

� �1 − Cout� − kof fCout + kout-min, �7�

g�Cout� = kon
k1S0

1 + k1S0 + k2
Cout

n

Cout
n + ec50

n

�1 − Cout� , �8�

where � is the effective time scale of the switch �26� and ��t�
is the noise term introduced in Eq. �2�. The corresponding
stochastic potential �27� is

��Cout� = ��Cout f�Cout� �
g2�Cout� �

dCout� + D ln�g�Cout�� . �9�

Figure 5 displays the energy landscapes for different
stimulus values. When S0 is near either of the two threshold
values �e.g., S0=0.24�, one steady state becomes metastable
compared with the other �Figs. 5�a� and 5�c��. For interme-
diate stimulus, the switch has a double-well potential �Figs.
5�b� and 5�d��. Note the profound difference of scale on or-
dinate between the fast and slow switches. This will be ex-

ploited to interpret why the slow switch is more resistant to
noise.

The energy landscape provides an intuitive representation
of the stability of a bistable switch. Minima in the landscape
correspond to steady states separated by an energy barrier.
The time evolution of Cout can be analogous to Brownian
motion of an overdamped particle in an energy landscape.
The effect of noise is to exert random kicks on the particle
lying in one of these minima. On occasion, a series of kicks
may drive the particle to escape from a local minimum and
settle in a new valley. As we shall see, the transitions be-
tween two states can be described as an escape problem us-
ing Kramers rate theory �28�. That is, the switching rate sat-
isfies the relationship

ke � exp�−
	U

D
� , �10�

where 	U represents an energy barrier and D the noise in-
tensity. Thus, the larger the energy barrier, the more effi-
ciently cells are trapped in the vicinity of steady states. Ac-
cording to Eq. �9�, 	U is proportional to the time scale � in
the weak noise limit. Since a large time scale leads to a small
escape rate ke, the slow switch must be more robust to noise
than the fast one. Here there are two energy barriers: one for
the transition from the on state to the off state, 	Uon→of f, and
the other for the opposite transition 	Uof f→on.

Now we investigate the robustness of the one-loop switch
to noise in terms of the above energy landscape. Suppose
that all cells are in either of two steady states �initial state�
and then some cells may flip to the other state �transition
state� driven by noise. We define the ratio of the number of
cells in the transition state to the number of all cells as the
“fraction of transition” �Ft� at each moment.

We first study the case of the one-fast-loop switch with
�A=2. Figure 6�a� shows the time course of Ft for S0=0.24.
If all cells are initially settled in the on state, they are easily
driven to the off state by weak noise. Ft rises quickly and
equals 1 at steady state because 	Uon→of f is sufficiently
small. We calculate the switching rate and plot its natural
logarithm versus −	U /D in the inset of Fig. 6�a�. The points
fall on a line with the slope close to one, implying that
Kramers rate theory is a good approximation to describing
noise-induced transitions. For S0=0.28, stronger noise is

FIG. 4. Noise-induced transitions between two states of the one-
fast-loop switch with �A=2. S0=0.28 and D=0.8. �a� The time
courses of Cout for three cells. �b� The time series of the histogram
of Cout, which depicts the distribution of Cout among a population
of 1000 cells. Initially, all cells are settled in the off state �solid
lines� or the on state �dashed lines�.

FIG. 5. The stochastic potential � for the one-fast-loop �a�, �b�
and one-slow-loop �c�, �d� switches. The stimulus is S0=0.24 �a�,
�c� or 0.28 �b�, �d�.
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needed to evoke stochastic transitions �Fig. 6�b�� because of
an increment in 	Uon→of f. Moreover, cells can flip back and
forth between two states because 	Uof f→on and 	Uon→of f are
comparable. This effect becomes more marked with increas-
ing D. The small jitters in the curve for D=1 also signify the
presence of back and forth transitions �see also Fig. 4�a��.
Thus, Ft for D=1 is smaller than Ft for D=0.5 at steady
state. But the switching rate still rises with increasing D.

Figure 6�c� depicts the steady-state value Fs of Ft versus
S0 for D=1. If all cells are initially in the on state, Fs de-
creases from 1 to 0 when S is increased from 0.24 to 0.36.
When S0 is near the lower threshold value, the off state is far
more stable than the on state and almost all cells reside in the
off state at steady state. In contrast, almost all cells are
trapped in the on state when S0 is close to the upper threshold
value. For intermediate S0, Fs decreases with S0. Obviously,
if all cells are initially in the off state, Fs varies in a comple-
mentary way to the above case.

Figure 7�a� shows Ft for the slow-loop switch with �A
=100. Even for S0=0.24, only strong noise can make cells
switch from the on state to off state and Ft assumes a small
value even for D=5. It also takes a long time ��5000� for Ft

to reach a steady state. The switching rate is very small ow-
ing to the large time scale ��=70� of the switch. Moreover,
	Uof f→on is about 65 times as large as 	Uon→of f. For S0
=0.28, there almost exist no flips over a wide range of noise
intensity since all cells are trapped in the initial state �data
not shown�. Thus, the one-slow-loop switch is far more ro-
bust to noise than the fast one. This is also clearly seen in

Fig. 7�b�. Strong noise makes the fast switch unstable with
frequent transitions, whereas the slow switch is fairly robust
with few transitions. Note that for the fast switch, the steady-
state value of Ft is smaller than 1 owing to back and forth
transitions between two states.

In addition, we can interpret the robustness of the slow
switch to noise in terms of low-pass filtering. It has been
suggested that transcriptional cascades can act as a low-pass
filter rejecting transient fluctuations in input signal �29,30�.
Through analyzing the frequency response of the switch to a
“ZAP” signal that sweeps through many frequencies over
time �31�, we identify that the slow switch with large �A
behaves like a low-pass filter �data not shown�. Therefore,
high-frequency components of white noise are filtered out by
the slow switch and only its low-frequency components are
available for evoking random transitions. This tends to re-
duce the switching frequency of the slow switch.

So far we have demonstrated that the one-fast-loop switch
is sensitive to stimuli but unstable against noise, whereas the
one-slow-loop switch is more robust to noise but slowly in-
ducible. Therefore, to have an optimal bistable switch, we
turn to explore the case of two-loop switch.

C. Two-loop switches

In this section, we investigate the condition under which a
two-loop switch is both sensitive to stimuli and resistant to
noise. We mainly study three types of switches: the two-fast-
loop, two-slow-loop, and dual-time switches.

Using the same method as in the previous section, we
obtain the stochastic potential � for the two-loop switches,
which is described as

��Cout� = ��Cout f�Cout� �
g2�Cout� �

dCout� + D ln�g�Cout�� , �11�

with

FIG. 6. The time course of Ft in the case of the one-fast-loop
switch with �A=2. �a� Ft vs time for S0=0.24 and various noise
intensities. The inset shows the natural logarithm of the switching
rate vs −	U /D. �b� Ft vs time for S0=0.28 and various noise in-
tensities. �c� The steady-state value of Ft vs S0 for D=1.

FIG. 7. �a� Ft vs time for S0=0.24 and various noise intensities
in the case of the one-slow-loop switch with �A=100. �b� Ft vs time
for �A=2 �solid line� or �A=100 �dotted line� with S0=0.24 and
D=3.
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f�Cout� = 2kon	1 −
1 − kmin

1 + k1S0 + k2
Cout

n

Cout
n + ec50

n 

� �1 − Cout� − kof fCout + kout-min, �12�

g�Cout� = 2kon
k1S0

1 + k1S0 + k2
Cout

n

Cout
n + ec50

n

�1 − Cout� . �13�

Figure 8 depicts the potential � versus Cout, which exhibits a
similar dependence on S0 to that in Fig. 5. When S0 is around
either of the two threshold values, one steady state becomes
metastable with respect to the other. � displays a double-well
structure when S0 is intermediate within the bistable regime.
Compared with Fig. 5, the scale on ordinate exhibits a more
remarkable difference between three kinds of switches.
Moreover, the energy barriers in the dual-time and two-slow-
loop switches always assume great values except those cor-
responding to metastable states. This implies that these
switches will be stable against noise when they are initially
settled in the stable states.

We explore the stability of the switches by analyzing the
time course of Ft and first study the case of the two-fast-loop
switch with �A=�B=2. When S0 is near the upper threshold
value �0.224�, even weak noise can drive cells from the off
state to the on state, which makes Ft equal 1 at steady state
�Fig. 9�a��. This results from the lower energy barrier
	Uof f→on, which is due to the off state being metastable and
the small effective time scale ��=4.3�. Nevertheless, Ft rises
relatively slowly for weaker noise since 	Uof f→on is actually
moderately small. Figure 9�b� displays Ft for S0=0.17. Here
the energy barrier 	Uof f→on becomes larger compared with
that for S0=0.21 and thus cells can escape from the off state
only in the presence of strong noise.

Figure 9�c� depicts the steady-state value Fs of Ft versus
S0. If all cells are initially in the off state, Fs rises sigmoi-
dally from 0 to 1 when S0 is increased from 0.07 to 0.21. The

whole bistable regime can be divided into three ranges, over
which Fs is around 0, significantly different from 1 or 0, and
close to 1, respectively. In the first and third regimes, the two
energy barriers differ drastically, and thus there are only one-
way transitions between the two states even with high noise
intensity �e.g., D=5�. It is worth comparing Fig. 9�c� with
Fig. 6�c�. For the one-fast-loop switch, the second regime
occupies about 50% of the bistable region �this regime may
extend to the whole bistable region for higher noise intensity
such as D=5�. For the two-fast-loop switch, however, the
second regime occupies only about 25% of the bistable re-
gion, while both the first and third regimes are enlarged.
Such a difference mainly results from the fact that the energy
barriers in the two-fast-loop switch assume slightly large val-
ues. Moreover, the existence of the third regime implies that
linking two fast loops does not bring an overall performance
advantage over having single fast loops.

Now we consider the other two types of two-loop
switches. For the dual-time switch with �A=2 and �B=100,
stronger noise can induce more transitions from the off state
to the on state �Fig. 10�a��. Compared with Fig. 9�a�, Ft
assumes a very small value and varies very slowly for D
=1 since the switching rate becomes far smaller owing to the
large effective time scale ��=57�. For S0=0.17, since both
energy barriers are large enough, cells are trapped in their
initial state and there are no transitions between two states
over a wide range of noise intensities �data not shown�. If we
plot the steady-state value of Ft versus S0 for D=5, the curve
seems like a Heaviside function; i.e., Ft is 0 when 0.07

S0�0.18 and 1 for 0.18
S0
0.21 �data not shown�.
Thus, the dual-time switch is more stable against noise than
the two-fast-loop switch.

FIG. 8. The potential � for the two-fast-loop switch �a�, �b�,
dual-time switch �c�, �d�, and two-slow-loop switch �e�, �f� in the
weak noise limit. S0=0.21 �a�, �c�, �e� or S0=0.17 �b�, �d�, �f�.

FIG. 9. The time course of Ft in the case of the two-fast-loop
switch with �A=�B=2. Ft vs time for �a� S0=0.21 and �b� S0

=0.17 with various noise intensities. �c� The steady-state value of Ft

vs S0 for D=5.
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The role of the slow loop in stabilizing the bistable switch
is further demonstrated in the two-slow-loop switch. For S0
=0.21, it is so robust to noise that only very strong noise can
drive cells from the off state to the on state �Fig. 10�b��. Ft
assumes a very small value and varies very slowly even for
D=5. Here the effective time scale, �=90, is far larger than
that for the two-fast-loop switch. We clearly see the distinct
roles that the fast and slow loops play in bistable switches.
The fast loop is critical for the speed of switching, whereas
the slow loop is responsible for the stability of steady states
by effectively decreasing switching rate. A direct comparison
of the robustness of the three two-loop switches is made in
Fig. 10�c�, where the two-slow-loop and dual-time switches
are more robust to fluctuations in stimulus than the two-fast-
loop switch.

In addition, we plot Ft as a function of 1/�A and 1/�B in
Fig. 11, where its value is represented by the grayscale in-
tensity. In simulation, all cells are initially in the on state, and
the value of Ft is calculated at time t=5000. We take the
average of Ft��B ,�A� and Ft��A ,�B� to have better statistics.
In the region corresponding to the two-slow-loop and dual-
time switches �white-coded area�, Ft is close to 0 with sparse
switchings between two states. In contrast, in the region cor-
responding to two-fast-loop switches �black-coded area�, Ft
is close to 1 with nearly all cells flipping to the off state. This
further indicates that the two-slow-loop and dual-time
switches are much more resistant to noise than the two-fast-
loop switch.

We have compared both the sensitiveness and robustness
of three types of two-loop switches. The two-fast-loop
switch is rapidly inducible but may undergo frequent transi-
tions between two states driven by noise, whereas the two-

slow-loop switch is resistant to noise but is slowly inducible.
However, the dual-time switch exhibits a sensitive robust-
ness �25�, capable of yielding a fast yet robust response.
Thus, the dual-time switch can be considered as an optimal
bistable switch.

IV. DISCUSSION AND CONCLUSION

We have demonstrated that both single and dual positive
feedback loops can behave as bistable switches. The one-
loop switch can assume either fast or slow dynamics. Link-
ing two loops with various time scales can create the
two-fast-loop, two-slow-loop, and dual-time switches, re-
spectively. We have studied the responses of these switches
to noisy stimuli, revealed the mechanism underlying stochas-
tic transitions between two states, and analyzed the stability
of switches by using energy landscape. The fast loop is re-
sponsible for the speed of switching between two states,
while the slow loop is crucial for the stability of steady
states. Thus, the dual-time switch is both sensitive to stimuli
and resistant to noise. This suggests that linking fast and
slow positive feedback loops can create an optimal bistable
switch.

Bistability is extremely important in cell signaling.
Bistable switches are able to convert a transient stimulus into
a self-sustaining, irreversible response, providing a mecha-
nism for epigenetic memory �32,33�. A positive-feedback-
based memory module is widely exploited in cell fate deci-
sions �3,4,7,22�. However, cellular processes are essentially
stochastic and small fluctuations in stimulus could be ampli-
fied by positive feedback �17,18�. Noise-induced transitions
may lead to false fate decision, which should be avoided by
precise control �2�.

How to make bistable switches both rapidly inducible and
robust to fluctuations in stimulus is hence a challenging issue
in cell signaling �25�. Our results may provide insight into
this. Linking fast and slow loops is capable of establishing a
fascinating harmony between sensitiveness and robustness.
The fast loop makes a switch sensitive to deterministic
change in stimulus, while the slow loop behaves like a low-
pass filter and effectively reduces the switching frequency. It
is noteworthy that the dual-time switch has been exploited as

FIG. 10. Ft vs time for �a� the dual-time switch with �A=2 and
�B=100 and �b� the two-slow-loop switch with �A=�B=100 with
S0=0.21 and various noise intensities. �c� Ft vs time for the two-
fast-loop switch with �A=�B=2 �solid line�, the dual-time switch
�dashed line�, and the two-slow-loop switch �dotted line� with S0

=0.21 and D=3.

FIG. 11. Ft for the two-loop switch as a function of 1/�A and
1/�B. Ft is calculated at time t=5000, and its value is represented
by the grayscale intensity. S0=0.1 and D=5.

LINKING FAST AND SLOW POSITIVE FEEDBACK LOOPS … PHYSICAL REVIEW E 76, 031924 �2007�

031924-7



a common building block in many signaling pathways
�12–14�. The present work further elucidates why the dual-
time switch is optimal and may act as a robust motif in
signaling networks.

It is of interest to compare the present work with the
previous study by Brandman et al. �12�. They illustrated the
advantage of interlinked fast and slow positive feedback
loops in cell signaling. More attention was focused on the
speed of switching between two states and the fluctuations in
output induced by noise. The two-loop switches operate in a
monostable regime. In our work cellular switches exhibit bi-
stability and hysteresis. We studied in detail dynamic behav-
iors of five types of bistable switches and emphasized the
optimality of the dual-time switch. We found that the slow
loop can effectively decrease the switching rates, which is of
functional importance in cellular processes. In Xenopus oo-
cyte maturation, for example, the slow feedback loop helps

prevent the reversion of Cdc2 during the critical interkinesis
period �8�. In budding yeast polarization, the presence of the
actin-based slow loop may be important to reduce the flick-
ering of the polarization switch �9�.

In conclusion, the dual-time switch is both sensitive to
stimuli and resistant to fluctuations in stimulus. It seems pos-
sible to act as a ubiquitous motif with sensitive robustness in
biological systems. Our findings provide a novel mechanism
for creating optimal bistable switches. It is intriguing for
experimental biologists to synthesize a dual-time genetic
switch and to verify our suggestion.
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