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This paper is aimed at understanding what happens to the propensity functions �rates� of bimolecular
chemical reactions when the volume occupied by the reactant molecules is not negligible compared
to the containing volume of the system. For simplicity our analysis focuses on a one-dimensional
gas of N hard-rod molecules, each of length l. Assuming these molecules are distributed randomly
and uniformly inside the real interval �0,L� in a nonoverlapping way, and that they have Maxwellian
distributed velocities, the authors derive an expression for the probability that two rods will collide
in the next infinitesimal time dt. This probability controls the rate of any chemical reaction whose
occurrence is initiated by such a collision. The result turns out to be a simple generalization of the
well-known result for the point molecule case l=0: the system volume L in the formula for the
propensity function in the point molecule case gets replaced by the “free volume” L−Nl. They
confirm the result in a series of one-dimensional molecular dynamics simulations. Some possible
wider implications of this result are discussed. © 2007 American Institute of Physics.
�DOI: 10.1063/1.2424461�

I. INTRODUCTION

The mass action formalism for bimolecular chemical re-
actions, which is reflected in the combinatorial product of the
reactant molecular populations in both the continuous-
deterministic reaction rate and the discrete-stochastic reac-
tion propensity function, has been a workhorse of chemical
kinetics for many decades. This formalism has been shown
to break down in practically all but the most “classic,” three-
dimensional, homogeneous systems. Fractal kinetics was de-
veloped to address this breakdown in cases where the mol-
ecules move by diffusion.1 A separate literature explores
what happens when the molecules move ballistically, as in a
dilute gas.2

In both the diffusive and ballistic cases of motion the
mass-action formalism’s breakdown is thought to occur due
to the eventual establishment of correlations in the positions
of the molecules �i.e., the deviation from the well-stirred
regime�, even in cases where the systems are initially pre-
pared as well stirred �for an overview, see Ref. 3�. Low di-
mensionality is thought to exacerbate this effect by making
“self-stirring” an insufficient way to rerandomize molecular
positions.4

Fractal kinetic laws �in which either the phenomenologi-
cal rate coefficient is made to decrease with time according
to a fractional power, or the concentrations of the reactants
are raised to a rational power� have been applied to a variety
of systems in which reduction and fragmentation of the vol-
ume accessible to diffusing reactants are due to the presence
of finite-size molecules, formation of depletion zones, and
spatial gradients in the molecular concentrations. Fractal ki-

netic laws have a broad range of applicability to realistic
problems.5 The ballistic motion literature, on the other hand,
has been more focused on developing an analytical, mecha-
nistic theory of how the distribution of molecular velocities,
intermolecular distances, and the resulting reaction kinetics
evolve with time, given various initial conditions.6 Neither
literature has concerned itself at any length with the impact
of the finite size of the molecules participating in the reac-
tions.

In the present paper we try to answer the following ques-
tion: What modifications to the mass action law are required
to capture the kinetics of a bimolecular reaction in a well-
stirred gas-phase system in which volume is excluded only
by the reactant molecules? We should note that this scenario
ignores several important features of cellular biochemistry,
for instance, molecular kinetics in solution and crowding by
large nonreacting molecules. However, it has the advantage
of being mathematically tractable, at least in the idealized
case of a one dimensional, single species system. Therefore,
our aim here will be to derive, from first principles, the pro-
pensity function for a reaction of the form A+A→products
in a well-stirred, one-dimensional system that contains only
molecules of species A, these molecules having a finite size.

It is known that for the reactions A+A→A and A+A
→� in one dimension, neither ballistic �gas phase� nor dif-
fusive molecular motion can sustain a well-stirred condition
over many successive reactions.4 For such systems, main-
taining the well-stirred condition would require either exter-
nal stirring or a strongly coupled heat bath. However, our
goal here is not to explore how the well-stirred condition
might be maintained in one dimension; rather, it is to under-
stand the effects of reactant size in three dimensions, where
the well-stirred condition can often be sustained over manya�Author to whom correspondence should be addressed.
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successive reactions in both the ballistic and diffusive motion
cases. The reason we restrict our analysis to a one-
dimensional system is that it is practically impossible to
mathematically model a uniform, nonoverlapping spatial dis-
tribution of finite-size molecules in three �or even two� di-
mensions. Nevertheless, reactant size effects in a well-stirred
one-dimensional system should be strongly suggestive of re-
actant size effects in well-stirred three-dimensional systems,
independently of how the well-stirred condition is main-
tained.

Since bimolecular reactions are always initiated by a col-
lision between two reactant molecules, our main task here
will be to compute the probability pcol�dt� that a collision
will occur, in the next infinitesimal time dt, in a system of N
identical hard-rod molecules, each of length l, which are con-
fined to the real interval �0,L� with L�Nl. Our analysis will
make two important assumptions: First, the positions of the
rods are randomly uniform in �0,L�, subject to the constraint
that no two rods overlap. Second, the system is at some
constant absolute temperature T, so that the velocities of the
molecules can be regarded as independent normal �Gaussian�
random variables with mean zero and variance,

�2 � kBT/m . �1�

Here, kB is Boltzmann’s constant and m is the mass of a
molecule. Equation �1� can be seen most easily from the
equipartition theorem, which says that in thermal equilibrium
the average kinetic energy per molecule is � 1

2mv2�= 1
2kBT.

The normality of the velocity distribution follows from the
Maxwell-Boltzmann formula. Since each rod velocity v is an
independent normal random variable with mean 0 and vari-
ance �2, it follows that the difference in the velocities of any
two rods, i.e., their relative velocity vrel, is a normal random
variable with mean 0 and variance 2�2. It is not hard to show
that the average of the absolute value of vrel, i.e., the average
relative speed of a randomly chosen pair of rods, is

srel � ��vrel�� =	 4

�
� . �2�

Note that, although the initial configuration of the system is
chosen randomly, so as to mimic a well-stirred, thermally
equilibrated state, the subsequent evolution of the system up
until the first collision is entirely deterministic: the molecules
move on the interval with their assigned velocities as though
the system were isolated. However, in our subsequent analy-
sis we do not continue the evolution of the system beyond
the first collision �if we did, we would notice the system
“cooling” as fast-moving molecules are depleted, and corre-
lations between the velocities of the molecules would even-
tually start to form�. We make this choice because the focus
of this paper is not isolated chemical systems, but rather
systems that are in thermal contact with their surroundings,
as for instance, a typical cellular system would be.

In Sec. II we review the standard derivation of pcol�dt� in
the dilute �l=0� case. In Sec. III we give our derivation for
the dense �l�0� case, using the mathematical properties of a
randomly uniform, nonoverlapping distribution of rods in a
fixed interval as derived in Appendices A and B. In Sec. IV

we present some molecular dynamics simulation results that
confirm our theoretical results, making use of the algorithm
derived in Appendix C for uniformly distributing the rods in
�0,L� in a nonoverlapping way. We conclude in Sec. V by
discussing some possible implications of these results.

II. THE DILUTE CASE

To compute pcol�dt� in the dilute gas limit, where each
hard-rod molecule is essentially a point, we begin by choos-
ing from the system a pair of molecules at random, without
regard for their positions. In an infinitesimal time dt, one of
these chosen molecules will sweep out relative to the other
an average distance sreldt. If the second molecule happens to
lie inside the length swept out by the first molecule, the two
molecules will collide in the next dt. Since the molecules are
distributed uniformly inside the interval �0,L�, the probabil-
ity that they will collide in the next dt is simply the ratio of
the size of the interval the second molecule needs to be in for
a collision to occur to the size of the interval the second
molecule is known to be in: sreldt /L. We invoke here the fact
that the space occupied by the point molecules themselves is
zero, or at least negligible compared to L. Since there are
N�N−1� /2 distinct ways in which the pair of molecules
could have originally been chosen, it follows by the addition
law of probability that the probability that some one of those
pairs will collide in the next dt is

1
2N�N − 1�
 sreldt

L
� .

Thus we conclude that, in the dilute limit l=0,

pcol�dt� =
N�N − 1�srel

2L
dt . �3�

In the foregoing argument, the vanishing smallness of dt
ensured that the probability for two or more pairs of mol-
ecules to collide in the next dt is negligibly small compared
to the probability for only one pair to collide in dt. That in
turn implied that pair collisions in time dt can effectively be
regarded as mutually exclusive events, and this is what al-
lowed us to invoke the addition law of probability theory to
obtain Eq. �3�. Equation �3� is thus valid only for infinitesi-
mally small dt.

Some may feel that the foregoing derivation is flawed
because it appears to accord the same collision probability to
all pairs of molecules, regardless of how far apart the mem-
bers of the pair might be. But this criticism is unjustified.
The single pair collision probability sreldt /L is expressly con-
ditioned on the premise that the relative locations of the two
chosen molecules inside �0,L� are not known—that is what
was meant by stipulating that the two molecules be chosen
“at random.” In a sense, sreldt /L is the single-pair collision
probability averaged over all possible relative positions of
the pair members. As has been shown elsewhere,7 a deriva-
tion that explicitly computes the collision probabilities for
adjacent point molecules, which are the only ones that can
physically collide, yields the same result �Eq. �3��.
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III. THE DENSE CASE

If each of the N molecules in the system just considered
had a nonzero extent l, how would the result �Eq. �3�� be
altered? Naively, we might suppose that since a portion Nl of
the interval �0,L� is occupied by the rods themselves, then
the probability that the center of one randomly chosen rod
will lie inside the infinitesimal collision length sreldt of the
other randomly chosen rod would be the ratio of the collision
length sreldt to the free interval length �L−Nl�. This logic
would result in simply replacing L in Eq. �3� with �L−Nl�.
But further reflection might suggest that things should not be
that simple: In a situation where the gap between two adja-
cent rods is less than l, that gap is not available for occupa-
tion by another rod, so perhaps it, too, should somehow be
counted as part of the interval that is excluded by the rods
themselves. We shall show in this section that this last con-
cern is unfounded, and that the seemingly naive replacement
of L in Eq. �3� with �L−Nl� does in fact yield the correct
generalization of Eq. �3� to the case l�0.

We start by choosing at random a pair of adjacent rods,
noting that only adjacent rods are capable of colliding with
each other. Our selection of this adjacent pair is “random” in
the sense that it is made irrespective of the positions and the
velocities of the two rods that comprise the pair. All we
know about these two rods is that the gap � between them is
randomly distributed in a way that is consistent with a ran-
domly uniform, nonoverlapping distribution of N rods inside
the interval �0,L�, and further that their relative velocity vrel

is randomly distributed according to the normal �Gaussian�
density function fG�vrel� with mean 0 and variance 2�2.

The probability density function Pgap��� for the inter-rod
gap distance is derived in Appendices A and B, and the result
is shown in Eq. �B5�. Using that function, we assert that the
probability that our randomly chosen adjacent pair will col-
lide in the next “nearly” infinitesimal time interval �t is, to
first order in �t,

pcol
s.p.��t� = �

�=0

L−Nl

Pgap���d�
�
vrel=−�

−�/�t

fG�vrel�dvrel� + o��t� .

�4�

The superscript “s.p.” signifies that this is the collision prob-
ability for a single pair of adjacent rods, and we note that
there are N−1 such pairs in the system. The integral in pa-
rentheses in Eq. �4� is the probability that the relative veloc-
ity of the two rods will have a sufficiently large negative
value that the rods will collide in the next �t if their present
gap separation is �. That probability is multiplied by the
probability that the gap separation will be infinitesimally
close to �, and the result is then summed over all possible
values of � to obtain the desired collision probability. The
term o��t�, which goes to zero with �t faster than �t but is
otherwise unspecified, accounts for errors in this reasoning
caused by interfering collisions of either rod with its other
neighbor �or a boundary�. The basic assumption being made
here is that the probability for two or more collisions to
occur in time �t can be made negligibly small compared to
the probability of only one collision simply by taking �t
close enough to zero. In the end, we will be interested only

in the case in which �t is taken to be infinitesimally small.
Changing the limits in the vrel integral in Eq. �4� from

�−� ,−� /�t� to �� /�t ,�� which is permissible because
fG�vrel� is symmetric gives

pcol
s.p.��t� = �

�=0

L−Nl

d��
vrel=�/�t

�

dvrel�Pgap���f�vrel�� + o��t� .

Next we change the order of integration over � and vrel,

�
�=0

L−Nl

d��
vrel=�/�t

�

dvrel = �
vrel=0

�L−Nl�/�t

dvrel�
�=0

vrel�t

d�

+ �
vrel=�L−Nl�/�t

�

dvrel�
�=0

L−Nl

d�

= �
vrel=0

�

dvrel�
�=0

vrel�t

d� + o��t� .

The first step here can be seen by graphing the integration
region in �� ,vrel� space. The second step follows by taking �t
so small that the limits �L−Nl� /�t in the two vrel integrations
can be effectively replaced by �. Our assumption that doing
this introduces errors of higher order in �t than the first is
justified by the fact that the Gaussian function fG�vrel� falls
off extremely rapidly with increasing vrel, and in practice
there will always be some finite upper bound on that vari-
able. So now we have

pcol
s.p.��t� = �

0

�

dvrel
 fG�vrel��
0

vrel�t

d��Pgap����� + o��t� .

Since Pgap�0��0, the inner integral over � can be easily
evaluated to first order in �t,

�
0

vrel�t

d��Pgap���� = Pgap�0��vrel�t� + o��t� .

Therefore,

pcol
s.p.��t� = �

0

�

dvrel�fG�vrel�Pgap�0�vrel�t� + o��t�

= Pgap�0��t
1

2
�

−�

�

�vrel�fG�vrel�dvrel� + o��t� ,

�5�

pcol
s.p.��t� = 
 N

L − Nl
��t
1

2
srel� + o��t� .

In the second step we have invoked the evenness of the func-
tion fG�vrel�. In the last step we have invoked the value of the
gap density function Pgap��� at �=0, as prescribed by Eq.
�B5�, and also the definition �Eq. �2�� of srel.

Recalling now that there were N−1 possible ways in
which this adjacent pair of rods could have been chosen, we
apply the addition law of probability once more to infer that
the probability that some one of those adjacent pairs will
collide in time �t is
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pcol��t� = �N − 1�pcol
s.p.��t� + o��t� . �6�

Again, a term o��t� accounts for corrections to the addition
law caused by the small possibility that more than one pair of
rods might collide in time �t. Substituting Eq. �5� into Eq.
�6�, and finally taking the limit �t→dt so that the o��t� term
can finally be dropped, we obtain the principal result of this
paper,

pcol�dt� =
N�N − 1�srel

2�L − Nl�
dt . �7�

We observe that putting l=0 in Eq. �7� indeed gives the
expected dilute gas result �Eq. �3��. More remarkable,
though, is the implication that the dilute result �Eq. �3�� can
be generalized to the dense case simply by replacing the
interval length L with the free interval length, L−Nl. This
goes against the supposition that, in estimating the available
system volume, allowance must somehow be made for gaps
between molecules that are smaller than a molecular diam-
eter, since such gaps are not available for occupancy by a
molecule. We suggest that the intuitive basis for that concern
stems from trying to solve the related but different problem
of uniformly scattering the rods inside the interval �0,L�,
where the nonoverlap condition would indeed preclude plac-
ing a rod between two already placed rods that are separated
by a distance less than l. But, as is shown in Appendix C, the
most efficient algorithm for randomly placing the rods inside
�0,L� in a uniform, nonoverlapping way “deals out” the rods
from left to right in that interval, and thus never tries to place
a rod between two already placed rods.

The result �Eq. �7�� can be viewed from two different
perspectives,

pcol�dt� =  1
2N�N − 1�

sreldt

�L − Nl�

�N − 1�
Nsreldt

2�L − Nl�
. � �8�

The first form in Eq. �8� is the probability that a randomly
chosen pair of rods will collide in the next dt, multiplied by
the number of such pairs. The second form is the probability
that a randomly chosen adjacent pair of rods will collide in
the next dt, multiplied by the number of such pairs. This dual
perspective on pcol�dt� was pointed out in Ref. 7 for the
dilute case l=0, with the aim of demonstrating that both of
these lines of reasoning lead to the same correct formula for
the dt-collision probability. Our present result therefore ex-
tends that earlier finding to the case l�0.

If every collision between two A molecules produced a
chemical reaction, then the propensity function for that reac-
tion would simply be the coefficient of dt in Eq. �7�. More
generally, the propensity function should contain as a factor
the probability preac�coll that a colliding pair of molecules will
actually undergo the reaction. For simplicity, however, in the
following discussion we shall omit this factor and assume
that every collision leads to a reaction.

IV. VERIFICATION OF THE EXPONENTIAL
DISTRIBUTION

The logic used in discrete stochastic chemical kinetics to
deduce the bimolecular propensity function—a logic which
forms the foundation for both the chemical master equation
and the stochastic simulation algorithm8—interprets the re-
sult �Eq. �7�� as implying that the time �next to the next
collision/reaction is an exponential random variable whose
mean is the reciprocal of the coefficient of dt,

��next� =
2�L − Nl�

N�N − 1�srel
. �9�

But this result requires Eq. �7� to hold at the beginning of
every infinitesimal time interval prior to the first collision,9

and hence that at all those times the system be well stirred.
Of course, the system is well stirred, by assumption, at the
beginning of the first infinitesimal interval �0,dt�. But can
the same be said for the succeeding intervals �dt ,2dt�,
�2dt ,3dt�, etc.? A simple heuristic argument giving an affir-
mative answer to this question goes as follows: So long as no
collision has occurred before a given dt interval, we will not
have learned anything at all about the positions of the rods
beyond what we knew at time t=0; thus, for any such dt
interval we may regard the system as still being well stirred.
To put it in another way, we are suggesting that the Maxwell-
ian ballistic motion of the rods, at least up until the moment
of the first collision, does not undo the randomly uniform
spatial distribution of those rods.

To see if this expectation is true, and also to check the
validity of formula �9�, we have performed the following
molecular dynamics experiment:

• Using the generating formula �Eq. �C4��, deal out a con-
figuration of the positions of the N rods in �0,L�. �This
distributes the molecules randomly and uniformly in
�0,L�.�

• Assign each rod a velocity in the form of an indepen-
dent sample of the normal random variable with mean 0
and standard deviation �=	� /4srel. �This puts the mol-
ecules in thermal equilibrium at temperature T �see Eqs.
�1� and �2��.�

• Allow the rods to move accordingly, with rods 1 and N
reflecting elastically off the boundaries, until the first
collision between a pair of rods occurs, and record the
time of that collision.

• Repeat the above steps to obtain many samples of the
time to the first collision/reaction, and then make nor-
malized frequency histograms of those times.

We carried out this experiment for a range of values for
N and the fraction of the interval occupied by the molecules
themselves, �N, where � is the dimensionless parameter de-
fined by
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� � l

L
. �10�

We obtained for each case 20 000 samples of the time to the
first collision/reaction. The estimated probability density
function �pdf� of the time to the first collision is shown as the
solid histograms in Figs. 1 and 2. The dashed curves in these
figures are the pdf’s for the exponential distribution with the
dense-case mean �Eq. �9�� and the dotted curves are the pdf’s
for the exponential distribution for the dilute-case mean with
l=0.

These results show that the distribution of �next is, as
conjectured, accurately described by an exponential distribu-
tion with the dense-case mean �Eq. �9��. For a very low frac-
tion of volume occupied ��N=1% �, the difference between
the three curves is practically impossible to detect. As the
fraction of volume occupied by the molecules increases

��N=50% �, the difference between the dilute and dense ex-
ponential distributions becomes pronounced, and the simula-
tion results in every case match the dense distributions. This
happens consistently over reactant populations ranging from
N=1000 �Fig. 1� to N=4 �not shown�. For N=3 �not shown�
and N=2 �Fig. 2�, a slightly larger difference between the
analytical and simulation curves is observed. We attribute
this discrepancy to the fact that collisions with the hard
boundaries are frequent enough as to be non-negligible when
only two or three molecules are present in the system, and it
vanishes already at N=4. Nevertheless, even for N=2 and
�N=50%, the dense exponential curve provides a reasonably
good approximation to the simulation result.

V. SUMMARY AND DISCUSSION

In this paper, we have derived a formula for the propen-
sity function of the well-stirred reaction A+A→products,
assuming that the N molecules of species A are hard rods of

FIG. 1. Histograms of simulation vs analytical pdf’s �dense and dilute ex-
ponentials� for population N=1000 molecules, and �N=50% and 1%. Here
�= l /L, where L is the “volume” of the system and l is the “size” of one
molecule, so �N is the fraction of the volume of the system occupied by the
molecules themselves. Each simulation ensemble contains 20 000 samples.
The histograms are computed using 140 equal-sized bins.

FIG. 2. Histogram of simulation vs analytical pdf’s for N=2. All other
parameters are the same as for Fig. 1.
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length l that move ballistically with Maxwellian velocities in
the one-dimensional interval �0,L�. Our formula generalizes
the known l=0 formula by replacing the system volume L
with the “free volume” �L−Nl�; perhaps surprisingly, it
shows no effect from spaces between adjacent rods that are
smaller than l. We also reported results of molecular dynam-
ics experiments that confirm not only the accuracy of our
derived formula but also the exponentially distributed nature
of the next-collision time that is implicit in both the chemical
master equation and the stochastic simulation algorithm.

In the molecular dynamics experiments described in Sec.
IV, the initial state of the system was chosen randomly—
according to a uniform distribution of molecular positions
and a Maxwell-Boltzmann distribution of molecular
velocities—but thereafter, until the instant of the first
collision/reaction, the system evolved as though it were me-
chanically isolated. Most real systems of interest are not iso-
lated. A cellular system, for instance, is typically immersed
in some form of heat bath with which it interacts, in an
essentially random way, to keep its temperature �but not its
energy� constant. Since it is not clear how such heat bath
interactions should be modeled �see, for example,
Kopelman3 for three alternatives�, the following simple but
admittedly artificial approach is implicit in our treatment
here: During the time between successive collisions the sys-
tem is treated as though it were isolated. The effects of the
random interactions with the heat bath are then assimilated
all at once at the moment of each collision, thereby estab-
lishing a new spatially homogeneous and thermally equili-
brated initial state for the next collision. In the absence of a
heat bath, the system would typically “cool” as a result of the
removal of usually faster molecules by the reactions. But that
thermally isolated case is not of interest to us here, and that
is why we did not continue our molecular dynamics simula-
tions beyond the time of the first collision.

We recognize that the well-stirred condition cannot be
sustained in this one-dimensional system without some sort
of external stirring. However, our main interest here is in
what our findings suggest for three-dimensional systems,
where the natural motion of the molecules often is sufficient
to maintain a well-stirred condition. It seems likely to us
that, for such three-dimensional systems, the containing vol-
ume in the propensity function formula should similarly be
reduced by something like the close-packed volume of the
reactant molecules.

It is worth noting the well-behaved nature of our propen-
sity function implied by Eq. �7�. As the size of the molecules
goes to zero, our dense propensity function limits to the well-
known point molecule result. Further, the divergence of our
propensity function as the size of an A molecule becomes so
large that N of those molecules occupy the entire interval L
seems physically quite reasonable, since in that limit the
probability of a collision in the next dt should approach
something close to 1. More generally, it seems reasonable to
expect that, even under diffusing conditions, the N depen-
dence of the propensity function should change as the ratio
of the size of an A molecule to the size of the system volume
�the ratio � in our analysis� changes.

Another interesting property of Eq. �7� is revealed by
expanding that formula in a power series, using the dimen-
sionless parameter � defined in Eq. �10�,

a�N� = 
 srel

L
� 1

2N�N − 1�
�1 − �N�

= 
 srel

L
� 1

2N�N − 1��1 + �N + �2N2 + ¯ � . �11�

Form �11� shows how the usual “combinatorial” dependence
of the propensity function on the number of molecules N gets
altered by molecular crowding. For a given system volume
size L, as the size l of an A molecule goes from zero, where
the propensity function behaves quadratically, to its maxi-
mum value L /N, where the propensity diverges, the propen-
sity passes successively through stages in which its N depen-
dence can be roughly approximated by a power law, a�N�
�kNX, where X=2,3 ,4. . .. As � is taken larger and larger,
the dominant term in parentheses on the right of Eq. �11� will
be one with an increasingly higher exponent on N. An amus-
ing instance of this power-law-like fit occurs for l=0.65 and
L=1000: for this value of � our propensity function mimics
rather closely the dN /dt�N3 behavior that is expected in a
one-dimensional isolated, diffusion-limited system.1

There are two directions in which the present work could
be extended. First, we would like to see if this result does
indeed extend to higher dimensions. However, because there
exists no efficient �rejection-free� algorithm for uniformly
scattering nonoverlapping molecules in two and three dimen-
sions, numerical simulations of the kind we have done here
for those cases would be extremely difficult to carry out.
Second, the question begs to be asked: what is the impact of
having more than one reacting species, or a mix of reacting
and nonreacting species? The challenge in that case is that, in
one dimension, the problems of volume segmentation by
nonreacting molecules and of reaction front and spatial het-
erogeneity formation are greatly exacerbated.
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APPENDIX A: UNIFORM DISTRIBUTION
OF HARD RODS ON A FIXED INTERVAL

Let N rods, each of length l, be randomly and uniformly
distributed over the x-axis interval �0,L� subject to the con-
dition that no rods overlap �the rods are thus “hard”�. Let the
rods be numbered from left to right, and let xn, for n
=1, . . . ,N, locate the center of the nth rod �see Fig. 3�. Let
P�x1 , . . . ,xN� be the joint probability density function of
these N position variables. We shall prove here that

P�x1, . . . ,xN� = �
n=1

N

Pn�n−1�xn�xn−1� , �A1�

where the probability density function of xn conditioned on
xn−1 is given by

Pn�n−1�xn�xn−1� =
N − n + 1

�Ln−1 − xn−1�N−n+1 �Ln − xn�N−n

�xn−1 + l 	 xn 	 Ln;n = 1, . . . ,N� .

�A2�

Here the parameter x0 is defined by

x0 � − 1
2 l , �A3�

and the N+1 parameters L0 , . . . ,LN are defined by

Ln � L − 1
2 l − �N − n�l �n = 0, . . . ,N� , �A4a�

or, equivalently, by the recursion relation

Ln ��L − 1
2 l for n = N

Ln+1 − l for n = N − 1,N − 2, . . . ,0.
� �A4b�

A close examination of Eq. �A4b� in conjunction with Fig. 3
will reveal that, for each n=1, . . . ,N, Ln is the upper limit on
xn, i.e., the value xn would have if rods n through N were all
shoved as far right in the interval �0,L� as possible.

A systematic derivation of the above result was given in
Ref. 10 �although there the rods were numbered from right to
left instead of from left to right�. Since that derivation is
lengthy and formal, we shall give here a derivation that is
shorter and more transparent. We begin by noting that any
joint probability density function P�x1 , . . . ,xN� can always be
written in the “conditioned” form

P�x1, . . . ,xN� = �
n=1

N

Pn�xn�xn−1,xn−2, . . . ,x1� ,

where Pn�xn �xn−1 , . . . ,x1�dxn gives the probability that the
nth variable will have a value in �xn ,xn+dxn� given that the
n−1 lower indexed variables have the respective values
xn−1 , . . . ,x1. But it is physically clear in our problem �see Fig.

3� that once the position of rod n−1 has been fixed, the
positions of all the lower indexed rods supply no additional
information about the possible position of rod n. Thus, for
our problem, the above general conditioning formula reduces
to the simpler form �Eq. �A1��.

To establish Eq. �A2�, we shall derive an expression for
the probability Pn�n−1�xn �xn−1�dxn that the center of the nth
rod from the left will lie in the infinitesimal interval �xn ,xn

+dxn�, given that the center of the �n−1�th rod from the left
is at xn−1. The “given” here implies that the nth rod from the
left, which we label n, will have its center somewhere in the
interval �xn−1+ l ,Ln�, and further that the first rod to its right,
which we will label n+1, will have its center somewhere in
the interval �xn−1+2l ,Ln+1�. In general, the kth rod to the
right of rod n, which we label n+k, will have its center
somewhere in the interval �xn−1+ �1+k�l ,Ln+k�. Now we
make the observation that, although the boundaries of these n
confining intervals are all different, their lengths are all equal
to Ln−1−xn−1: Thus, the length of the interval containing the
center of rod n is

Ln − �xn−1 + l� = �Ln − l� − xn−1 = Ln−1 − xn−1,

where the last step invokes the second of relations �A4b�,
and the length of the interval for the center of rod n+k for
any k=1, . . . ,N−n is

Ln+k − �xn−1 + �1 + k�l� = �L�n−1�+�1+k� − �1 + k�l� − xn−1.

But since the second of relations �A4b� implies that Ln

=Ln+k−kl, the quantity on the right in brackets is Ln−1, so the
interval length is again Ln−1−xn−1. So we see that, once the
value of xn−1 is known, the values of every one of the higher-
indexed variables xn , . . . ,xN will be restricted to an interval
of length Ln−1−xn−1.

To compute the probability that the center of rod n will
lie inside the infinitesimal interval dxn at xn, given that rod
n−1 has its center at xn−1, we first choose at random any one
of the N−n+1 rods to the right of rod n−1, without regard
for its position or ordering. All we know about this randomly
chosen rod is that its center must be confined to some inter-
val of length Ln−1−xn−1, therefore, the probability that its
center will actually lie in a particular interval of length dxn is
just the ratio of those two interval lengths,

dxn

Ln−1 − xn−1
.

If this dxn subinterval is located at the value xn, then our
randomly chosen rod will be the leftmost of the rightmost
N−n+1 rods if and only if all the N−n remaining rods lie to
the right of xn. That in turn means, by the result developed in
the preceding paragraph, that the center of each one of those
N−n other rods must be restricted to an interval of length
Ln−xn. Since all we know about any one of those other rods
is that it is confined to an interval of length Ln−1−xn−1, the
probability that it will actually lie inside a smaller interval of
length Ln−xn is the ratio

FIG. 3. Schematic of N hard rods, each of length l, distributed inside the
x-axis interval �0,L�. The variables xn locate the centers of the rods, and the
variables �n measure the gaps between the rods.
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Ln − xn

Ln−1 − xn−1
.

We conclude, then, that the net probability for the center of
the chosen rod to lie in the infinitesimal interval dxn at xn and
for all the N−n other rods to lie to the right of xn �thus
making the chosen rod the left-most of those N−n+1 rods� is

dxn

Ln−1 − xn−1

 Ln − xn

Ln−1 − xn−1
�N−n

=
dxn

�Ln−1 − xn−1�N−n+1 �Ln − xn�N−n.

Finally, since there are N−n+1 ways in which we could have
chosen that first rod, it follows that the probability
Pn�xn �xn−1�dxn must be equal to N−n+1 times the above
probability. This establishes result �A2�.

APPENDIX B: THE GAP DISTRIBUTION

In the problem addressed in Appendix A, number the
gaps between adjacent rods so that gap n is bounded on the
right by rod n and/or on the left by rod n−1. The length �n of
gap n will thus be given by �see Fig. 3�

�n = xn − xn−1 − l �n = 1, . . . ,N + 1� . �B1�

Here we have recalled definition �A3� of x0, and additionally
defined

xN+1 � L + 1
2 l . �B2�

Counting the two gaps adjacent to the interval boundaries,
there are a total of N+1 gaps; however, only N of these gaps
are algebraically independent, since the sum of all the gaps
must be the unoccupied length L−Nl.

Let us calculate the probability density function of the
length of gap 1, the gap between the origin, and the left edge
of rod 1. From Eqs. �B1� and �A3� we see that the size of that
gap is related to x1 by �see Fig. 3�

�1 = x1 − �− 1
2 l� − l = x1 − 1

2 l .

The density function of x1 is given by Eq. �A2� with n=1,

P1�0�x1�x0� =
N

�L0 − x0�N �L1 − x1�N−1 �x0 + l 	 x1 	 L1�

=
N

�L − Nl�N�L − Nl + 1
2 l − x1�N−1

� 1
2 l 	 x1 	 L − Nl + 1

2 l� ,

where the last step has used definitions �A3� and �A4�. Note
that since x0 is a constant, this is really the unconditioned
density function of the variable x1. The unconditioned den-
sity function of the variable �1 can therefore be computed by
applying the change-of-variable rule in probability theory,

P̂1�0��1�x0� = P1�0�x1�x0��dx1

d�1
� .

Here, x1 on the right is now understood to be the function
x1��1�=�1+ 1

2 l. This immediately yields the result

P̂1�0��1�x0� =
N

�L − Nl�N �L − Nl − �1�N−1

�0 	 �1 	 L − Nl� . �B3�

It turns out that all the other gaps �2 ,�3 , . . . ,�N have this
same unconditioned density function. We shall prove this
explicitly for the gap variable �2, and then consider the result
for the remaining gaps to be obvious on grounds of symme-
try.

To calculate the unconditioned density function for �2,
we need to first compute the unconditioned joint density
function for x1 and x2,

P1,2�0�x1,x2�x0� = P1�0�x1�x0�P2�1�x2�x1�

=
N�N − 1�
�L0 − x0�N �L2 − x2�N−2

=
N�N − 1�
�L − Nl�N�L − Nl + 3

2 l − x2�N−2.

The second step above follows from Eq. �A2�, and the last
step follows from definitions �A3� and �A4�. The domain of
definition of this joint density function �outside of which the
function vanishes� is

�x0 + l 	 x1 	 L1;x1 + l 	 x2 	 L2�

= � 1
2 l 	 x1 	 L − Nl + 1

2 l;x1 + l 	 x2 	 L − Nl + 3
2 l� ,

where the last step follows from definitions �A3� and �A4�.
Now we make the transformation of variables �x1 ,x2�
→ �x1 ,�2�, where in accordance with Eq. �B1�, �2=x2−x1− l.
The joint density function of the new pair of variables is

P̂1,2�0�x1,�2�x0� = P1,2�0�x1,x2�x0�� ��x1,x2�
��x1,�2�

� ,

where x2 on the right is now regarded as the function
x2�x1 ,�2�=�2+x1+ l. The Jacobian here is easily shown to be
unity, so we have

P̂1,2�0�x1,�2�x0� =
N�N − 1�
�L − Nl�N�L − Nl + 1

2 l − �2 − x1�N−2.

The domain of definition of this function is found by replac-
ing x2 in the previous domain formula with the function
x2�x1 ,�2�. That gives

� 1
2 l 	 x1 	 L − Nl + 1

2 l;0 	 �2 	 L − Nl + 1
2 l − x1�

= �0 	 �2 	 L − Nl; 1
2 l 	 x1 	 L − Nl + 1

2 l − �2� ,

where the last step follows by interchanging the bounding
order of the variables x1 and �2. Now we can compute the
unconditioned density function of �2 by integrating out the
variable x1,
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P̂2�0��2�x0� = �
�1/2�l

L−Nl+�1/2�l−�2

P̂1,2�0�x1,�2�x0�dx1

=
N�N − 1�
�L − Nl�N�

�1/2�l

L−Nl+�1/2�l−�2

�L − Nl + 1
2 l

− �2 − x1�N−2dx1

=
N�N − 1�
�L − Nl�N�

0

L−Nl−�2

uN−2du ,

�B4�

P̂2�0��2�x0� =
N

�L − Nl�N �L − Nl − �2�N−1

�0 	 �2 	 L − Nl� .

Comparing results �B3� and �B4� for �1 and �2, we con-
clude by symmetry that the unconditioned density function
of any gap length between adjacent rods is

Pgap��� =
N

�L − Nl�N �L − Nl − ��N−1 �0 	 � 	 L − Nl� .

�B5�

APPENDIX C: MONTE CARLO PLACEMENT OF THE
RODS

Equations �A1� and �A2� allow us to construct a Monte
Carlo algorithm for dealing out the rods from left to right in
the interval 0
x
L, successively specifying values for
x1 ,x2 , . . . ,xN, in such a way that the resulting configuration
will be an unbiased sample of the uniform nonoverlapping
distribution.10 The first step in constructing this generating
algorithm is to compute the cumulative distribution function
Fn�n−1�xn �xn−1� corresponding to the probability density func-
tion �Eq. �A2��,

Fn�n−1�xn�xn−1� � �
xn−1+l

xn

Pn�n−1�xn��xn−1�dxn�

=
N − n + 1

�Ln−1 − xn−1�N−n+1�
xn−1+l

xn

�Ln − xn��
N−ndxn�.

�C1�

The integration is easily performed using the variable trans-
formation u=Ln−xn�, and recalling from Eq. �A4b� that Ln

− l=Ln−1. The result is

Fn�n−1�xn�xn−1� = 1 − 
 Ln − xn

Ln−1 − xn−1
�N−n+1

. �C2�

Now we apply the standard Monte Carlo inversion pro-
cedure to generate a set of values for x1 ,x2 , . . . ,xN according

to the joint probability density function �Eq. �A2��: We pick
N random numbers r1 ,r2 , . . . ,rN from the unit-interval uni-
form distribution, and then solve the equation

Fn�n−1�xn�xn−1� = rn, �C3�

for xn, successively for n=1,2 , . . . ,N. Substituting Eq. �C2�
into Eq. �C3�, and for convenience replacing rn by 1−rn

�which is allowed since the latter will also be uniformly dis-
tributed in the unit interval�, we get


 Ln − xn

Ln−1 − xn−1
�N−n+1

= rn.

Solving this for xn gives us the generating formula10

xn = Ln − �Ln−1 − xn−1�rn
1/�N−n+1� �n = 1,2, . . . ,N� , �C4�

which is to be applied successively for increasing n. As be-
fore, x0=− 1

2 l, and the set of constants �L0 ,L1 , . . . ,LN� is as
given in Eqs. �A4�.

It is shown in Ref. 10 that the alternative generating
procedure of independently placing each rod center uni-
formly at random inside the interval � 1

2 l ,L− 1
2 l� and then ac-

cepting the final set if and only if no overlap occurs has an
associated acceptance probability of ��L−Nl� / �L−a��N. For
N=100 rods of length l=1 on an interval of length L=200,
this probability of acceptance is only 1.3�10−30. By con-
trast, procedure �C4� gives an acceptable configuration every
time. The reason is that this procedure knows that the nth rod
laid down is to be the nth rod from the left, so it biases the
selection appropriately to the left, taking account of the al-
ready generated location of the �n−1�th rod.
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