
LETTERS

Neural correlates, computation and behavioural
impact of decision confidence
Adam Kepecs1, Naoshige Uchida1,2, Hatim A. Zariwala1,3 & Zachary F. Mainen1,4

Humans and other animals must often make decisions on the basis
of imperfect evidence1,2. Statisticians use measures such as P values
to assign degrees of confidence to propositions, but little is known
about how the brain computes confidence estimates about deci-
sions. We explored this issue using behavioural analysis and
neural recordings in rats in combination with computational
modelling. Subjects were trained to perform an odour categoriza-
tion task that allowed decision confidence to be manipulated by
varying the distance of the test stimulus to the category boundary.
To understand how confidence could be computed along with the
choice itself, using standard models of decision-making3–6, we
defined a simple measure that quantified the quality of the evid-
ence contributing to a particular decision. Here we show that the
firing rates of many single neurons in the orbitofrontal cortex
match closely to the predictions of confidence models and cannot
be readily explained by alternative mechanisms, such as learning
stimulus–outcome associations7–10. Moreover, when tested using a
delayed reward version of the task, we found that rats’ willingness
to wait for rewards increased with confidence, as predicted by the
theoretical model. These results indicate that confidence esti-
mates, previously suggested to require ‘metacognition’11,12 and
conscious awareness13,14, are available even in the rodent brain,
can be computed with relatively simple operations, and can drive
adaptive behaviour. We suggest that confidence estimation may be
a fundamental and ubiquitous component of decision-making.

Rats were trained on a two choice odour mixture categorization
task (Fig. 1a). On each trial, a binary mixture of two pure odorants
(A, caproic acid; B, 1-hexanol) was delivered at one of several con-
centration ratios (Fig. 1b), which were randomly interleaved from
trial-to-trial15. Choices were rewarded at the left choice port for mix-
tures A/B . 50/50 and at the right choice port for A/B , 50/50
(Fig. 1b). By varying the distance of the stimulus to the category
boundary (50/50) we could vary the difficulty of the decision
(Fig. 1c, d). Although the reward contingencies were deterministic,
subjects experienced varying degrees of decision uncertainty due to
imperfect perception of stimuli and/or knowledge of the category
boundary.

To explore the neural correlates of decision confidence, we
recorded single neuron activity in the orbitofrontal cortex (OFC;
Supplementary Fig. 1), a brain region implicated in decision-making
under uncertainty16–20. We reasoned that neural activity related to the
subject’s confidence in the outcome of a choice should occur while
the subject is anticipating the trial outcome, and therefore focused
our analysis on this delay period (Fig. 2a). The firing rates of many
OFC neurons were modulated by stimulus difficulty during the anti-
cipation period. Figure 2b, c shows the activity of a neuron that fired
more intensely following more difficult decisions. By replotting the
same data as a function of the choice accuracy associated with each

stimulus type, it can be seen that this neuron fired more vigorously
when the likelihood of an upcoming reward was lower (Fig. 2d). A
large fraction of OFC neurons, like this example, fired more intensely
for stimuli closer to the category boundary (120/563 at P , 0.05,
Wilcoxon signed-rank test). A smaller fraction (66/563) showed
the opposite tuning, firing at a higher intensity for easy stimuli, those
far from the category boundary (Fig. 2e, f).

The observed modulation of firing rate by stimulus difficulty is
consistent with previous findings that the response of many OFC
neurons correlates with the expected values associated with reward
predictive cues7–10. Surprisingly, however, when we compared correct
and incorrect choices for the same stimulus (for example, the 68/32
mixture), we found that many neurons showed different firing rates
even before the outcome was delivered. Figure 3a, b shows an
example of a neuron that tended to fire more when the rat had
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Gulbenkian de Ciênçia, 2780-901 Oeiras, Portugal.

a

b

50

100

60

80

100

0

c

d

B
A

0 32 44 56 68 100

0
100

32
68

44
56

56
44

68
32

100
0

Choice A Odour Choice B
Le

ft
 c

ho
ic

e 
(%

)
A

cc
ur

ac
y 

(%
)

Odour mixture (% A)

Figure 1 | Odour mixture categorization task. a, Schematic of the
behavioural paradigm. To initiate a trial, the rat enters the central odour port
and after a pseudorandom delay of 0.2–0.5 s a mixture of odours is delivered.
Rats respond by moving to the left or right choice port, where a drop of water
is delivered after a 0.3–2 s waiting period for correct choices. b, Stimulus
design. c, Performance of one rat discriminating between mixtures of caproic
acid (A) and 1-hexanol (B) in a single session. Error bars (s.e.m.) are hidden
by markers. Colours are used to represent odour mixtures, with different
blue and green blends representing different odour mixture ratios. d, Choice
accuracy as a function of odour mixture. Data across three rats are plotted as
mean 6 s.e.m.
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committed an error than when it was correct, despite the fact that the
outcome was not yet revealed to the subject. The same phenomenon
could also be seen as a difference in the average behavioural accuracy
when the neuron was firing at high compared to low rates (see
Supplementary Fig. 2a). Similar to this example, a large fraction of
neurons fired at a higher rate in incorrect trials (‘error trials’) com-
pared to correct trials within a given stimulus type (46/317 neurons
for 56/44 mixtures and 86/563 for 68/32 mixtures at P , 0.05, per-
mutation test, Fig. 3d–f; Supplementary Figs 2b and 3c).
Interestingly, for easier stimuli the difference in firing rates between
correct and error trials was larger (Fig. 3; Supplementary Fig. 3d). A
second, smaller population of neurons (21/317 for 56/44 mixtures
and 50/563 for 68/32 mixtures at P , 0.05, permutation test) had an
analogous pattern of activity, but fired more in anticipation of cor-
rect rather than incorrect outcomes (Supplementary Fig. 4).

These firing patterns appear paradoxical for a prediction made on
the basis of overall stimulus–outcome associations. However, reward
predictions may be generated by a dynamic learning process based on
recent reinforcement history21–23. To test this idea, we used a more
powerful multiple linear regression model to try to predict the firing
rate of a given trial based on the history of recent reward outcomes and
other externally observable variables (the stimulus and choice direc-
tion). This analysis revealed that although a subset of OFC neurons do
carry information about past trial events, these account for a relatively
small fraction of the firing rate variance compared to what can be
explained by the anticipated current trial outcome (Supplementary
Fig. 5; for details see Methods). Therefore, the signals we observed in
OFC neurons could not be readily explained as reward expectancy
based on either a simple average stimulus–reward association or more
complex predictions based on reinforcement history.

In principle, the probability of a correct trial outcome could be
estimated based on a subjective measure of confidence about the
decision. We hypothesized that a useful confidence metric could be
calculated by measuring the reliability and consistency of the values
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Figure 2 | Graded representation of stimulus difficulty in orbitofrontal
cortex. a, Timing of outcome anticipation period. Entry into the choice port
is recorded using the interruption of the photo-beams within each port. The
delivery of water is pseudo-randomly delayed, with the earliest onset varying
between 0.3 s and 1 s and the latest offset from 0.8 s to 2 s after entry,
according to a uniform distribution with varying parameters in each session.
The anticipation period ends at the first possible time of reward delivery, and
thus ranges from 0.3 s to 1 s across sessions. Firing rates are calculated either
during the initial 0.4 s of the anticipation period or the entire period if it was
shorter. b, Activity of an example neuronal unit. Raster plots represent
neural activity, with each row corresponding to a single trial and each tick
mark to a spike. Forty trials are shown in each plot with the post-stimulus
time histogram (PSTH) overlaid (smoothed with a Gaussian filter,
s.d. 5 25 ms). Neural activity is aligned to the timing of entry into the choice
port. Blue ticks represent the time of reward delivery. Trials for different
stimuli were interleaved in the sessions but grouped into different panels
according to stimulus difficulty, with stimuli and performance indicated
above. c, Mean firing rate of cell in b as a function of stimulus identity. Rates
are calculated during the outcome anticipation period (0.3 s window
beginning at the time of entry into the choice port). Error bars, s.e.m. across
trials. d, Mean firing rate as function of mean accuracy grouped by stimulus
identity. e, Mean-normalized firing rate as a function of stimulus identity for
the population of neurons with higher firing rates in error trials (Wilcoxon
test, P , 0.05). f, As e but for the population of neurons with higher firing
rates in correct trials (Wilcoxon test, P , 0.05).
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Figure 3 | Orbitofrontal neurons anticipate trial outcome. a, b, Firing rate
of a single neuron aligned to the time of entry into the choice port. Trials are
grouped by stimulus difficulty (a, 44/56 and 56/44 odour mixture ratio;
b, 32/68 and 68/32) and trial outcome (correct, orange and cyan; error, red
and blue). Shading represents s.e.m.; note there are few 68/32 error trials.
Only activity occurring before the onset of water delivery and choice port
exit is averaged into the PSTH. After the outcome anticipation period (0.5 s
in this session) the PSTH curves are dashed, signifying a time period when in
some trials rats experienced reward delivery, although post-reward firing is
never actually included. Note that the separation between correct and error
trials begins before entry into the choice port but after the animal leaves the
odour sampling port. c, d, Mean-normalized firing of negative outcome
selective neurons (those with increased firing rate in error trials during the
anticipation period) is plotted the same way as a, b. Shading represents s.e.m.
across neurons. Dashed curves as in a, b. e, f, Outcome preference for the
population of OFC cells during the outcome anticipation period. Outcome
preference is calculated using ROC analysis (see Methods). Colour bars
represent significant selectivity (permutation test, P , 0.05); red indicates
neurons with increased firing rates in incorrect (‘error’) trials (negative
outcome selectivity, 46/317 neurons); green indicates neurons with
increased firing rates in correct trials (positive outcome selectivity, 22/317
neurons); grey bars, not significant.
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of the internal variables that contributed to the decision. To explore
this idea, we constructed a simple model for the categorization task
based on the comparison of the perceived stimulus value and the
recalled category boundary (Fig. 4a; see Methods for details). In this
model, the choice depends on whether the stimulus sample, si, is
smaller or larger than the category boundary, bi. This comparison
yielded an average choice function similar to that observed behaviou-
rally (Fig. 4b; compare Fig. 1c). To estimate the confidence about this
choice, we propose to measure the quality of the evidence in this
model using the distance between the stimulus and memory samples,
di 5 jsi–bij; the larger the distance, the more reliable should be the
decision. We found that after a simple transformation, di can indeed
provide a veridical prediction of the likelihood of a successful out-
come, ‘decision confidence’, di 5 f(di), or the likelihood of a failure,
‘decision uncertainty’, si 5 1 2 di (Fig. 4c). Similar algorithms can
also yield useful confidence estimates in other decision models. For
example, in a two-alternative ‘race’ model, an instance of a class of
models based on the accumulation of evidence4–6, decision confid-
ence can be calculated from the difference between two decision
variables at the time a decision is reached (Supplementary Fig. 6;
Supplementary Information). These modelling results demonstrate
that confidence estimates derived solely from the decision variables
in the current trial can provide good estimates of the expected
decision outcome across trials.

We next looked for specific predictions—patterns of firing rates—
that would arise from theoretical confidence estimates. We noticed that,
when plotted as a function of stimulus type and trial outcome, decision

uncertainty, si, shows a characteristic and somewhat counterintuitive
pattern, namely opposing V-shaped curves for correct and error choices
(Fig. 4d): (1) for correct choices, si decreases with distance from the
category boundary; (2) for a given stimulus, error trials are associated
with higher si than correct trials; (3) the difference in si for error and
correct trials increases as the stimulus becomes easier. These patterns are
robust to model details and do not depend on the relative contributions
of stimulus versus memory noise or on the precise choice of the trans-
form function, f (Supplementary Fig. 7). In addition, the same pattern
of confidence estimates are produced by decision models based on
integration of evidence (Supplementary Fig. 6).

The dependence of OFC neuronal activity on stimulus type and
trial outcome closely matched the predictions of confidence esti-
mates derived from decision models (Fig. 4e–h). First, individual
OFC neurons showed the predicted dependence on the distance of
the stimulus to the category boundary as well as the predicted differ-
ence between correct and error trials (Fig. 4e). A similar pattern held
at the population level (Fig. 4g, 133/563 negatively-tuned neurons,
all stimuli pooled at P , 0.05, permutation test; see also
Supplementary Figs 3, 8). These patterns were qualitatively different
from those expected from left/right modulation of stimulus select-
ivity (Supplementary Fig. 3). Second, the probability of correct trial
outcome varied with the firing rate of individual neurons (Fig. 4f),
and at the population level (Fig. 4h), as predicted (Fig. 4c). This
analysis also showed that the highest firing rates were associated with
near chance performance (50% reward probability), as expected if
these neurons signalled lack of confidence rather than incorrect per-
formance (0% reward probability; see Methods for details). The
opposite patterns held for the positive outcome selective OFC popu-
lation (105/563 neurons for all stimuli pooled at P , 0.05, permuta-
tion test; Supplementary Fig. 4).

It is possible for the experimenter observing OFC neurons to pre-
dict individual trial outcomes, but can rats use such information
behaviourally? We tested the ability of rats to provide a behavioural
report of confidence using a modified version of the task in which we
encouraged rats to give up waiting for uncertain rewards by increas-
ing the delay to reward delivery and permitting subjects to reinitiate a
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Figure 4 | Confidence estimation in a decision model and by OFC neurons.
a, Schematic of a model for category decisions. Each odour mixture stimulus,
as well as the memory for the category boundary, is encoded as a distribution
of values. In each trial a stimulus, si, and memory of the boundary, bi, are
drawn from their respective distributions. A choice is calculated by
comparing the two samples (si , bi), and a confidence value is estimated by
calculating their distance ( | si 2 bi | ). Incorrect choices result from noise,
represented in the model by the width of the stimulus and category boundary
distributions. See Methods for details. b, Example psychometric function of
the model, replicating the high choice accuracy of rats for pure odours and
decreased accuracy for mixtures near the imposed the category boundary.
c, Mean accuracy of model choices as a function of decision uncertainty. The
uncertainty estimate, s, is transformed from the distance between the
stimulus and boundary samples (si 5 1 2 tanh( | si 2 bi | )), see Methods).
d, Mean decision uncertainty estimates generated by the model as a function
of stimulus and trial outcome. Note that the model (or a subject) has access
only to a stimulus sample and not the stimulus type (for example, 56/44) (see
Supplementary Information for an explanation of the pattern of uncertainty
estimates.). e, Firing rate of an example neuron (same unit as Fig. 3a, b)
during the outcome anticipation period as a function of odour stimulus and
trial outcome. Error bars are s.e.m. across trials. f, Mean choice accuracy as a
function of the firing rate for the same unit in e. Firing rates were binned and
the mean accuracy was calculated for each range of firing rates. Error bars
represent standard errors based on the binomial distribution of outcomes.
g, Mean normalized firing rate of negative outcome selective population
(negative outcome preference index across trials with all stimuli pooled at
P , 0.05, permutation test) during the anticipation period. h, Mean accuracy
as a function of the firing rate for the same neuron population as in g. Firing
rates were binned for individual neurons and the mean accuracy was
calculated for each range of firing rates. These curves were normalized to a
maximal firing rate of 1 and averaged. Error bars represent s.e.m. across
neurons.
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trial (Fig. 5a). While waiting at the choice port, the decision whether
to stay and wait for a possible reward or to go and reinitiate the trial
could benefit from an estimate of the confidence in the original
decision. Indeed, we found that rats preferentially aborted uncertain
trials. Like the neural responses in OFC, these response patterns
closely agreed with the predictions of the decision confidence model
(Figs 5b, c and 4d). Therefore rats not only show a neural correlate of
decision confidence but they can use such information in subsequent
decisions to guide adaptive behaviour.

The patterns of neural activity and behaviour we observed suggest
that when a decision is made the brain not only makes a choice but
also generates an evaluation about the quality of evidence that con-
tributed to the decision. We liken this to the way P values are assigned
to statistical statements. Our interpretation of the data rests on two
results: first, we defined a mechanism for computing confidence in
simple decision models and showed that this produced a close fit to a
non-trivial pattern of neural and behavioural data; second, we ruled
out alternative models for the data, principally ones based on learn-
ing. Confidence estimates based on internal decision variables pro-
vide useful information that is not readily gained by observing the
past relationships between externally observable stimulus, response
and outcome variables. Intuitively, this is possible because the
observable result of a decision, the choice, is only a partial distillation
of the information entering the internal decision process. Computing
decision confidence essentially requires calculating how ‘close a call’
was the choice or how well the evidence was in agreement. When
decision ‘noise’ arises from sources internal to the brain, this process
is inherently subjective (accessible only to the subject). More form-
ally, decision confidence can be expressed as the variance measured
across the set of decision variables contributing to a single trial (see
Supplementary Information). Two different classes of decision
model yielded very similar results, suggesting a degree of generality
to our description. Nevertheless, it will be important to examine the
properties of other methods for estimating confidence.

A variety of results suggests that a key function of OFC is to generate
reward predictions based on stimulus–reward associations7–10. Our
data support and extend this idea by showing that OFC neurons signal

outcome predictions derived from a different source, specifically,
from internal variables contributing to a perceptual decision on a
given trial. In addition to predicting expected rewards, OFC has also
been implicated in signalling outcome risk or variance16–20. Because in
a two-alternative psychophysical decision task the expected reward
and its variance are closely related, our data are consistent with both
functions and further experiments will be needed to distinguish
between these alternatives. It also remains to be determined whether
OFC neurons drive the reinitiation behaviour displayed by rats (Fig. 5)
or other behaviours contingent on confidence estimates. Indeed,
decision confidence signals could be useful for a variety of functions,
including controlling exploration24,25, modulating learning rates26 and
focusing attention27,28.

Bayesian theory suggests that uncertainty estimates must be incor-
porated into neural computations for optimal behaviour29. Humans
and other primates clearly have the ability to assess and act on the
degree of uncertainty or confidence in their beliefs about the
world1,11,30, but it has been argued that this might be a sophisticated
‘metacognitive’ capacity requiring self-awareness13,14 and a neural
architecture specific to primates11. Our results show that rodents
possess the ability to act on their degree of belief in a decision12

and demonstrate that estimating the confidence in a choice is little
more complex than calculating the choice itself. It is likely that con-
fidence estimates for memories or other beliefs11,30 could be derived
in an analogous fashion. We suggest that the computation of sub-
jective confidence may be a core component of decision-making that,
like subjective value signals7–10,21–23, is important to a wide range of
behaviours and their neural substrates.

METHODS SUMMARY

Male Long-Evans hooded rats were trained to perform an odour categorization

task for water reward. Behavioural testing was controlled by custom software

written in Matlab (Mathworks) using data acquisition hardware (National

Instruments) to record the port signals and control the valves of the olfactometer

and water-delivery15.

Rats were implanted with custom-made microdrives in the left orbitofrontal

cortex (3.5 mm anterior to bregma and 2.5 mm lateral to midline). Extracellular

recordings were obtained with six independently movable tetrodes using the

Cheetah system (Neuralynx) and single units were isolated by manually cluster-

ing spike features with MClust (A. D. Redish).

We focused our analysis on the ‘reward anticipation period’ while rats

remained at one of the choice ports. This excluded spikes that occurred during

or after water valve actuation on correct trials; on error trials, no feedback was

present. To determine how well neural activity predicted the upcoming outcome

(reward/no reward), we used receiver operating characteristics (ROC) analysis to

calculate an outcome preference index (OP) that measures how well an ideal

observer can predict the outcome from the knowledge of the firing rate from trial

to trial. This index varies from 21 to 1 with the sign denoting whether a neuron

fires more for rewarded (correct, 1) or unrewarded (error, 2) decisions:

OP~2(ROCarea{0:5); ROCarea~

ð?

0

P(fcorrect~f )P(ferrorvf )df where fcorrect

and ferror refer to the distribution of firing rates during the reward anticipation

period in correct and error trials respectively. Statistical significance was evaluated

using a permutation test, where trial order was pseudo-randomly shuffled 200 times

to yield a P value.

All procedures involving animals were carried out in accordance with

National Institutes of Health standards and were approved by the Cold Spring

Harbor Laboratory Institutional Animal Care and Use Committee.

Full Methods and any associated references are available in the online version of
the paper at www.nature.com/nature.
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METHODS

Here we describe the behavioural and physiological methods used in this study

and explain the analyses presented in the main text.

Behavioural task. The behavioural box contains a panel of three ports: the

central port for odour delivery (‘odour port’), and two ports on each side

(‘choice ports’) for water delivery (Fig. 1a). Entry and exit from the ports was

detected based on an infrared photo-beam located inside each port. Odours were

mixed with pure air to produce a 1:20 dilution at a flow rate of 1 l min21 using a

custom-built olfactometer15.

Rats self-initiated each experimental trial by introducing their snout into a

central port where odour was delivered (Fig. 1a). After a variable delay, drawn

from a uniform random distribution of 0.2–0.5 s, a binary mixture of two pure

odorants, caproic acid and 1-hexanol, was delivered at one of 4–6 concentration

ratios (100/0, 68/32, 56/44, 44/56, 32/68, 0/100; Fig. 1b) in pseudorandom order

within a session. After a variable odour sampling time up to 1 s, rats responded by

withdrawing from the central port, which terminated the delivery of odour, and

moved to the left or right choice port (Fig. 1a). Choices were rewarded according

to the dominant component of the mixture, that is, at the left port for mixtures

A/B , 50/50 and at the right port for A/B . 50/50 (Fig. 1b). We introduced a

variable reward delay period after entry into the choice port. For correct choices,

reward was delivered between at least 0.3 s after entry into the choice port and

sometimes up to 2 s (in individual sessions the delays were uniformly distributed

with the onset ranging from 0.3–0.8 s and the offset to 1–2 s). Outcome selectivity

calculations used firing rates calculated over the first 0.4 s of the reward anti-

cipation period. In a few sessions the reward anticipation was 0.3 s (e.g. Fig. 2c,

d); in those sessions the entire reward anticipation period was used.

This task allowed us to control the distance of each stimulus to the category

boundary and hence systematically manipulate the difficulty of individual cate-

gorization problems (Fig. 1d). Intuitively, this task is analogous to categorizing

colours along a continuous spectrum (for example, blue/green, Fig. 1b). For

colour blends in the middle, the answer depends on a semi-arbitrary convention

of colour category boundaries. Similarly, our training protocol enforced the 50/

50 odour category boundary, which is semi-arbitrary, as the pure odours do not

have equal intensity.

Reinitiation task. In this version of the task, the delay to reward was increased to

between 2 and 8 s (uniform random distribution). Errors were signalled with an

auditory beep at 8 s and punished with an additional 4 s time-out. After a 2 s

mandatory wait from the entry into a choice port and before water or auditory

feedback was provided, subjects were allowed to abort trials by exiting the water

port. Entry into the odour port within 2 s of aborting was considered as ‘reinitia-

tion’. The stimulus ensemble consisted of 75% easy (95/5, 80/20 mixtures:

92 6 4% accuracy, s.e.m across rats) and 25% difficult (53/47, 51/49 mixtures:

55 6 2% accuracy) stimuli so that rats could expect to encounter an easier

stimulus after reinitiating a new trial. The expectation of a rat to receive reward

by staying at the choice port should be proportional to its confidence about the

first choice (Fig. 4d) while the expectation to receive reward by reinitiating a new

trial should be fixed (because the new stimulus is not predictable). Therefore the

relative value of reinitiating is predicted to increase as confidence drops, with

approximately the same dependence on stimulus and outcome as given by the

model (Fig. 4c). The exact value depends on the actual delays and the subject’s

temporal discounting function.

Neural data collection and analysis. Rats were implanted with custom-made

microdrives in the left orbitofrontal cortex (3.5 mm anterior to bregma and

2.5 mm lateral to midline) as described previously31 (Supplementary Fig. 1).

Extracellular recordings were obtained using six independently adjustable

tetrodes for recording. Electrodes were advanced each recording day to sample

an independent population of cells across sessions. The placement of electrodes

was estimated by depth and confirmed with histology. Neural and behavioural

data were synchronized by acquiring time-stamps from the behavioural system

along with the electrophysiological signals. Data analysis was performed using

Matlab (Mathworks).

For Fig. 2e, f, confidence-modulated neurons were selected by performing a

non-parametric, Wilcoxon signed-rank test on firing rates during the reward

anticipation period for correct versus error trials. Neurons with significant

(P , 0.05) firing rate differences were separated into two populations based

on whether their mean firing rate was higher for correct or error trials. We then

plotted the maximum normalized firing rate averaged for each neural popu-

lation as a function of stimulus mixture ratio. We used this selection criterion

because by not using information about the stimulus it does not impose a specific

shape on the tuning curves. Other selection criteria, such as significant rate-

accuracy correlations (for example, Fig. 2d), yielded similar results.

Multiple linear regression analysis. We considered the possibility that a pre-

diction of upcoming trial outcome might be made on the basis of recent reward

history32–35 and other observable task variables. For example, if the average

performance fluctuated due to changes in attention or motivation and OFC

neurons tracked the recent history of trial outcomes, it could lead to a differential

prediction of correct versus error trials when averaged over the entire session. In

this scenario, outcome selectivity would arise because the present trial’s expected

outcome is correlated with the recent trials’ outcomes. Although we did not

observe prominent performance fluctuations, we wanted to test this and related

possibilities directly. We used multiple linear regression in an attempt to predict

the firing rate of a given trial based on the history of recent reward outcomes and

experimental variables (stimulus type and choice direction). Specifically we

fitted the firing rates during the reward anticipation period to the following

model:

RATEt~0~a1St~0za2Ct~0{
X{3

k~0

bL
t~kOL

t~k{
X{3

k~0

bR
t~kOR

t~kzc

where St50 represents the stimulus difficulty of the current trial (t 5 0), which is

assumed to be learned through long-term experience with a given stimulus; Ct50

represents the choice of sides (left or right, L or R) in the current trial, which is

known to influence the firing rate of OFC neurons31,36. The variable OSIDE
t~k repre-

sents outcomes of the current trial and past three trials (t 5 21, 22, 23),

separated according to the side where the reward was received, again to account

for the known selectivity of rodent OFC neurons31,36. The coefficients a1 and a2

measure the influence of the stimulus difficulty and the choice, bL
t~k and bR

t~k

measure the influence of current and past trial outcomes, and c captures the

mean rate not accounted for by other variables.

The model was fitted using a least-square error criterion with singular value

decomposition (SVD). In some cases the problems were ill-conditioned and

therefore we also tried ridge regression to obtain more stable solutions. For this

analysis, the optimal regularization parameter was chosen by generalized cross-

validation37. The results of both analyses essentially agreed and therefore we

report the results from SVD estimated regression models. The statistical signifi-

cance of regression coefficients was determined using a permutation test by

pseudo-randomly shuffling trial order for the variable of interest38. The data

were shuffled 1,000 times to yield a P value for the permutation test.

Supplementary Fig. 5a shows the coefficients of this model fit to the neuron

shown in Fig. 3a, b. Error bars show standard deviations estimated using leave-

one-out-bootstrap37 and filled circles show significant values at P , 0.05 based

on a permutation test. This neuron had significant selectivity for the upcoming

outcome, bL,R
t~0, for both choice sides, as well as for the previous outcome, bL,R

t~{1,

to a much smaller degree, while the influence of past outcomes, bL,R
t~{2,{3, was

not significant. Leaving out all past outcomes, bL,R
t~{1,{2,{3~0, did not signifi-

cantly increase the prediction error (P , 0.05, permutation test).

This analysis was repeated on the population of 133 neurons (Fig. 4g, h) that

were deemed to be negative outcome selective (pooling trials across all stimuli)

based on ROC analysis at P , 0.05. Supplementary Fig. 5b shows the number of

neurons (grey bars) and the mean value of significant regression coefficients

(circles, P . 0.05). Overall, 121 neurons had significant bL,R
t~0 coefficients for

the current outcome and 70 neurons had significant bL,R
t~{1 coefficients for the

outcome of the previous trial for at least one side. Only four neurons carried past

outcome information for at least one side for all three trials back. Comparison of

the average value of the significant coefficients for current and past trial out-

comes (Supplementary Fig. 5b, circles) shows that even when past trial outcomes

had significant coefficients the average value of their weights was only half those

for the current trial.

We also performed an analysis to test whether including the history of recent

outcomes improves the model fit. To do this, we compared the full model to one

in which the coefficients bL,R
t~{1,{2,{3 were set to zero and used a permutation

test to compare the mean prediction errors for the full and reduced model. To

obtain a conservative estimate (that is, allow the best chance for inclusion of

history terms to increase performance) we did not compensate for the increased

complexity of the full model. This analysis showed that for only 12 of 116

neurons did the inclusion of past outcome information, bL,R
t~{1,{2,{3, signifi-

cantly reduce the prediction error (P , 0.05, permutation test). Moreover, the

reduction in error was small, with an average ,3% improvement for the full

compared to the reduced (current-trial-only) model.

In summary, we conclude that although a subset of OFC neurons do carry

information about past outcomes, past trial events account for a relatively small

fraction of the firing rate variance compared to what can be explained by the

anticipated current trial outcome.

Outcome selectivity analysis. Orbitofrontal cortex is known to signal outcome

expectations39–42, and an apparent prediction of outcome might arise from a

combination of stimulus and side selectivity. If firing rates encoded the stimulus

difficulty (Fig. 2) and in addition were modulated by the choice side31,35 one
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would expect (1) outcome preference would be inverted across choice sides, and
(2) outcome selectivity would be equal or weaker for easier compared to more

difficult stimuli. A cartoon of this scenario is shown in Supplementary Fig. 3b,

with both an additive and a multiplicative component to the choice side modu-

lation. In contrast, the uncertainty model makes the opposite predictions

(Supplementary Fig. 3a and Fig. 4d). Although the average tuning curve for

negative outcome selective neurons are similar to what is expected for a repres-

entation of uncertainty (Fig. 4g), we wanted to test these predictions on a neu-

ron-by-neuron basis. We used the outcome preference index (OP) to measure

whether the firing rates are higher or lower for error trials, and the unsigned

version of this measure, the outcome selectivity index (OS 5 jOPj), to measure

whether how strongly firing rates signal different outcomes. These measures are

based on signal detection theory and quantify the difference between the firing

rates for error and correct trials (see Methods Summary for details). Statistical

significance was estimated using a 200-fold permutation test43 at P , 0.05. Note

that for these analyses trials had to be subdivided according to several stimulus

types and for many neurons there were few error trials available to reliably

compare conditions. An insufficient number of error trials can result in either

spurious selectivity values due to noise and/or low significance values.
First we tested whether the direction of outcome preference was concordant

across sides (that is, regular arrows in Supplementary Fig. 3a, b). We used 310 out

of 563 neurons for which there were more than 5 error trials for each of 32/68 and

68/32 stimuli. From these neurons 116 showed outcome selectivity across all

stimuli, but only 19 were significantly selective for both 32/68 and 68/32 mix-

tures when considered separately. 85% (16/19) of neurons had concordant out-

come preference values, and the preference values were significantly correlated

across sides (r2 5 0.66, P , 0.05; Supplementary Fig. 3c). Next we tested whether

outcome selectivity was stronger for easy stimuli (32/68 and 68/32 mixtures)

compared to more difficult ones (44/56 and 56/44 mixtures; see dashed arrows in

Supplementary Fig. 3a, b). Out of 317 neurons with 56/44 trials, 131 were

selective across all stimuli but only 23 were significant for both easy and difficult

mixtures when considered separately. For 91% (21/23) of these neurons, out-

come selectivity was stronger for easier stimuli (Supplementary Fig. 3d). These

analyses support the uncertainty model (Supplementary Fig. 3a) and are not

consistent with the hypothesis that choice side-modulation of stimulus encoding

neurons produces an apparent outcome selectivity (Supplementary Fig. 3b).

Next we conducted an additional analysis to show how well individual neu-
rons conform to the firing patterns expected for decision confidence across the

entire recorded OFC population. We used OP to measure whether the firing

rates are higher or lower for error versus correct trials across 32/68, 44/56, 56/44

and 68/32 stimuli. In addition, we calculated a stimulus difficulty selectivity

index (DI) to measure whether firing rates are higher or lower for correct choices

in difficult trials (32/68, 44/56, 56/44 and 68/32 stimuli) compared to easy trials

(0/100 and 100/0 stimuli). Again, both measures are derived from the area under

the ROC from signal detection theory and statistical significance was estimated

using a 200-fold permutation test at P , 0.05. Supplementary Fig. 8 shows DI as

a function of OP across the entire population. Out of 563 neurons, 83 were

significant for both measures, 85 for OP alone, 105 for DI alone and 290 were

not significant at P , 0.05. The selectivity measures were correlated (CC 5 0.75

at P , 0.05) across the entire population. This analysis shows that across the

population without any preselection there is a good correlation between out-

come preference (selectivity for correct/error choices) and stimulus difficulty

preference (selectivity for more/less difficult stimuli) as expected for a decision

confidence signal.

Interpretation of negative outcome selectivity: error signal or uncertainty?
The observed selectivity of neural activity for the upcoming outcome might arise

if, after executing a choice, extra sensory or memory information enters

decision-making circuits and causes the realization that an error occurred even

before obtaining feedback. According to this interpretation the negative out-

come selective population of OFC neurons would signal error44 instead of uncer-

tainty. In contrast, the highest observed firing rates were associated with near

chance level performance and not errors (Fig. 4g, f). To test this more rigorously,

we asked whether an ideal observer could obtain better performance than the

experimental subject if it could switch choices based on the firing rate after the

choice and before feedback is provided. In all but one negative outcome selective

neuron (1/133), the highest firing rates (top 5% of trials) were associated with

chance level performance (within the 95% confidence interval). Therefore nega-

tive outcome selectivity does not imply that OFC neurons are actually able to

predict error trials but rather that high firing rates predict near chance level

performance consistent with an uncertainty signal.

Confidence model. We model the stimulus as the log ratio of the odour mixture

with additive Gaussian noise: si~ log
½A�
½B�zgstim in each trial i, where

gstim[N (0,sstim). The boundary is fixed at 0 with additive noise, bi 5 gbound,
where gbound[N (0,sbound). The choice is computed by comparing stimulus

and boundary, choicei~ leftjsivbi ; rightjsi§bif g The distance between the

stimulus and boundary, di~jsi{bi j, provides an estimate of decision confid-

ence. Other distance metrics, such as Euclidian distance, are also suitable. This

distance measure can be calibrated and linearized to produce a veridical estimate

of outcome probabilities45. We did not attempt to systematically calibrate con-

fidence but found that sigmoid functions provide a good approximation (see

also Supplementary Information). Therefore we define ‘decision confidence’,

di 5 f(di) 5 tanh(di) and its opposite ‘decision uncertainty’ as si 5 1 2 di. For

the simulations in Fig. 4 we chose the stimulus and boundary noise to be equal,

sbound 5 sstim 5 0.5, but we note that the results are dependent only on the total

noise (sum of the variances) not their relative contribution (see Supplementary

Fig. 7). Therefore, the model has a single effective parameter,

snoise~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2

boundzs2
stim

q
, that determines the slope of the psychometric function,

leaving no free parameters with respect to confidence estimates (Supplementary

Fig. 7).
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