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We study a stochastic synchronization of spiking activity in feedforward networks of integrate-and-fire
model neurons. A stochastic mean field analysis shows that synchronization occurs only when the network size
is sufficiently small. This gives evidence that the dynamics, and hence processing, of finite size populations can
be drastically different from that observed in the infinite size limit. Our results agree with experimentally
observed synchrony in cortical networks, and further strengthen the link between synchrony and propagation in
cortical systems.
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In vitro culture �1�, slice �2�, and in vivo �3� cortical net-
works suggest that cortical processing is performed by many
interacting populations of neurons. Each population is finite
in size and shows noninfinitesimal cell-cell interaction
strengths �4,5�. As signals propagate through successive me-
soscopic populations they modulate cortical dynamics on a
macroscopic scale. Past theoretical studies have primarily fo-
cused on interactions between only one or two neural popu-
lations �5–11�, where the consequence of the finite size of a
population is merely to weakly perturb the dynamics pre-
dicted in the infinite size limit �6,7�. How spiking networks
organize and transfer their activity across a large number of
populations, each having a finite size, is yet unclear. We
study this basic problem in networks of spiking neurons with
feedforward architecture, commonly termed “synfire” chains
�4� �see Fig. 1�a��.

It is well known that neurons deep in the chain of a feed-
forward assembly develop a synchronous spike discharge
�12,13�. For illustration we show a network of in vitro corti-
cal neurons whose activities were reconstructed using an it-
erative procedure �13�. Asynchronous input to the first popu-
lation leads to synchronous activity in successive populations
in the chain. A synchronous population response is expected
at the start of the stimulus ��0.5 s in Fig. 1�b��, since all
neurons share a common onset time. What is curious is the
revival of synchrony after a seemingly random period of
relative asynchrony �see the shaded part of Fig. 1�b��. This
stochastic synchronization �SS� is robust under a wide range
of network configurations �12,13� and its function is hotly
debated �14�. Despite the ubiquity and importance of SS, the
underlying mechanisms and the key system parameters are
not yet known.

We present an integrate-and-fire �IF� network that cap-
tures the essence of SS. A dynamic mean field analysis
shows that in the limit of infinite system size we expect no
synchronization beyond the transient response. A stochastic
perturbation of the mean field equations, accounting for a
finite but still large system size, is required to produce SS.
Furthermore, the degree of SS scales inversely with network
size. This strong dependence on system size for feedforward
networks is quite surprising, and suggests that the number of
neurons in networks may be a critical parameter for cortical
processing.

We consider M populations of N neurons connected in a

feedforward chain. Spiking dynamics are modeled using a
linear IF neuron �10�, where the membrane potential Vim of
the ith neuron in population m obeys

dVim

dt
= − � + Iim�t� . �1�

Additionally, Eq. �1� includes a spike-reset rule: Vim�t+�
=VR whenever Vim�t�=VT with VR�VT. The spike time tij is
the jth time this condition is met. We set a lower barrier at
VL�VR so that Vim�VL. Iim�t� is the sum of all inputs driv-
ing cell im at time t. An internal process, ��0, forces Vim to
VL when Iim�t�=0.

Neuron im receives Cex excitatory and Cin inhibitory in-
puts from randomly chosen neurons in the population m−1.
The ratios Cex /N=�ex and Cin /N=�in are fixed to small val-
ues. When a presynaptic neuron j�m−1� fires, neuron im
receives an instantaneous kick of strength �ijm=Jex /Cex
�=Jin /Cin� if there is an excitatory �inhibitory� input, else
�ijm=0. Note that the kick strength scales as 1 /N. Each
neuron also receives an independent stochastic forcing
Iim,e�t�=	e
im,e�t� with �
im,e�t��=0 and �
im,e�t�
 jm�,e�t���
=�ij�mm���t− t�� ��·� is a temporal average�. Iim,e�t� models a
balanced noisy external input that is independent of process-
ing within the chain �12,13�. The total driving input to neu-
ron im is then

Iim�t� = �
k

�ijm�
j

��t − tkj�m−1�� + Iim,e�t� , �2�

where tkj�m−1� is the kth spike from neuron j in population
m−1. The firing statistics of the input layer �m=0� are un-
correlated Poisson processes of rate �0�t� with �t� a
Heaviside function.

Simulations of the IF network with N=500 and M =10
show randomly occurring epochs of synchrony in the deep
populations long after the transient period �Fig. 1�c�; note the
time scale�. The SS is qualitatively similar to both experi-
ments �Fig. 1�b�� and other simulations of feedforward sys-
tems �12,13�.

A mean field treatment of the stochastic system Eqs. �1�
and �2� is computed in the diffusion limit �5,6�. Specifically,
Iim�t� is determined by the firing probability of population
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m−1, �m−1�t�= �1/N��i,j��t− tij�m−1��. Despite the Poisson in-
put to the chain �m=0� the spike trains from neurons deeper
in the chain are non-Poisson �17�, in which case in the dif-
fusion limit Iim�t� is a colored noise process �16,17�. This
complicates a mean field analysis by adding extra state vari-
ables to the field equations �17�.

Fortunately, for nonleaky IF systems the population re-
sponse to a simple colored process is well approximated by
the response to a rescaled white noise process �16�. Conse-
quently, the diffusion limit can be described as

Iim�t� � �m�t� + 	m�t��im�t� ,

�m�t� = �Jex + Jin��m−1�t� ,

	m
2 �t� = �Jex

2 /Cex + Jin
2 /Cin�Rm−1,eq

2 �m−1�t� + 	e
2, �3�

where ��i,m�t��=0 and ��i,m�t�� j,m�t���=�ij��t− t��. Here we
have scaled 	m

2 �t� by the coefficient of variation of the inter-
spike interval distribution of population m−1 labeled Rm,eq

�computed for t→��. While this rescaling is exact in equi-
librium �16�, we conjecture that it applies to nonequilibrium
statistics as well. We note that for �ex ,�in�1 any shared
fluctuations can be neglected �6�.

The stochastic IF network given by Eqs. �1� and �3� is
described by a sequence of Fokker-Planck equations �15�,
one for each population density Pm�V , t�:

�tPm�V,t� = LmPm�V,t� + �m�t���V − VR� ,

Lm = �V	− �m�t� + �	m�t�2/2��V
 ,

�m�t� = − �	m
2 �t�/2��VPm�V,t��V=VT

. �4�

Solutions to Eq. �4� are constrained by the boundary
conditions Pm�VT , t�=0 and 	�m�t�− �	2

2�t� /2�� /
�V
Pm�V , t��V=VL

=0, along with a proper normalization
�VL

VTPm�V , t�dV=1. In Eq. �4� we set �m−�→�m. We express
Pm�V , t� in terms of a dynamic basis set �see �9� for a review
and �7� for the specific application to linear IF models�.

Briefly, we use a complete basis set of eigenfunctions
	�q,m ,�q,m
, where �q,m�V� and �q,m�V� are the respective
left and right eigenvectors associated with eigenvalue �q,m of
Lm. We expand Pm�V , t�=�q=−�

� aq,m�t��q,m�V�, where aq,m

= ��q,m , Pm� with �f ,g�=�VR

VT f�V�g�V�dV. It can be shown

�7,9� that the vector am
� = �a1 ,a−1 ,a2 , . . . �T obeys the follow-

ing sequence of nonlinear differential equations:

FIG. 1. SS in experimental and model feedforward networks. �a�
Schematic of the “unfolding” of a feedforward architecture from a
seemingly undirected network of neurons. We neglect feedback and
interpopulation coupling �dashed lines�. �b� Spike-time rasters
�dots� and population activity histograms �solid; bin width 1 ms�
from iteratively constructed in vitro networks of cortical neurons
�200 neurons per population�; see �13� for details. No external noise
was delivered to the neurons. As shown previously �13�, adding
noise to the in vitro network did not prevent synchrony. �c� Simu-
lations of a feedforward network with linear IF neurons. We show
network behavior 10 s after stimulus onset, long after onset-induced
synchrony has dissipated. Unlike in experiments, external noise was
added �see text�. Dot rasters are shown for a portion of the histo-
gram. Model parameters are N=500,�=0.5,Jex=2,Jin=−0.96,VT

=1,VL=VR=0,	e=0.31, �ex=0.1, and �in=0.048. Simulations were
performed with a stochastic Euler scheme with a time step of 10−5

�15�. In both panels �b� and �c� we show only populations 1, 6,
and 10 �left-hand side of �b��.

FIG. 2. �Color online� DMFT predicts only transient synchrony.
Expected firing rate �m�t� for m=0, . . . ,4 with Fm�t�=0. Open
circles are simulations of the IF network, lines are simulations of
the mean field with either Rm,eq defined appropriately �18� �solid
blue lines�, or Rm,eq=1 �dashed red lines�. The right panels show the
solutions long after the initial transient. Model parameters are the
same as in Fig. 1�c� except �0=40 Hz, 	e=0.63, and N=1000.
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dam
� /dt = �� + �d�m−1/dt�Cm�am

�

+ �d�m−1/dt�cm
� + Fm�t��m�t��� �VR� ,

�m�t� = �m,eq��m,	m� + fm
� · a� + Fm�t��m�t� . �5�

� is a diagonal matrix of the eigenvalues of Lm �7�. The
nonequilibrium mode interaction matrix Cm has elements
cij,m= ���m−1

�i,m ,� j,m�, the equilibrium to nonequilibrium

mode vector cm
� has elements ci,m= ���m−1

�i,m ,�0,m�, and the

eigenmodes at threshold are given by the vector fm
� with el-

ements fq=−�	2�t� /2��V�q�V��V=VT
. �m,eq�t� is the equilib-

rium transfer function of population m �18�. In practice we
consider only a finite number of modes �n=6�.

�m�t� �as given by Eqs. �3� and �4�� is exact in the limit
N→�. To correct for the case when N�� we use a previ-

ously proposed scheme �6–8� to perturb �m�t� and am
� with a

Gaussian white noise term �m�t� of intensity Fm�t�
=�m�t� /N �properly scaled by the �m

� �VR� for am
� �. The cor-

rection term models the inaccuracies in the Fokker-Planck
equation in describing the firing probability for a finite en-
semble of neurons.The mean field is now a sequence of sto-
chastic partial differential equations.

In what follows we will compare the dynamics of a de-
terministic mean field theory �DMFT�, where we naively

take Fm�t�=0, to that of the stochastic mean field theory
�SMFT� where we account for N��. Specifically, the
DMFT computes �m�t� as an average over Vim, �ikm, the pro-
cesses given by �0, and Iim,e, whereas the SFMT treats �m�t�
as an average only over Vim.

Finally, the basis set 	�q,m ,�q,m
, as well as �m, Cm, cm
� ,

and fm
� inherit the time dependence of �m−1�t�. Since our

focus is on large-amplitude fluctuations of �m�t�, as opposed
to small fluctuations computable with a linear response
�7,11�, we solve Eqs. �3� and �5� by computing the eigensys-
tem at a discrete set of input rates 	�k,m
k with �k+1,m−�k,m

=��. The eigensystem for �k,m��m�t���k+1,m is computed
as a linear interpolation between the eigensystems defined
by �k,m and �k+1,m. Accurate results were obtained with
��=0.5.

We compare simulations of the IF network Eqs. �1� and
�2� and numerical solutions of the DMFT in Eqs. �3� and �5�
for m=0 to m=4 �Fig. 2�. Comparing conditions where the
diffusive term is rescaled by the appropriate Rm,eq

2 �solid blue
line� �18�, and where we force Rm,eq=1 �dashed red line�
shows that only the rescaled diffusion system accurately de-
scribes the transient response of the IF network in the deeper
populations. Despite the success of the rescaled DMFT in
describing the transient dynamics, all solutions eventually
decay to an asynchronous state �right panels in Fig. 2�. This
behavior is distinct from the SS observed in both the finite
size experiments and IF networks �Figs. 1�b� and 1�c��.

In contrast to the DMFT the SMFT accurately replicates
SS. �10�t� computed using SMFT with N=500 shows brief
epochs of high firing probability, representing randomly

FIG. 3. �Color online� SS obtained in the finite size mean field
equations. �a� Realizations of the SMFT for N=500 �thin red� and
10 000 �thick black� for m=1,5, and 10 �left�. Estimated distribu-
tions pm��� �right�. �b� Skewness Sm for varying N and m computed
from simulations of the IF network. Model parameters are the same
as in Fig. 1�c� but with 	e=0.54 and �0=15 Hz.

FIG. 4. Oscillations accompany SS. �a� Normalized autocorre-
lations A1��� and A10��� calculated for simulations of the IF net-
work �gray� and the SMFT �black� when N=500. Inset: A10��� com-
puted with Rm,eq=1 �black� superimposed with the result from IF
simulations �gray�. �b� A10��� computed with N=500 and 10 000.
Parameters are identical to those of Fig. 3.
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timed epochs of SS �Fig. 3�a�, thin red lines�. These epochs
are absent in superficial populations and in all populations
with N=10 000 �Fig. 3�a�, thick black lines�. The estimated
distributions of firing probability pm��� when N=500 are dis-
tinctly asymmetric for large m, with the long tails arising
from the synchronous epochs �Fig 3�a�, right panels�. To
quantify we compute the skewness Sm=�3,m /�2,m

3/2 of the dis-
tributions pm��� for different values of N and m where �n,m
=���m�t�− ��m�t���npm���d� �Fig. 3�b��. Sm clearly increases
with m, particularly when N is small. Intuitively, the growth
of Sm with m depends on a combination of the nonlinear
amplification of transient activity in the feedforward net-
work, and the finite size perturbations.

To further quantify SS obtained with the SMFT we com-
pute the normalized autocorrelation Am���= ��m�t��m�t+��� /
��m�t��2 �Fig. 4�a��. With N=500, there is an excellent agree-
ment of A1��� and A10��� for simulations of the IF network
and the SMFT. Interestingly, there is a distinct stochastic
oscillation in �10�t�, with a frequency that is roughly
��m�t����m,eq. This frequency is directly related to the
eigenspectrum of Lm. Am��� computed from the SMFT with
the Poisson assumption are not oscillatory, unlike the IF
simulations �see inset�. Figure 4�b� compares A10��� for N
=500 and 10 000. For small ��� the oscillatory nature of the
small network is more prominent than for a large network.
However, for larger ��� both large and small networks have

similar coherence, indicating synchrony to be truly a stochas-
tic phenomenon with finite memory. For N�250 the theory
applies only qualitatively to the network simulations.

In summary, we have provided a simple, mechanism for
SS in a network of spiking neurons. The synchrony arises
from a combination of finite-size-induced perturbations of
network activity �6,7�, and amplification of activity through
successive populations �12�. A SMFT shows how finite-size-
induced fluctuations in superficial populations �order 1 /N�
are compounded and become large amplitude �order 1� ep-
ochs of damped oscillatory synchrony in deeper populations.
We remark that for N=500 the amplitudes of synaptic inputs
are more comparable to those experimentally measured
�Jexpt /Cexpt ,Jin /Cin��VT−VF� /25� than for N=10 000 �13�.
Our results are consistent with the experimental results
shown in Fig. 1�b� and �13�, and the synchronous activity
observed in both spontaneous and evoked cortical activity
�1,3�. Further, our study shows how interactions of multiple
populations of spiking neurons can be critically dependent
on system size. A crucial next step is determining how sto-
chastic synchronization interacts with stimulus-induced dy-
namics to determine cortical responses.
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