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Rudolph, Michael, Zuzanna Piwkowska, Mathilde Badoual, Thi-
erry Bal, and Alain Destexhe. A method to estimate synaptic con-
ductances from membrane potential fluctuations. J Neurophysiol 91:
2884–2896, 2004; 10.1152/jn.01223.2003. In neocortical neurons,
network activity can activate a large number of synaptic inputs,
resulting in highly irregular subthreshold membrane potential (Vm)
fluctuations, commonly called “synaptic noise.” This activity contains
information about the underlying network dynamics, but it is not easy
to extract network properties from such complex and irregular activ-
ity. Here, we propose a method to estimate properties of network
activity from intracellular recordings and test this method using the-
oretical and experimental approaches. The method is based on the
analytic expression of the subthreshold Vm distribution at steady state
in conductance-based models. Fitting this analytic expression to Vm

distributions obtained from intracellular recordings provides estimates
of the mean and variance of excitatory and inhibitory conductances.
We test the accuracy of these estimates against computational models
of increasing complexity. We also test the method using dynamic-
clamp recordings of neocortical neurons in vitro. By using an on-line
analysis procedure, we show that the measured conductances from
spontaneous network activity can be used to re-create artificial states
equivalent to real network activity. This approach should be applica-
ble to intracellular recordings during different network states in vivo,
providing a characterization of the global properties of synaptic
conductances and possible insight into the underlying network
mechanisms.

I N T R O D U C T I O N

Neocortical neurons in vivo are characterized by intense
subthreshold synaptic activity, which is often called “synaptic
noise.” This activity is particularly intense in activated states
with desynchronized electroencephalogram (EEG), as ex-
pected from the high levels of firing (5–40 Hz) of cortical
neurons during EEG-activated states (Evarts 1964; Steriade et
al. 2001), combined with their remarkably dense level of
interconnectivity (Braitenberg and Schüz 1998; DeFelipe and
Fariñas 1992). The properties of synaptic noise during EEG-
activated states were characterized by recent studies (Destexhe
and Paré 1999; Paré et al. 1998), concluding that it is respon-
sible for setting neocortical neurons into a “high-conductance
state” (reviewed in Destexhe et al. 2003). The characteristics of
high-conductance states are a depolarized membrane potential
(Vm) of around �65 mV (�15 mV depolarized with respect to
rest), a 3- to 5-fold diminished input resistance, and high-
amplitude Vm fluctuations (SD of the Vm of about �v � 4 mV).

Several types of computational models have been proposed

to investigate high-conductance states. Biophysically detailed
computational models can integrate the dendritic morphology
of cortical neurons, and simulate active channels in soma and
dendrites, as well as the large number of excitatory and inhib-
itory synapses underlying background activity (Bernander et
al. 1991; Destexhe and Paré 1999; Rudolph and Destexhe
2003a). On the other hand, simplified models consider single
compartments (“point-neurons”) with global excitatory and
inhibitory conductances (Destexhe et al. 2001). In this case,
each global conductance represents the sum of a large number
of individual synaptic inputs and is modeled by stochastic
processes. The advantage of the latter approach is that the
stochastic variations of synaptic conductances can be injected
in real neurons to re-create high-conductance states in vitro, as
shown in a number of recent studies (Chance et al. 2002;
Destexhe et al. 2001; Fellous et al. 2003; Prescott and De
Koninck 2003; Shu et al. 2003b) using the dynamic-clamp
technique (Robinson and Kawai 1993; Sharp et al. 1993).
These computational and dynamic-clamp approaches have
shown that high-conductance states have a number of compu-
tational consequences on cortical neurons (reviewed in Des-
texhe et al. 2003). The stochastic and intense synaptic activity
enhances their responsiveness (Hô and Destexhe 2000), mod-
ulates their gain (Chance et al. 2002; Fellous et al. 2003; Shu
et al. 2003), sharpens the temporal processing of inputs (Ber-
nander et al. 1991; Shelley et al. 2002; Shu et al. 2003b), or
equalizes synaptic efficacies (Rudolph and Destexhe 2003a).

Another consequence of high-conductance states is that the
subthreshold activity of any single neocortical neuron contains
a large amount of information about the rest of the network.
This is attributed to the particularly high level of firing activity
of cortical neurons (see above), together with the dense intra-
cortical connectivity (5,000 to 60,000 excitatory synapses per
neuron; see DeFelipe and Fariñas 1992). Thus, neocortical
neurons should provide a good “sampling” of the activity of a
large number of neurons in the network, as indeed shown by
the tight correlation between EEG and intracellular activity in
cortex (Contreras and Steriade 1995; Creutzfeldt et al. 1996a,b;
Klee et al. 1965). In principle it should be possible to deduce
properties of network activity by analyzing the subthreshold
dynamics of the Vm, but unfortunately no such methods are yet
available. The main difficulty is to relate collective properties
at the network level into identifiable patterns of synaptic ac-
tivity. At present, only global characterizations are possible,
such as for example characterizing the mean rate of firing of
the excitatory and inhibitory cells, which should translate into
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the mean value of global excitatory and inhibitory conduc-
tances. Interestingly, the variance of global synaptic conduc-
tances is related to the average amount of correlation present
among presynaptic neurons (Destexhe et al. 2001), but it is
presently very difficult to estimate the variance of conduc-
tances.

A possible path toward such a characterization is to obtain a
good mathematical description of the dynamics of synaptic
noise, and deduce useful relations between the Vm dynamics
and presynaptic activity. However, the mathematical descrip-
tion must not be too complex, to allow inverting the relations
and obtain characteristics of network activity as a function of
Vm measurements. This is the approach that we follow in this
paper. We showed that by using stochastic calculus, one can
obtain an analytical description of the steady-state Vm distri-
bution (Rudolph and Destexhe 2003b). We use here the results
of this theoretical approach to analyze the Vm activity of
cortical neurons. The method of analysis we propose is tested
against computational models of increasing complexity, as
well as in real neurons during active states in vitro. Part of
these results have appeared in 2 conference abstracts (Destexhe
et al. 2003; Rudolph and Destexhe 2002).

M E T H O D S

Models of cortical neurons and synaptic noise

To reproduce the stochastic membrane potential fluctuations and
high-conductance state characterizing the dynamics of neocortical
neurons in vivo, several types of neuronal models were used and
compared (see Fig. 1).

Effective point-conductance model

The first model was a point-conductance model (Destexhe et al.
2001), which consisted in a single-compartment neuron described by
the passive stochastic membrane equation

Cm

dV�t�

dt
� gL�EL � V�t�� �

1

a
Isyn�t� �

1

a
Iext (1)

where V(t) is the membrane potential, a is the membrane area, Cm is
the specific membrane capacitance, and gL and EL are the leak
conductance density and reversal potential, respectively. Iext denotes a
constant external (stimulating) current. Synaptic noise is described by
the total synaptic current Isyn(t), which was decomposed into a sum of
2 independent current terms

Isyn�t� � ge�t��V�t� � Ee� � gi�t��V�t� � Ei� (2)

where ge(t) and gi(t) are time-dependent global excitatory and inhib-
itory conductances, respectively, and Ee and Ei are their respective
reversal potentials. ge(t) and gi(t) were described by one-variable
stochastic processes similar to the Ornstein–Uhlenbeck process
(Uhlenbeck and Ornstein 1930)

dg�e,i	�t�

dt
� �

1

��e,i	

�g�e,i	�t� � g�e,i	0� � � 2��e,i	
2

��e,i	

��e,i	�t� (3)

where ge0 and gi0 are average conductances, �e and �i are time
constants, �e and �i are noise SD values, and �e(t) and �i(t) denote
independent Gaussian white noise processes of unit SD and zero
mean.

The model was accessed both analytically and numerically. In the
latter case, the membrane area of the compartment was a � 34,636
�m2 (corresponding to the layer VI neocortical pyramidal cells from

cat parietal cortex used in Destexhe et al. 2001), and passive param-
eters were gL � 0.0452 mS/cm2, EL � �80 mV, Cm � 1 �F/cm2

(Destexhe and Paré 1999; Paré et al. 1998), Ee � 0 mV and Ei � �75
mV. Other synaptic noise parameter values were chosen to obtain an
average membrane potential of about �65 mV with SD around 4 mV
characteristic for in vivo states of cortical neurons (Destexhe and Paré
1999; Paré et al. 1998), and were ge0 � 12.1 nS, gi0 � 57.3 nS, �e �
12 nS, �i � 26.4 nS, �e � 2.73 ms, and �i � 10.49 ms.

Simulations of the point-conductance model and its comparison
with more complex models are illustrated in Fig. 1. The point-
conductance model (Fig. 1A) generates irregular subthreshold activity
consistent with in vivo measurements (Destexhe et al. 2001). It is
characterized by a Lorentzian power spectrum (Fig. 1C, dashed lines),
as well as by a symmetric (Gaussian) distribution of excitatory and
inhibitory conductances (Fig. 1D, dashed lines), resulting in a nearly
symmetric amplitude distribution of the membrane potential Vm (Fig.
1E, dashed lines).

Single-compartment model with individual noise sources

The second model consisted in a single-compartment membrane
with a more realistic representation of synaptic inputs, which were
modeled by a large number of individual synaptic conductances. In
this case, the synaptic current Isyn(t) in Eq. 1 was described by

Isyn�t� � �
n�1

N

gAMPAme
(n)�t��V � Ee� � �

m�1

M

gGABAmi
(m)�t��V � Ei� (4)

where N and M denote the total number of excitatory and inhibitory
synapses, modeled by �-amino-3-hydroxy-5-methyl-4-isoxazolepro-
pionic (AMPA) and 	-aminobutyric acid (GABA) postsynaptic re-
ceptors (Destexhe et al. 1998) with quantal conductances gAMPA and
gGABA, respectively. me

(j)(t) and mi
(k)(t) represent the fractions of

postsynaptic receptors in the open state at each individual synapse,
and were described by the following kinetic equations

dm�e,i	

dt
� ��e,i	�T��t��1 � m�e,i	� � 
�e,i	m�e,i	 (5)

where [T](t) is the transmitter concentration in the cleft, �{e,i} and

{e,i} are respectively forward and backward binding rate constants
for excitation (index e) and inhibition (index i). When a spike oc-
curred in the presynaptic compartment, a pulse of transmitter was
triggered such that [T] � Tmax for a short time period tdur and [T] �
0 until the next release occurs. These kinetic models of synaptic
currents were as described previously (Destexhe et al. 1998), with
kinetic parameters that were obtained by fitting the model to postsyn-
aptic currents recorded experimentally. To simulate synaptic back-
ground activity, all synapses were activated randomly according to
independent Poisson processes with mean rates of �exc and �inh for
AMPA and GABAA synapses, respectively. The activation of N-
methyl-D-aspartate (NMDA) receptors is minimal at the subthreshold
levels investigated here, and were not included for simplicity.

The model was simulated numerically with passive properties as in
the point-conductance model. Synaptic parameters were N � 4,472,
M � 3,801, gAMPA � 1,200 pS, gGABA � 600 pS, �e � 1.1 
 106

M�1 s�1, 
e � 670 s�1 for AMPA receptors, �i � 5 
 106 M�1 s�1,

i � 1 80 s�1 for GABAA receptors, Tmax � 1 mM, tdur � 1 ms,
�exc � 2.16 Hz, and �inh � 2.4 Hz.

Simulations of this model are illustrated in Fig. 1B. The power
spectra of the total excitatory and inhibitory conductances are approx-
imately Lorentzian (Fig. 1C, gray), whereas their amplitude distribu-
tions take a nearly symmetric (Gaussian) shape (Fig. 1D, gray). Also
the Vm amplitude distribution follows an approximately symmetric
behavior (Fig. 1E, gray). It is to be noted that the point-conductance
model captures these properties remarkably well (compare gray areas
with dashed lines in Fig. 1, C–E), thus suggesting that the Ornstein–
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Uhlenbeck stochastic process yields a valid description of synaptic
noise.

Detailed biophysical model

The third model consisted in a compartmental model of a neocor-
tical layer VI pyramidal neuron obtained from morphological recon-
structions of cells recorded in cat association cortex (Contreras et al.
1997). The passive properties (see point-conductance model) were
adjusted by matching the model to intracellular recordings obtained in
the absence of synaptic activity (Destexhe and Paré 1999). In some
cases, voltage-dependent conductances were inserted in the soma,
dendrites, and axon and were described by Hodgkin and Huxley
(1952) type models. The latter model included 2 voltage-dependent
currents, a fast Na� current INa, and a delayed-rectifier K� current
IKd, for action potential generation (Traub and Miles 1991) with
conductance densities of 8.4 and 7 mS/cm2 (Huguenard et al. 1988;
densities were 10 times higher in the axon), respectively. To account
for the spike-frequency adaptation and afterhyperpolarization com-
monly observed in “regular-spiking” neurons, a slow voltage-depen-
dent K� current IM (muscarinic potassium current; Gutfreund et al.
1995) with conductance densities of 0.35 mS/cm2 (soma and den-
drites, no IM in axon) was added. In some simulations, models of
cortical neurons with additional fast inactivating A-type K� current
IKA (model from Migliore et al. 1999; conductance density from
Bekkers 2000), T-type (low threshold) Ca2� current ICaT (model from
Traub et al. 2003; conductance density from Hamill et al. 1991) and

hyperpolarization-activated current Ih (model and nonuniform con-
ductance density from Stuart and Spruston 1998) were used.

To simulate synaptic inputs, pyramidal cells were divided into
different regions (soma, perisomatic dendrites, main dendrites, axon
initial segment) and the density of AMPA and GABAA synapses in
each region was estimated from morphological studies (see DeFelipe
and Fariñas 1992; for kinetic parameters see single-compartment
model with individual noise sources). The number of synapses per 100
�m2 of membrane were: 10–20 (GABAA, soma and perisomatic
dendrites), 40–80 (GABAA, axon initial segment), 8–12 (GABAA,
dendrites), and 55–65 (AMPA, dendrites), leading to a total of N �
16,563 glutamatergic and M � 3,376 GABAergic synapses. Synaptic
currents were simulated by kinetic models of AMPA and GABAA

receptor types as described above, and synaptic background activity
was simulated by random (Poisson-distributed) synaptic events at a
mean rate of �exc � 1 Hz and �inh � 5.5 Hz for AMPA and GABAA

synapses, respectively. This model was described in detail in a pre-
vious study (Destexhe and Paré, 1999).

To estimate the conductances underlying synaptic activity, as well
as their variances, we followed a procedure identical to that of a
previous paper (Destexhe et al. 2001). An “ideal” voltage clamp
(without electrode series resistance) was simulated using a somatic
electrode. The model was run twice at 2 different clamped voltages
(�65 and �55 mV), and using the same random seed (so that the
same random numbers were used at each clamp). The leak-subtracted
currents obtained were then decomposed into excitatory and inhibi-
tory conductances using the relation

FIG. 1. Detailed and simplified models of synaptic background activity. A: point-conductance model of synaptic background
activity. Synaptic background activity was produced by 2 global excitatory and inhibitory conductances (ge and gi in top scheme),
which were simulated by stochastic models (see Destexhe et al. 2001). Traces show, respectively, the membrane potential (Vm) as
well as the total excitatory (ge) and inhibitory (gi) conductances resulting from synaptic bombardment. B: synaptic background
activity in a single-compartment model of a cortical neuron with realistic synaptic inputs. Synaptic activity was simulated by the
random release of a large number of excitatory and inhibitory synapses (4,472 and 3,801 synapses, respectively; see top scheme).
Individual synaptic currents were described by kinetic models of glutamate (AMPA) and GABAergic (GABAA) receptors. Traces
show, respectively the Vm, total excitatory and inhibitory conductances as in A. C: power spectral densities of the 2 models (dashed
lines: point-conductance model as in A, gray: single compartment model as in B). D: distribution of synaptic conductances �(ge)
and �(gi) (gray: point-conductance model; dashed lines: single-compartment model). E: membrane potential distribution �(V) (gray:
point–conductance model; dashed lines: single-compartment model). Solid line indicates the analytic expression for the Vm

distribution, as obtained from solving the Fokker–Planck equation for the point-conductance model. Panels C to E show that the
2 models share similar statistical properties, but the point-conductance model in B is more than 2 orders of magnitude faster to
simulate.
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I�t� � ge�t��Vc � Ee� � gi�t��Vc � Ei� (6)

where Vc is the clamped voltage. This procedure yields “effective”
global synaptic conductances [ge(t), gi(t)] as seen from a somatic
electrode.

All simulations were performed using the NEURON simulation
environment (Hines and Carnevale 1997) and were run on PC-based
workstations under the Linux operating system.

In vitro experiments

In vitro experiments were performed on 0.4-mm-thick coronal or
sagittal slices from the lateral portions of the ferret occipital cortex
including primary and secondary (areas 17, 18, and 19) visual cortical
areas. Ferrets, 4–12 mo old (Marshall Europe, Lyon), were anesthe-
tized with sodium pentobarbital (30 mg/kg). The slices were main-
tained in an interface-style recording chamber at 35–36°C. Slices were
prepared on a DSK microslicer (Ted Pella, Redding, CA) in a slice
solution in which the NaCl was replaced with sucrose while main-
taining an osmolarity of 307 mOsm. After transfer to the recording
chamber, the slices were incubated in slice solution containing (in
mM): NaCl, 124; KCl, 2.5; MgSO4, 2; NaHPO4, 1.25; CaCl2, 2;
NaHCO3, 26; dextrose, 10, and was aerated with 95% O2-5% CO2 to
a final pH of 7.4. After about 1 h, the slice solution was modified to
contain 1 mM MgCl2, 1 or 1.2 mM CaCl2, and 3.5 mM KCl (Sanchez-
Vives and McCormick 2000). Intracellular recordings after 2 h of
recovery were performed in deep layers (layers IV, V, and VI) on
electrophysiologically identified regular spiking and intrinsically
bursting cells. Electrodes for intracellular recordings were made on a
Sutter Instruments P-87 micropipette puller from medium-walled
glass (WPI, 1BF100) and beveled on a Sutter Instruments beveler
(BV-10M). Micropipettes were filled with 1.2 to 2 M potassium
acetate and had resistances of 80–100 M� after beveling.

Ferret visual cortical slices spontaneously display recurrent periods
of activity lasting 0.5–1.5 s, which are separated by periods of
quiescence lasting 2–20 s (Sanchez-Vives and McCormick 2000). In
intracellular recordings, this active network activity manifests as a
depolarized state (“up-state”). During the periods of quiescence
(“down-state”), the membrane potential relaxes toward its resting
value. To characterize synaptic noise, intracellular recordings in up-
and down-states were collected at several different membrane poten-
tials maintained by injection of steady currents through the recording
micropipette (current-clamp).

Dynamic-clamp experiments

The dynamic-clamp technique (Robinson et al. 1993; Sharp et al.
1993) was used to inject computer-generated conductances in real
neurons. Dynamic-clamp experiments were run using the hybrid RT-
NEURON environment (developed by G. Le Masson, INSERM
U378, Université de Bordeaux), which is a modified version of
NEURON (Hines and Carnevale 1997) running under the Windows
NT 4.0 operating system (Microsoft) on a PC equipped with a 1.4-
GHz Pentium IV processor. NEURON was augmented with the ca-
pacity of simulating neuronal models in real time, synchronized with
the intracellular recording. To achieve real-time simulations as well as
data transfer to the PC for further analysis, we used a PCI DSP board
(Innovative Integration, Simi Valley, CA) with 4 analog/digital (in-
puts) and 4 digital/analog (outputs) 16 bits converters. The DSP board
constraints calculations of the models and data transfer process to be
made with a high priority level by the PC processor. The DSP board
allows input (e.g., the membrane potential of the real cell incorporated
in the equations of the models) and output signals (the synaptic
current to be injected into the cell) to be processed at regular intervals
(time resolution � 0.1 ms). A custom interface was used to connect
the digital and analog inputs/outputs signals of the DSP board with the
intracellular amplifier (Axoclamp 2B, Axon Instruments) and the data

acquisition systems (PC-based acquisition software ELPHY, devel-
oped by G. Sadoc, CNRS Gif-sur-Yvette, ANVAR, and Biologic).
The dynamic-clamp protocol was used to insert the fluctuating con-
ductances underlying synaptic noise in cortical neurons using the
point-conductance model, similar to a previous study (Destexhe et al.
2001). A critical feature for dynamic clamp and for the present
method is the accuracy of the absolute membrane voltage measure. A
reliable method is to monitor and adjust manually the Vm offset during
the course of the recording according to the known statistical value of
the onset of action potentials in a given cell type (e.g., �55 mV for
ferret pyramidal cells; Shu et al. 2003b). For this purpose, action
potentials are triggered by square depolarizing pulses of current
injected through the micropipette.

Data acquisition and analysis

Voltage traces from numerical simulations and experimental re-
cordings were analyzed with respect to both their statistical properties
and amplitude distribution �(V). In models, simulations were run
using either passive models or models with active currents responsible
for spike generation and adaptation (see above). In experiments,
spontaneous up-states were collected using custom data acquisition
software (ELPHY). In all cases, the data acquisition rate was 100 kHz
(numerical simulations) or 20 kHz (experiments). To obtain sub-
threshold Vm distributions, steady hyperpolarizing current was used
such that the average Vm in up-states was between �75 and �65 mV.
The remaining action potentials, if present, were cut using a time
window of 10 ms centered around the spike (taking advantage of the
fact that signals need not to be contiguous to calculate amplitude
distributions).

Vm distributions were calculated using bin sizes of 0.2 mV for
traces from both simulations and experiments. The distributions ob-
tained were fitted using a Gaussian template function (e.g., Eq. A6 in
the APPENDIX), thereby providing directly the values for the average
Vm, V� , and its SD, �V. These estimates were also checked with
standard statistical analysis tools for discrete data sets (Press et al.
1993).

To calculate these values from the analytic expressions of �(V),
which usually do not allow explicit integration, we integrated �(V)
numerically, using

V� ��
�



dVV��V� (7)

�V
2 � �

�



dV�V � V� �2��V� (8)

for the mean and SD of the voltage distributions, respectively.
Finally, the effective membrane area (a) and the leak conductance

density (gL) can be estimated from experimental data by using injec-
tion of hyperpolarizing current pulses during periods of quiescent
activity, yielding estimates of the membrane time constant (�m) and of
the resting input resistance (Rin). gL and a can be estimated using the
following relations

1 � Rin � agL �m�gL�Cm

assuming a fixed value for Cm (1 �F/cm2). Note that this procedure for
estimating gL may be a potential source of error because even during
periods of quiescent network activity, the membrane still receives
background synaptic inputs (e.g., residual network activity or minia-
ture synaptic events). Ideally, synaptic currents should be blocked
pharmacologically to faithfully estimate gL. However, this procedure
is technically difficult, in particular during feedback experiments
where the same cell is used for analyzing and re-creating high-
conductance states (see RESULTS), and was therefore not attempted
here.
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R E S U L T S

We start by outlining the procedure used for estimating
synaptic conductances from membrane potential (Vm) ampli-
tude distributions. We next test this procedure against models
of increasing complexity. Finally, we demonstrate the applica-
tion of this approach to in vitro experiments and test the results
obtained using dynamic clamp.

The VmD method: estimating synaptic conductances from
membrane potential distributions

We consider the Vm probability density function �(V, t) of
the point-conductance model defined in Eqs. 1–3. �(V, t) de-
scribes the probability density that the membrane potential Vm
takes the value V at time t. The time evolution of this proba-
bility density function is given by the Fokker–Planck equation
(Risken 1984; see APPENDIX), which for the point-conductance
model yields the following steady-state solution (Rudolph and
Destexhe 2003b)

��V� � exp�A1ln�B1�V � Ee�
2 � B2�V � Ei�

2�

� A2arctan�B3�V � Ee� � B4�V � Ei��	 (9)

where Ai and Bj are voltage-independent terms depending on
passive membrane and synaptic noise parameters (see Eq. A4
in the APPENDIX for full expression).

This analytic expression for the Vm distribution was derived
and analyzed in detail in a previous study (Rudolph and Des-
texhe 2003b). Here we focus on possible applications of this
analytic approach to analyze subthreshold neuronal activity
from current-clamp recordings. The general idea is to fit ana-
lytic expressions of the Vm distribution to distributions ob-
tained experimentally, thereby providing estimates of the un-
derlying conductance parameters, which characterize network
activity.

Although this estimate could in principle be obtained by
fitting Eq. 9 to experimentally measured Vm distributions, in
practice, this approach poses a number of problems. The main
obstacle is the highly nonlinear dependency of the the Vm
distribution on its parameters (Eq. 9). In general, fitting a
highly nonlinear function of many parameters to experimental
data results in local minima that may lead to spurious estimates
(Press et al. 1993). To circumvent this difficulty, we need to
simplify Eq. 9. Here, we can take advantage of the fact that the
Vm distribution is only weakly asymmetric in V, especially in
the range of Vm values typical of in vivo activity (�70 to �50
mV; see detailed analysis in Rudolph and Destexhe 2003b).
Furthermore, a very convenient symmetric approximation of
Eq. 9 can be obtained and takes the form of a Gaussian
distribution

��V� � exp� �
�V � V� �2

2�V
2 � (10)

where V� is the average Vm and �V is the standard deviation of
the Vm. This Gaussian approximation can be obtained formally
from Eq. 9 by second-order Taylor expansion around its peak
value (see details in the APPENDIX). As we will see below, this
expression provides an excellent approximation of the Vm
distributions obtained from models and experiments.

The advantage of using a simplified expression such as Eq.
10 is 2-fold. First, one can obtain an expression of the quan-

tities V� and �V (very easy to measure in experiments) as a
function of the synaptic conductance parameters (see Eqs. A5
and A7 in the APPENDIX), which allows physical interpretation of
these quantities. For example, it can be seen that V� is mostly
determined by the static components of the synaptic conduc-
tances (ge0 and gi0), whereas �V has a more complex depen-
dency on synaptic noise parameters. It depends on both ge0 and
gi0, as well as on �e and �i.

The second and main advantage is that these expressions are
mathematically simple enough to enable inverting them, which
may lead to expressions of the synaptic noise parameters as a
function of the Vm measurements, V� and �V. The stochastic
passive membrane equation, Eq. 1, is characterized by 6 pa-
rameters describing excitatory and inhibitory conductance
noise (ge0, gi0, �e, �i, �e, �i). Two of these parameters, the noise
time constants �e and �i, are related to the decay time of
synaptic currents and thus the kinetics of synaptic transmis-
sion. Therefore, these parameters are expected to show little
variations from cell to cell, and can be fixed using power
spectra of synaptic conductances deduced from voltage-clamp
recordings (see Destexhe et al. 2001). In contrast, the remain-
ing 4 parameters, the means (ge0, gi0) and SDs (�e, �i) of
excitatory and inhibitory synaptic conductances, depend on the
synaptic inputs converging to the cell as well as the actual
network state. Thus these parameters are expected to vary from
one situation to the other (e.g., between different network
states), as well as from cell to cell (e.g., depending on the
connectivity of that particular cell within the network), and
should therefore be estimated for each case.

To extract the 4 conductance parameters (ge0, gi0, �e, �i)
from the membrane probability distribution, Eq. 10 is, how-
ever, insufficient because it is characterized by only 2 param-
eters (V� , �V). To solve this problem, one possibility is to
consider 2 Vm distributions obtained at 2 different constant
levels of injected current Iext1 and Iext2 (2 current-clamps
protocol). In this case, expressing these 2 Vm distributions as
Eq. 10 leads to 2 values for mean Vm, V� 1 and V� 2, as well as 2
values for the Vm SD, �V1 and �V2. If both distributions are
obtained during the same network state, they can be expressed
(using Eqs. A5 and A7 in the APPENDIX) as a function of the
same 4 parameters (ge0, gi0, �e, �i). In this case, one obtains

g�e,i	0 �
�Iext1 � Iext2���V2

2 �E�i,e	 � V� 1�
2 � �V1

2 �E�i,e	 � V� 2�
2�

��Ee � V� 1��Ei � V� 2� � �Ee � V� 2��Ei � V� 1���E�e,i	 � E�i,e	��V� 1 � V� 2�
2

�
�Iext1 � Iext2��E�i,e	 � V� 2� � �Iext2 � gLa�E�i,e	 � EL���V� 1 � V� 2�

�E�e,i	 � E�i,e	��V� 1 � V� 2�
(11)

��e,i	
2 �

2aCm�Iext1 � Iext2���V1

2 �E�i,e	 � V� 2�
2 � �V2

2 �E�i,e	 � V� 1�
2�

�̃�e,i	��Ee � V� 1��Ei � V� 2� � �Ee � V� 2��Ei � V� 1���E�e,i	 � E�i,e	��V� 1 � V� 2�
2

(12)

These relations enable us to estimate global characteristic of
network activity, such as mean excitatory (ge0) and inhibitory
(gi0) synaptic conductances, as well as their respective vari-
ances (�e

2, �i
2), from the sole knowledge of the Vm distributions

obtained at 2 different levels of injected current. This proce-
dure, which we refer to below as the “VmD method,” is
illustrated in Fig. 2 and constitutes the core of the analysis
explored in this paper.

It is worth noting that the method can be generalized to
various current levels. For one current level (one current-clamp
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protocol), 2 synaptic noise parameters can be extracted, such as
the ratios between excitatory and inhibitory mean and SD. The
Vm distributions stemming from 3 injected current levels (3
current-clamps protocol) allow estimation in addition of the
reversal potential of either excitatory or inhibitory conduc-
tances. Alternatively, multiple current clamps (3) can be used
as consistency conditions for validating the obtained estimates.
However, in what follows we restrict discussion to the 2
current-clamps protocol.

Test of the approach using computational models

We now turn to computational models of increasing levels of
complexity to test the conductance estimates provided by Eqs.
11 and 12. First, we used the point-conductance model to check
for the validity of the expressions obtained. Because of the
equivalence of the underlying equations (Eqs. 1, 2, and 3), here
the closest correspondence between estimated and actual (i.e.,
calculated numerically) conductance parameters is expected.

Figure 3 illustrates the procedure applied to the Vm activity
of that model (Fig. 3A). Two different values of steady current
injection (Iext1 and Iext2) yield 2 Vm distributions (Fig. 3B,
gray). These distributions were fitted with a Gaussian function
to obtain the means and SDs of the membrane potential at both
current levels. Incorporating the values V� 1, V� 2, �V1, and �V2
into Eqs. 11 and 12 yields values for the mean and SD of the
synaptic noise, g{e,i}0 and �{e,i}, respectively (Fig. 3C, solid
line, and Fig. 3D). These estimates were then used to recon-

struct the full analytic expression of the Vm distribution using
Eq. 9, which was plotted in Fig. 3B (solid lines). There was a
very close match between the analytic estimates of �(V) and
numerical simulations (Fig. 3B, compare gray areas with solid
lines). This demonstrates not just that Gaussian distributions
are an excellent approximation for the membrane potential
distribution in the presence of synaptic noise, but also that the
proposed method yields an excellent characterization of the
synaptic noise and thus subthreshold neuronal activity. This
can also be seen by comparing the reconstructed conductance
distributions (Fig. 3C, solid lines) with the actual conductances
recorded during the numerical simulation (Fig. 3C, gray).
Distributions deduced from the estimated parameters were in
excellent agreement with those of the numerical simulations.
Thus, this first set of simulations shows that, at least for the
point-conductance model, the proposed approach provides a
method that allows an accurate estimate of the mean and the
variance of synaptic conductances from the sole knowledge of
the (subthreshold) membrane potential activity of the cell.

A second test was to apply this method to a more realistic
model of synaptic noise, in which synaptic activity was gen-
erated by a large number of individual synapses releasing
randomly according to Poisson processes (see Fig. 1B). An
example of the application of the procedure to this type of
model is shown in Fig. 4. Starting from the Vm activity (Fig.
4A), membrane potential distributions were constructed and
fitted by Gaussians for 2 levels of injected current (Fig. 4B,
gray). Estimates of the mean and variance of excitatory and
inhibitory conductances were then obtained using Eqs. 11 and
12. The analytic solution reconstructed from this estimate (Fig.
4B, solid lines) is in excellent agreement with the numerical

FIG. 3. Test of the method for estimating synaptic conductances using the
point-conductance model. A: example of membrane potential (Vm) dynamics of
the point-conductance model. B: Vm distributions used to estimate synaptic
conductances. Those distributions (gray) were obtained at 2 different current
levels, Iext1 and Iext2. Solid lines indicate the analytic solution based on the
conductance estimates. C: comparison between the conductance distributions
deduced from the numerical solution of the underlying model (gray) with the
conductance estimates (solid lines). D: bar plot showing the mean and SD of
conductances estimated from the membrane potential distributions. Error bars
indicate the statistical significance of the estimates by using different Gaussian
approximations of the membrane potential distribution in B.

FIG. 2. Sketch of the VmD method to estimate synaptic conductances from
membrane potential fluctuations. A: membrane potential recordings of network
activity at 2 different current levels Iext1 and Iext2 (top traces). Spikes are
removed (bottom traces) or the activity is recorded at hyperpolarized levels to
yield subthreshold activity. B: computation of membrane potential distribu-
tions (gray) at these 2 current levels and fitting with Gaussian function (solid
lines), yielding 2 pairs of values for the average Vm (V� 1, V� 2) and Vm SD (�V1,
�V2). These values are used to estimate analytically, by using Eqs. 11 and 12,
the mean (ge0, gi0) and SD (�e, �i) of the conductances underlying network
activity. From these, analytic forms of the membrane potential distributions,
Eq. 9, characterizing subthreshold membrane dynamics attributed to synaptic
activity can be obtained.
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simulations of this model. Moreover, the reconstructed con-
ductance distributions based on this estimate (Fig. 4C, solid
lines) are also in excellent agreement with the total conduc-
tance calculated for each type of synapse in the numerical
simulations (Fig. 4C, gray; see Fig. 4D for quantitative values
and error estimates). Thus, also in case of this more realistic
model of synaptic background activity, which markedly differs
from the point-conductance model, the estimates of synaptic
conductances and their variances from voltage distributions are
in excellent agreement with the values obtained numerically. In
fact, this agreement can be expected because of the close
correspondence between the conductance dynamics in both
models (see Fig. 1, C–E).

A third, more severe test was to apply this estimate to a
compartmental model in which individual (random) synap-
tic inputs were spatially distributed in soma and dendrites.
In a passive model of a cortical pyramidal neuron from layer
VI (Fig. 5A; see METHODS), the Vm distributions obtained at
2 steady current levels were approximately symmetric (Fig.
5B, left panel, gray). Again, applying Eqs. 11 and 12 to
estimate synaptic conductances and their variances led to
analytic Vm distributions �(V) (Fig. 5B, left panel, solid
lines), which captured very well the shape of the Vm distri-
butions obtained numerically, although small deviations are
visible at the hyperpolarized and depolarized tail of the
distributions. The reconstructed conductance distributions
(Fig. 5C, solid lines) were also in excellent agreement with
the conductance distributions obtained in this model using
an ideal voltage clamp at the soma (Fig. 5C, gray; see

method in Destexhe et al. 2001). The quantitative compar-
ison of those values (Fig. 5D, left panel) shows that the
estimation from Vm distributions gives comparable esti-
mates as the ideal voltage clamp. This agreement also shows
that the dendritic filtering of synaptic inputs, caused by the
spatial extension of the dendritic tree, does have only a
minor impact on the conductance estimation. Moreover,
because of the higher density of GABAergic synapses in the
proximal region of cortical neurons, a slight bias in the
estimates toward inhibitory conductance is expected. How-
ever, our results indicate that this effect is small and has
only a minimal impact on the overall conductance estimates.

Finally, by incorporating voltage-dependent currents (INa,
IKd for spike generation, and a slow voltage-dependent K�

current for spike-frequency adaptation, a hyperpolarization-
activated current Ih, a low-threshold Ca2� current ICaT, and
an A-type K� current IKA with densities typical for cortical
neurons; see METHODS) in the detailed biophysical model, we
probed the applicability of the proposed method to more
realistic situations with active dendrites capable of generat-
ing and conducting dendritic spikes. Here, deviations are
expected because the method is strictly based on passive
neuronal dynamics (see Eq. 1), which might be strongly
altered by the presence of active channels at the site of the
recording and the presence of regenerative dendritic spikes.
Indeed, after removing spikes in a broad (10-ms) time
window, the subthreshold activity approximated the passive
dynamics, but showed deviations in the membrane potential
distribution at its hyperpolarized and depolarized tails (Fig.
5B, gray, compare left and right). However, these deviations
had only a minimal impact on the mean and variance of the
membrane potential obtained by Gaussian fits, which con-
stitute the input for the VmD method. Applying Eqs. 11 and
12 led to estimates (Fig. 5B, right panel, solid lines) that
showed more significant—albeit still small— deviations
from the distributions drawn from the corresponding numer-
ical simulations (Fig. 5B, right panel, gray; Fig. 6, gray). In
general, the estimated values for synaptic conductances and
their variance showed larger errors, especially for �i (Fig.
5D, right panel), and yielded Vm distributions that were
slightly broader. However, these errors and deviations re-
mained relatively small and the method still provided a good
estimate of synaptic conductances, similar to or better than
the one provided by ideal voltage clamp (Fig. 6).

Test of the method using in vitro recordings and dynamic-
clamp experiments

The method was further tested against real network activity.
We used the recurrent activity (“up-states”) occurring sponta-
neously in ferret neocortical slices (see METHODS). Intracellu-
larly, this activity consists in a depolarized Vm and relatively
large-amplitude Vm fluctuations (Fig. 7), as described previ-
ously (Sanchez-Vives and McCormick 2000). To test the
method, we applied an on-line protocol (Fig. 7A), consisting of
estimating synaptic conductances from “natural” up-states (top
traces) and compared them to “artificial” up-states obtained by
dynamic-clamp injection of the estimated conductances in the
same neuron (bottom traces). As above, the estimates (Fig. 7A,
solid distributions) were obtained by computing the Vm distri-
butions at 2 different current levels (Fig. 7A, top, gray distri-

FIG. 4. Estimation of synaptic conductances from analyzing the membrane
potential activity in a single-compartment model model with realistic synaptic
inputs. A: example of membrane potential (Vm) time course in a single-
compartment model receiving thousands of randomly activated synaptic con-
ductances (same model as in Fig. 1B). B: Vm distributions used to estimate
conductances. Those distributions are shown at 2 different current levels, Iext1,
Iext2 (gray). Solid lines indicate the analytic solution obtained based on the
conductance estimates. C: comparison between the conductance distributions
deduced from the numerical solution of the underlying model (gray) with those
reconstructed from the estimated conductances (solid lines). D: bar plot show-
ing the mean and SD of conductances estimated from membrane potential
distributions. Error bars indicate the statistical significance of the estimates by
using different Gaussian approximations of the membrane potential distribu-
tion in B.
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butions) and fit them using the Gaussian approximation (Eqs.
11 and 12). For the particular neuron shown in Fig. 7A, the
estimated inhibitory synaptic conductance parameters were
approximately twice as large as those for excitation (see bottom
bar plots). These parameters were then used to generate con-
ductance waveforms according to the stochastic process of Eq.
3 (“Model of synaptic noise” in Fig. 7A). These conductance
waveforms were then reinjected in the same neuron (“Dy-
namic-clamp” in Fig. 7A), leading to re-created up-states,
which are compared to natural up-states. In several cells tested
(n � 4), the re-created states had properties (average Vm, Vm
fluctuations, firing behavior) similar to those of the natural
up-states (see example in Fig. 7B).

Such a comparison is shown in more detail in Fig. 8A. The
natural up-states (Fig. 8A, top trace) were used to estimate
conductances using the same procedure as in Fig. 7A. In the
particular cell shown in Fig. 8, excitatory and inhibitory con-
ductances were approximately equal, but the variance of in-
hibitory conductance was relatively high (see bar plot). These
estimated values for ge0, gi0, �e, and �i were then used to
generate stochastic conductance waveforms (Fig. 8A, bottom
traces). Injection of these conductance waveforms during qui-
escent states into the same cell led to artificial up-states, in
which Vm distribution was in excellent agreement with the
natural up-states [see �(V) graph in Fig. 8A]. This dynamic-
clamp protocol shows that the network activity, as predicted by
the Vm distribution method, is perfectly consistent with the
natural network activity.

An alternative way for testing the Vm distribution method is

to analyze artificial up-states generated by dynamic-clamp
injection of known conductances (Fig. 8B). In this case, we
injected stochastic conductance waveforms according to a pre-
defined choice of ge0, gi0, �e, and �i parameters. The artificial
up-states obtained were then analyzed using the VmD decom-
position method. This procedure led to estimated values in
excellent agreement with the injected values (compare light
and dark gray in bar plot of Fig. 8B). Thus, the method
provides an acceptable estimate of the injected conductances
from the sole knowledge of the Vm activity.

D I S C U S S I O N

In this paper, we have provided a theoretical description of
the subthreshold membrane potential activity of neurons under
synaptic bombardment, and provided means to estimate the
underlying global characteristics of network activity. We dis-
cuss here the advantages and problems of this approach, how it
relates to previous work, and what perspectives are expected.

Starting from a purely theoretical approach, the mathemat-
ical description of the stochastic variations of Vm, we derived
expressions to relate Vm measurements to global synaptic con-
ductance parameters, such as the mean excitatory (ge0) and
inhibitory (gi0) conductances, as well as their respective vari-
ances (�e, �i). The mean synaptic conductances are related to
the mean rate of afferent neurons, whereas the variances of
these conductances are related to the level of correlation be-
tween presynaptic activities (Destexhe et al. 2001). So far,
experimental measurements have concentrated on estimating

FIG. 5. Estimation of synaptic conductances from the membrane potential activity of a detailed biophysical model of synaptic
background activity. A: example of the membrane potential (Vm) activity obtained in a detailed biophysical model of a layer VI
cortical pyramidal neuron (scheme on top; same model as in Destexhe and Paré 1999). Synaptic background activity was modeled
by the random release of 16,563 AMPA-mediated and 3,376 GABAA-mediated synapses distributed in dendrites according to
experimental measurements. B: Vm distributions obtained in this model at 2 different current levels, Iext1 and Iext2. Left panel:
distributions obtained in a passive model. Right panel: distributions are shown when the model had active dendrites (Na� and K�

currents responsible for action potentials and spike-frequency adaptation, located in soma, dendrites, axon). In both cases, results
from the numerical simulations (gray) and analytic expression (solid lines), obtained by using the conductance estimates, are shown.
C: histogram of the total excitatory and inhibitory conductances obtained from the model using an ideal voltage clamp (gray),
compared to the distributions reconstructed from the conductance estimates based on Vm distributions. D: bar plot showing the mean
and SD of synaptic conductances estimated from Vm distributions. Error bars indicate the statistical significance of the estimates
by using different Gaussian approximations of the membrane potential distribution in B. Left panel: passive model; right panel:
model with voltage-dependent conductances. Presence of voltage-dependent conductances had minor (�10%) effects on the
estimated conductance values.
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the mean conductances (Anderson et al. 2000; Borg-Graham
1998; Hirsch et al. 1998; Shu et al. 2003a), which is equivalent
to estimating the mean level of afferent activity. Measuring
conductance variances can give estimates of the mean level of
correlation within afferent activity (Destexhe et al. 2001).
However, such estimates were never provided so far, presum-
ably because of the technical difficulty of measuring conduc-
tance variances in vivo, which presently requires voltage-
clamp methods.

The present Vm distribution method provides such estimates
based on current-clamp recordings. It relies on quantities
(mean and variance of the Vm), which are relatively easy to
measure experimentally. Conductances are usually best esti-
mated from voltage-clamp recordings (Borg-Graham et al.
1998), although methods from current-clamp recordings have
been used as well (Anderson et al. 2000; Hirsch et al. 1998).
The method proposed here relies on standard current-clamp
protocols, in which spontaneous activity is recorded with
steady current injection, which corresponds to the most current
configuration used for performing intracellular recordings in
vivo.

We have shown that the method can provide relatively
good estimates of global synaptic conductances, even in the
case of complex models, including the dendritic morphol-
ogy and active channels in dendrites (Fig. 5). In the latter
case, the method provides measurements of global conduc-

tances and their variances with an accuracy comparable to
that of an “ideal” voltage clamp. However, it must be noted
that the method we used here to estimate conductance
variances from voltage clamp required running the models
twice with the same seed for random numbers. On the
contrary, the proposed VmD method provides such an esti-
mate without requirements of this type.

On the negative side, the method proposed here to estimate
conductance variances relies on a series of parameters. First,
there must be an estimation of the “effective” leak conductance
(i.e., the nonsynaptic conductance) and membrane area a.
These values can be obtained in vitro by measuring the input
resistance and time constant in quiescent periods (see METH-
ODS). Second, voltage-dependent currents in soma and den-
drites may distort the Vm distribution and cause errors in the
estimate, attributed to either the presence of regenerative den-
dritic spikes or the activation of voltage-dependent membrane
conductances. The latter applies to all currents that are active in
the subthreshold Vm range, such as the hyperpolarization-
activated current Ih. Slow K� currents may also be activated in
the subthreshold range, although in our simulations (Fig. 5)
there were slow K� currents, but their presence did not seem to
have strong effects on the estimates. Various K� currents (such
as those underlying spike afterhyperpolarization or the A-type
K� current IKA), various Ca2� currents (such as the low-
threshold T-current ICaT), or Ih may also significantly distort

FIG. 6. Estimation of synaptic conductances from the membrane potential activity in detailed biophysical models with active
dendrites. A: model with voltage-dependent currents for spike generation (INa, IKd), spike-frequency adaptation (IM), A-type K�

current (IKA) and low-threshold Ca2� current (ICaT) in soma and dendrites. B: model with additional hyperpolarization-activated
current Ih in soma and dendrites (see METHODS). In both cases, synaptic background activity was modeled by the random release
of 16,563 AMPA-mediated and 3,376 GABAA-mediated synapses distributed in dendrites according to experimental measure-
ments. Left panels: Vm distributions at 2 different current levels (Iext1 and Iext2) obtained numerically (gray) and analytically using
conductance estimates obtained with the VmD method. Comparison of the conductance estimates obtained with the VmD method
(middle panels, dark gray bars; A: ge0 � 12.8 nS, gi0 � 64.0 nS, �e � 5.7 nS, �i � 8.1 nS; B: ge0 � 15.1 nS, gi0 � 70.4 nS,
�e � 5.8 nS, �i � 7.7 nS) and ideal som atic voltage-clamp (middle panels, light gray bars; Gaussian fits yield A: ge0 � 10.3 nS,
gi0 � 53.4 nS, �e � 3.6 nS, �i � 9.9 nS; B: ge0 � 8.3 nS, gi0 � 46.8 nS, �e � 3.6 nS, �i � 10.3 nS) shows that the VmD method
gave results that were much closer to the true values of synaptic conductances seen in the corresponding passive model (middle
panels, white bars; ge0 � 11.6 nS, gi0 � 61.7 nS, �e � 4.3 nS, �i � 7.9 nS; see also Fig. 5). Right panels: comparison of histograms
of the total excitatory and inhibitory conductances obtained numerically using ideal somatic voltage-clamp (gray) and the Gaussian
distribution based on the estimates using the VmD method.
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the Vm distribution (see Fig. 6), but the distorting effect of
these currents can easily be avoided (see METHODS). Moreover,
as our numerical simulations showed, despite a significant
impact of these active currents, the estimates obtained with the
VmD method were closer to the actual synaptic conductances
compared to estimates with ideal voltage clamp. However, to
minimize voltage-dependent effects, the best is to identify a
linear region of the I–V curve of the neuron, and perform the
measurements in that region. The excellent agreement obtained
here using experimental recordings (Fig. 8) also suggests that
these contaminations are minimal in the voltage range consid-
ered. Furthermore, using Gaussian fits of the Vm distributions
effectively suppresses the effect of dendritic spikes arriving at
the site of the recording and, thus, improves the applicability of
the method. Third, the presented VmD method restricts, so far,
only to glutamatergic and GABAA receptors. The impact of
other receptor types, such as GABAB and NMDA, remains to
be investigated and neglecting them might contribute to errors
in the conductance estimates. Moreover, the knowledge of the
reversal potential for GABAergic or glutamatergic synapses is
crucial and using wrong values of reversals will result in
estimation errors. Ideally, the reversal potentials should be
measured for the same preparation in which the analysis is
made. Finally, drifts in the membrane potential (e.g., arising
from the experimental setup or from unstability of the record-
ing) constitute another source of error. The proposed method
requires a stationary recording, which was the case for all cells
shown here.

Another potential source of error comes from the spatial
aspect of synaptic noise. Here, synaptic inputs received distally
will contribute less to the somatic response compared to those
close to the soma. This will, in general, result in an underes-

timation of the total synaptic conductances and their variation.
Moreover, a nonuniform distribution of synaptic conductances,
such as the higher density of GABAergic synapses in the
proximal region of cortical neurons, or the distance-dependent
scaling of quantal conductances or receptor number, will bias
the estimates for excitatory and inhibitory conductances. How-
ever, our simulations, which took the spatial distribution of
(uniform) synaptic channels and the asymmetry in the distri-
bution of glutamatergic and GABAergic synapses into account,
showed only minimal deviations from the corresponding volt-
age-clamp estimates of the excitatory and inhibitory synaptic
conductances. In addition, our method yields estimates for the
total synaptic conductances that determine the cellular dynam-
ics at the site of the recording, a quantity that does not depend
on a specific assumption of the distribution of synaptic chan-
nels within the dendritic tree.

This approach is also applicable to in vivo intracellular
experiments. In this case, the mean and variance of synaptic
conductances could be estimated across different states of the
network. The difficulty, however, would be to estimate the
resting parameters (gL, a), which are not easy to deduce in
vivo. However, if quiescent states can be obtained either phar-
macologically (Paré et al. 1998) or spontaneously (“down-
states”), then estimates of those parameters can be obtained.
Alternatively, it is always possible to use the present approach
with minor modifications to estimate relative changes of con-
ductances or conductance variances between different states of
the network. In particular, measuring changes in conductance
variances should allow us to measure changes in correlation in
network activity. Such measurements have not been obtained
yet, but should be possible in the near future.

FIG. 7. Estimation of synaptic conductances
from active states in vitro and dynamic-clamp
re-creation of active states. A: sketch of the pro-
cedure for conductance estimation and test of the
estimates. Top left: spontaneous active network
states (“up-states”) were recorded intracellularly
in ferret visual cortex slices at 2 different injected
current levels (Iext1, Iext2). Top right: Vm distribu-
tions (gray) were computed from experimental
data and used to estimate synaptic conductances.
Analytic solution for the Vm distribution using
those conductance estimates is shown by solid
lines. Bottom right: histogram of the mean and
SD of excitatory and inhibitory conductances ob-
tained from the fitting procedure. Bottom left: a
dynamic-clamp protocol was used to inject sto-
chastic conductances consistent with these esti-
mates, therefore re-creating artificial up-states in
the same neuron. B: example of natural and re-
created up-states in the same cell as in A. This
procedure re-created Vm activity similar to the
active state, as shown by the close matching of
the Vm fluctuations, depolarized level, and dis-
charge variability (natural up-states: V� � �67.2
mV, �v � 3.06 mV, firing rate 14.3 Hz; re-created
up-states: V� � �66.96 mV, �v � 2.6 mV, firing
rate 13 Hz).
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A P P E N D I X

In this appendix we briefly summarize the mathematical approach
for deducing the steady-state membrane potential distributions of the
stochastic passive membrane equation (Eqs. 1–3) describing the sub-
threshold membrane dynamics in the presence of synaptic noise.

The Fokker–Planck equation

The stochastic passive membrane equation given in Eqs. 1–3 was
analytically accessed within the framework of the stochastic differ-
ential calculus (Gardiner 2002; Mortensen 1969; van Kampen 1981).
Here, using a set of differential rules (Itô rules) for the OU stochastic
process allows deduction of the Fokker–Planck equation (Risken
1984), corresponding to the set of stochastic differential equations
(Eqs. 1–3)

�t��V, t� � ��V�f�V���V, t�� � �V�he�V��V�he�V��e�t���V, t��	

� �V�hi�V��V�hi�V��i�t���V, t��	 (A1)

where

f�V� �
1

aCm

�Iext � agL�V � EL� � ge0�V � Ee� � gi0�V � Ei�� (A2)

is a voltage-dependent drift term, h{e,i}(V) � �(V � E{e,i})/(aCm) are
voltage-dependent excitatory and inhibitory conductances noise
terms, and

2��e,i	�t� � ��e,i	
2 �̃�e,i	�1 � e�t� �̃�e,i	� �

1

2�̃�e,i	

w̃�e,i	
2 �t� � ��e,i	

2 t (A3)

where w̃�e,i	�t� � �0
t dsg�e,i	�s� are the integrated stochastic processes

for the stochastic conductances g{e,i}, and �̃{e,i} denote effective noise
time constants given by �̃{e,i} � 2�{e,i}�0/�{e,i} � �0), with �0 �
aCm/(agL � ge0 � gi0). The Fokker–Planck equation (Eq. A1) de-
scribes the time evolution of the probability density function �(V, t) of
the membrane potential V(t) in the presence of excitatory and inhib-
itory synaptic noise terms characterized by their mean and variances.

The steady-state membrane potential distribution

In the limit t 3 , the Fokker–Planck equation (Eq. A1) can be
solved analytically. In this case, one obtains the steady-state proba-
bility distribution �(V) for the membrane potential V

��V� � Nexp�A1ln�ue�V � Ee�
2

�aCm�2 �
ui�V � Ei�

2

�aCm�2 �
� A2arctan�ue�V � Ee� � ui�V � Ei�

�Ee � Ei��ueui
�� (A4)

where the following constants are defined: kL � 2a2CmgL, ke �
2aCmge0, ki � 2aCmgi0, ue � �e

2�̃e, and ui � �i
2�̃i, as well as the

following voltage-independent terms

A1 � �
kL � ke � ki � ue � ui

2�ue � ui�

and

A2 � 2aCm

�ge0ui � gi0ue��Ee � Ei� � agLue�Ee � EL�
� agLui�Ei � EL� � Iext�ui � ue�

�Ee � Ei��ueui �ue � ui�

FIG. 8. Test of the method using natural and re-created
up-states in vitro under dynamic clamp. A: reinjection of
conductance estimates. Protocol used was similar as in Fig. 7
and consisted in first extracting conductances from natural
up-states (arrow 1 in scheme) and re-creating artificial up-
states in the same neuron (arrow 2). The natural up-states (top
trace) were used to compute Vm distribution and estimate
conductances (middle panels, gray). These values were then
used to generate artificial synaptic noise using stochastically
fluctuating conductances (ge and gi), which were injected in
the same neuron using dynamic clamp [Vm activity shown as
V(t) in bottom traces]. Vm distributions obtained were in
excellent agreement (gray: natural up-states, V� � �66.87
mV, �V � 1.53 mV; continuous line: re-created up-states,
V� � �66.81 mV, �V � 1.36 mV). B: analysis of artificial
up-states produced by dynamic-clamp injection of known
conductances. In this protocol, stochastically varying synaptic
conductances were first injected in the neuron (arrow 1 in
scheme). Resulting Vm activity was then used to reestimate
the conductances (arrow 2). Middle panel: injected (dark
gray) and reestimated (light gray) conductances. Right panel:
corresponding Vm distributions (gray: experimental; solid
lines: analytic prediction from the reestimated parameters).
There was an excellent agreement between all values (in-
jected conductances: ge0 � 2.1 nS, gi0 � 2.8 nS, �e � 1.0 nS,
�i � 4.5 nS; reestimated conductances: ge0 � 2.2 nS, gi0 �
2.5 nS, �e � 0.94 nS, �i � 4.0 nS).
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where N denotes a normalization constant such that ��
 dV�(V)�1.

The matching of this analytic solution and the numerical simulations
are illustrated in Fig. 1E (dashed lines; see Rudolph and Destexhe
2003b for details).

Gaussian approximation of the steady-state membrane
potential distribution

Because of the multiplicative coupling of the stochastic conduc-
tances to the membrane potential in Isyn, the membrane potential
probability distribution (Eq. A4) takes in general an asymmetric form.
However, �(V) shows only small deviations from a Gaussian distri-
bution, suggesting an approximation by a symmetric distribution. To
this end, the exponent in Eq. A4 was replaced by the 2 first-order
terms of its Taylor expansion around the maximum V� of the proba-
bility distribution �(V)

V� �
S1

S0

(A5)

with S0 � kL � ke � ki � ue � ui and S1 � kLEL � keEe � kiEi �
ueEe � uiEi � 2aCmIext. This yields the following Gaussian distribu-
tion

��V� �
1

�2��V
2

exp��
�V � V� �2

2�V
2 � (A6)

with the SD given by

�V
2 �

S0
2�ueEe

2 � uiEi
2� � 2S0S1�ueEe � uiEi� � S1

2�ue � ui�

S0
3 (A7)

Using 2 levels of (constant) injected current Iext, these relations can be
inverted (see Eqs. 11 and 12 and details in text), yielding estimates for
the mean and variance of synaptic conductances.
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DeFelipe J and Fariñas I. The pyramidal neuron of the cerebral cortex:
morphological and chemical characteristics of the synaptic inputs. Prog
Neurobiol 39: 563–607, 1992.

Destexhe A, Badoual M, Piwkowska Z, Bal T, Hasenstaub A, Shu Y,
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Destexhe A, Rudolph M, and Paré D. The high-conductance state of neo-
cortical neurons in vivo. Nat Rev Neurosci 4: 739–751, 2003.

Evarts EV. Temporal patterns of discharge of pyramidal tract neurons during
sleep and waking in the monkey. J Neurophysiol 27: 152–171, 1964.

Fellous JM, Rudolph M, Destexhe A, and Sejnowski TJ. Synaptic back-
ground noise controls the input/output characteristics of single cells in an in
vitro model of in vivo activity. Neuroscience 122: 811–829, 2003.

Gardiner CW. Handbook of Stochastic Methods. Berlin: Springer-Verlag,
2002.

Gutfreund Y, Yarom Y, and Segev I. Subthreshold oscillations and resonant
frequency in guinea-pig cortical neurons: physiology and modelling.
J Physiol 483: 621–640, 1995.

Hamill OP, Huguenard JR, and Prince DA. Patch-clamp studies of voltage
gated currents in identified neurons of the rat cerebral cortex. Cereb Cortex
1: 48–61, 1991.

Hines ML and Carnevale NT. The NEURON simulation environment. Neu-
ral Comput 9: 1179–1209, 1997.

Hirsch JA, Alonso JM, Clay Reid R, and Martinez LM. Synaptic integra-
tion in striate cortical simple cells. J Neurosci 18: 9517–9528, 1998.
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