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First published August 27, 2003; 10.1152/jn.00641.2003. Conven-
tionally, the parameters of neuronal models are hand-tuned using
trial-and-error searches to produce a desired behavior. Here, we
present an alternative approach. We have generated a database of
about 1.7 million single-compartment model neurons by indepen-
dently varying 8 maximal membrane conductances based on measure-
ments from lobster stomatogastric neurons. We classified the sponta-
neous electrical activity of each model neuron and its responsiveness
to inputs during runtime with an adaptive algorithm and saved a
reduced version of each neuron’s activity pattern. Our analysis of the
distribution of different activity types (silent, spiking, bursting, irreg-
ular) in the 8-dimensional conductance space indicates that the coarse
grid of conductance values we chose is sufficient to capture the salient
features of the distribution. The database can be searched for different
combinations of neuron properties such as activity type, spike or burst
frequency, resting potential, frequency–current relation, and phase-
response curve. We demonstrate how the database can be screened for
models that reproduce the behavior of a specific biological neuron and
show that the contents of the database can give insight into the way a
neuron’s membrane conductances determine its activity pattern and
response properties. Similar databases can be constructed to explore
parameter spaces in multicompartmental models or small networks, or
to examine the effects of changes in the voltage dependence of
currents. In all cases, database searches can provide insight into how
neuronal and network properties depend on the values of the param-
eters in the models.

I N T R O D U C T I O N

The spontaneous firing pattern of a neuron and how it
responds to inputs from other neurons is crucially determined
by the densities and dynamics of the ion channels in the
neuron’s membrane. These membrane conductances have a
nonlinear dependence on the membrane potential, which itself
is changed by the currents flowing through the conductances. A
neuron with even a small number of membrane conductances
is a complex dynamical system, and predicting the behavior of
a cell with a physiologically realistic set of currents becomes
very difficult.

Faced with ongoing channel turnover, neurons must con-
stantly adjust their membrane currents to maintain their elec-
trical identity (Marder and Prinz 2002). Experiments and sim-
ulations have shown that even small changes in one or a few

currents can dramatically alter the activity of a neuron (De
Schutter and Bower 1994; Goldman et al. 2001). On the other
hand, similar activity can be achieved with widely varying sets
of conductances in biological and model neurons (Bhalla and
Bower 1993; De Schutter and Bower 1994; Foster et al. 1993;
Goldman et al. 2001; Golowasch et al. 1999a), and conduc-
tance averages computed from neurons with similar behavior
may not reproduce that behavior (Golowasch et al. 2002).
Through a combination of mechanisms (Desai et al. 1999;
Golowasch et al. 1999a,b; LeMasson et al. 1993; Liu et al.
1998; MacLean et al. 2003; Thoby-Brisson and Simmers 2002;
Turrigiano et al. 1994), neurons maintain their conductances in
a range that allows them to generate the desired activity. To
understand how tightly a neuron’s conductances need to be
regulated and how this is achieved, it is essential that we know
how the activity and response properties of nerve cells depend
on their membrane conductances.

The question of how a cell’s conductances influence its
electrical behavior is usually addressed by varying one con-
ductance in a given biological or model neuron (Golowasch
and Marder 1992; Golowasch et al. 1992; Guckenheimer et al.
1993; McCormick and Huguenard 1992). In biological neurons
this has been done by genetically modifying the density of one
type of ion channel (Kupper et al. 2002; MacLean et al. 2003),
by pharmacologically blocking one of the conductances (De-
banne et al. 1997; Hoffman et al. 1997), or by adding a
conductance with the dynamic clamp (Turrigiano et al. 1996).
The behavior of the cell before and after the manipulation is
then compared, and the observed change is interpreted as an
effect of the altered conductance. However, the behavior of a
nerve cell is the outcome of interactions between all of its
membrane conductances (De Schutter and Bower 1994; Foster
et al. 1993). It is therefore not obvious that changing the same
conductance will have similar effects on the behavior of dif-
ferent neurons, irrespective of their other conductances. The
result of varying one conductance at a time may thus depend on
the particular choice of neuron that is studied (Foster et al.
1993).

We suggest that studying the relationship between a neu-
ron’s membrane conductances, its electrical activity, and its
response properties is best done by generating a large number
of computational model neurons that cover an extended range
of values of all of the neuron’s conductances. Here, we de-
scribe the construction of a database of about 1.7 million model
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neurons that were generated by independently varying the 8
maximal conductances of a realistic conductance-based model.
The database contains information about each model neuron,
including a reduced version of the neuron’s voltage trace,
its resting potential, spike frequency or burst frequency, fre-
quency–current relation (fI curve), and, for bursters, the num-
ber of spikes per burst, burst duration, and phase-response
curve. Because of this wealth of information, the database can
be used to address a wide variety of questions, some of which
are discussed here.

To our knowledge, the database method presented here is the
first attempt to systematically explore a multidimensional neu-
ronal parameter space and make extensive information about
the steady-state voltage trace, the spontaneous behavior, and
the response properties of every neuron available for future
studies. Goldman et al. (2001) determined the type of activity
for model neurons on a grid covering a 5-dimensional param-
eter space of a model related to ours, with the number of grid
points corresponding to about 1% of the number of neurons
contained in our database. Their study examined which com-
binations of membrane conductances determine whether a neu-
ron is silent, fires tonically, or bursts. However, the conduc-
tance combinations explored in that study were constrained to
a subspace of the whole model and the stored simulation results
were too reduced to allow studies that go beyond the authors’
original question. Similarly, Bhalla and Bower (1993) identi-
fied model neurons that mimic the behavior of olfactory bulb
neurons by a “brute force” search of their model’s parameter
space. Again, however, their simulation results were not suit-
able for unrelated studies on the same model.

An obvious application of a model neuron database is the
identification of neurons that reproduce a behavior observed in
a biological cell. Traditionally, researchers have identified suit-

able model neurons for their biological neuron of interest by
manually adjusting the parameters of a model (De Schutter and
Bower 1994; Nadim et al. 1995; Traub et al. 1991). This
process requires skill and experience and is often tedious and
not always successful. If it fails, it is not clear whether the
manual exploration was done in the wrong part of parameter
space or whether the desired behavior cannot be achieved by
the chosen model. We demonstrate how a database of model
neurons can be searched for neurons that approximate a desired
set of properties and can thus facilitate, complement, or replace
manual searches of high-dimensional parameter spaces. Fi-
nally, we describe other potential database applications.

M E T H O D S

Model

The model we used, based on experimental data obtained from
lobster stomatogastric neurons (Turrigiano et al. 1995), was previ-
ously described (Prinz et al. 2003). Related models have been used
before (Goldman et al. 2001; Liu et al. 1998). Each of the model’s
membrane currents is described by Ii � g� imi

phi(V � Ei)A, where Ei is
the reversal potential, A � 0.628 � 10�3 cm2 is the membrane area,
and g� i is the maximal conductance. To construct the database, the
maximal conductances of all 8 currents in the model were varied
independently to generate different model neurons (i.e., different
combinations of maximal conductances). Reversal potentials were
�50 mV for Na�, �80 mV for K�, �20 mV for IH, �50 mV for Ileak,
and the Ca2� reversal potential was determined from the momentary
intracellular Ca2� concentration using the Nernst equation and an
extracellular Ca2� concentration of 3 mM. The exponents pi are given
in Table 1. The activation and inactivation variables mi and hi change
according to

�m

dm

dt
� m� � m and �h

dh

dt
� h� � h

TABLE 1. Voltage dependence of model currents

p m� h� �m �h

INa 3 1

1 � exp�V � 25.5

�5.29
�

1

1 � exp�V � 48.9

5.18
� 2.64 �

2.52

1 � exp�V � 120

�25
�

1.34

1 � exp�V � 62.9

�10
� �1.5 �

1

1 � exp�V � 34.9

3.6
��

ICaT 3 1

1 � exp�V � 27.1

�7.2
�

1

1 � exp�V � 32.1

5.5
� 43.4 �

42.6

1 � exp�V � 68.1

�20.5
� 210 �

179.6

1 � exp�V � 55

�16.9
�

ICaS 3 1

1 � exp�V � 33

�8.1
�

1

1 � exp�V � 60

6.2
� 2.8 �

14

exp�V � 27

10
�� exp�V � 70

�13
� 120 �

300

exp�V � 55

9
�� exp�V � 65

�16
�

IA 3 1

1 � exp�V � 27.2

�8.7
�

1

1 � exp�V � 56.9

4.9
� 23.2 �

20.8

1 � exp�V � 32.9

�15.2
� 77.2 �

58.4

1 � exp�V � 38.9

�26.5
�

IKCa 4 �Ca�

�Ca� � 3

1

1 � exp�V � 28.3

�12.6
� 180.6 �

150.2

1 � exp�V � 46

�22.7
�

IKd 4 1

1 � exp�V � 12.3

�11.8
� 14.4 �

12.8

1 � exp�V � 28.3

�19.2
�

IH 1 1

1 � exp�V � 75

5.5
�

2

exp�V � 169.7

�11.6
�� exp�V � 26.7

14.3
�

Also see plots in supplemental material, available on-line.
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with time constants �m and �h and steady-state values m� and h� as
given in Table 1 (where voltages are in mV and times are in ms). Plots
that show the voltage dependence of m�, h�, �m, and �h for all the
voltage-dependent currents in the model are available on-line as
supplemental material. IH was based on Huguenard and McCormick
(1992) and all other currents are from Liu et al. (1998). All time
constants were doubled to compensate for a temperature difference
between the voltage clamp experiments by Turrigiano et al. (1995)
and Huguenard and McCormick (1992) and the recordings reported
here.

Together with the input current, the membrane currents govern the
potential V according to

C
dV

dt
� ��

i

Ii � Iinput

where C � 0.628 nF is the membrane capacitance. For current step
simulations, the input current was stepped from zero to a depolarizing
DC current of 3 or 6 nA. For phase-response curves, the input
consisted of pulses of inhibitory synaptic current Isyn � g�syn(V �
Esyn), where g�syn is an instantaneously activating synaptic conduc-
tance. The synaptic current reversed at Esyn � �80 mV.

The intracellular Ca2� concentration changes according to

�Ca

d�Ca2��

dt
� �f�ICaT � ICaS	 � �Ca2�� � �Ca2��0

where �Ca � 200 ms is the Ca2� buffering time constant, f � 14.96
�M/nA translates the Ca2� current into an intracellular concentration
change (Liu et al. 1998), and [Ca2�]0 � 0.05 �M is the steady-state
intracellular Ca2� concentration if no Ca2� flows across the mem-
brane.

The differential equations for the membrane potential and the
intracellular calcium concentration were integrated with the exponen-
tial method described in Dayan and Abbott (2001); those for the
activation and inactivation variables were integrated with the Euler
method. The numerical integration time step was 50 �s.

A previous study distinguished between tonically active neurons
with narrow spikes and tonically active neurons with a broad shoulder
after each spike (Goldman et al. 2001). The authors called the latter
category “one-spike bursters,” arguing that the amount of transmitter
such neurons release from a graded synapse is closer to that released
by a bursting neuron than to that released by a spiker. To make a
similar distinction, we continuously computed the integral T under the
voltage trace between �40 and �15 mV

T � �
0

t

max �0, min �V, � 15 mV	 � 40 mV�dt


The increase in T from one local voltage maximum to the next
corresponds to the area under the peak between �40 and �15 mV.
Goldman et al. (2001) interpreted the increase in T per discharge as a
measure for the amount of transmitter the discharge would release
from an instantaneous graded synapse with a transmission threshold
of Vth � �40 mV and a saturation voltage of Vsat � �15 mV.

Model implementation

The model was implemented in C�� programs and executed on a
shared Dell Beowulf cluster with 36 1.2-GHz processors. The com-
putation time required for the simulation and classification of the
spontaneous activity of all neurons was about 1 wk and resulted in 3
GB of data. The current injections took �1 mo and produced 23 GB,
and the phase-response simulations were finished within a few days
and generated 0.2 MB. With some code optimization and the growth
in computer speed, we are confident that the computation time can be
reduced in future database projects.

Phase-response curves

To obtain phase-response curves (PRCs) of the bursting model
neurons, we simulated square pulses of synaptic conductance g�syn at
different times during the rhythm with g�syn � 0 at all times before and
after the pulse (Demir et al. 1997; Prinz et al. 2003). We assign phase
0 to the 1st maximum in each burst (burst onset) (Pinsker 1977). For
a pulse beginning at time �T after the preceding burst onset, the
stimulus phase is defined as �T/P, where P is the free-run burst period
(Winfree 1980).

The period change �P caused by the pulse was the time difference
between the 1st burst onset after the start of the pulse and the time at
which this burst would have started if the pulse had not occurred. If
the next following burst occurs earlier than in the free-run rhythm,
�P  0; if the burst starts later than in the unperturbed rhythm, �P �
0. When the normalized period change �P/P attributed to a pulse is
plotted against the stimulus phase �T/P, the resulting curve is the
classical PRC (Pinsker 1977).

Access to the database

The complete database described here is available for potential
users. Because of the size of the database, downloading it from a
website is impractical. We will therefore mail it on a set of DVDs on
e-mail request to prinz@brandeis.edu. The DVDs contain conduc-
tance densities, spontaneous discharge patterns and discharge patterns
under current injection, classification results, and spike or burst fre-
quencies for all neurons, as well as burst durations, duty cycles, PRCs,
and numbers of maxima per burst for the bursting neurons and resting
potentials for the silent neurons. In addition, the DVDs provide
documentation about the file formats used in the database and an
executable that allows the simulation of a voltage trace for any neuron
in the database.

R E S U L T S

Simulation and initial classification of spontaneous activity

We generated a database that contains information about the
electrical activity of about 1.7 million model neurons with
different maximal conductances of 8 Hodgkin–Huxley-type
membrane currents. We call a particular set of conductances a
“model neuron” or “neuron” and refer to the entire class of
model neurons as the “model” (Goldman et al. 2001). The
currents in this single-compartment model are based on those
of lobster stomatogastric ganglion (STG) neurons (Turrigiano
et al. 1995) and include a Na� current, INa; 2 Ca2� currents,
ICaT and ICaS; a transient K� current, IA; a Ca2�-dependent K�

current, IKCa; a delayed rectifier K� current, IKd; a hyperpo-
larization-activated inward current, IH; and a leak current, Ileak.
The voltage dependence and dynamics of the currents and an
intracellular calcium buffer included in the model are described
in METHODS. To generate the database, we independently varied
each conductance over 6 equidistant values, ranging from 0
mS/cm2 to a conductance-specific maximum, and collected
results for all 68 � 1,679,616 possible combinations of these
values. Maximum values were (in mS/cm2): 500 for INa, 12.5
for ICaT, 10 for ICaS, 50 for IA, 25 for IKCa, 125 for IKd, and 0.05
for IH and Ileak.

The spontaneous activity of each model neuron on this grid
in conductance space was simulated and classified. Based on
local voltage extrema (referred to as “extrema,” “maxima,” and
“minima” from here on), the neurons were initially classified in
4 categories: silent, tonically active, bursting, and nonperiodic.

When simulating and classifying electrical activity for many
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neurons, it is crucial to minimize the amount of simulation per
neuron. This is difficult because different neurons require
different times to reach their steady state after initialization. In
addition, the duration of spontaneous activity required for a
correct classification varies between cells because of different
discharge frequencies and activity types. We solved this prob-
lem by simulating spontaneous activity in epochs of 1 s and
attempting to classify the activity after each epoch, stopping
the simulation as soon as an unambiguous classification was
achieved.

The adaptive algorithm for the simulation and 1st classifi-
cation of the spontaneous activity for each model neuron is
outlined in Fig. 1. For each neuron, the 13 dynamic model
variables were initialized to V � �50 mV, [Ca2�] � 0.05 �M,
m � 0 for activation, and h � 1 for inactivation variables.
From this initial state, the approach of each neuron to its
steady-state activity was simulated and local voltage maxima
were counted. The approach to steady state was terminated
when 500 maxima had been counted or after 10 s of simulated
time, whichever occurred first (Fig. 1). The simulation time t
and maxima count n were then reset to 0 and the spontaneous
activity of the neuron was simulated and classified (Fig. 1).
Spontaneous activity was simulated in epochs of 1 s while local
voltage extrema were stored (gray box in Fig. 1). After each
epoch, the stored extrema were used to attempt classification of
the neuron as silent, tonically active, or bursting (Fig. 2).

A neuron was tentatively classified as silent if no extrema
had been detected. If �10 maxima had been stored and all
intermaximum intervals (IMIs) differed by 1% from their

average, the neuron was classified as tonically active (Komen-
dantov and Canavier 2002). The neuron was identified as a
burster if n � 10 maxima had been stored and the voltage trace
showed a periodic sequence of n/2 IMIs with homologous
intervals in consecutive periods differing by 1%.

Once a neuron was classified as tonically active or bursting,
the simulation was terminated. For seemingly silent neurons,
the simulation was continued by further epochs to ensure that
the lack of detected extrema was not the result of a low firing
rate. The simulation was also continued if �10 maxima had
been stored or if the neuron could not be classified as tonically
active or bursting in spite of �10 stored maxima.

After 20 s of simulated time or when 1,000 maxima had
been stored, the simulation of spontaneous activity was halted.
Neurons that still had no stored extrema were classified as
silent.

Some neurons had not been classified as silent, tonically
active, or bursting at this point. They belonged to 3 groups. 1)
One group had such low discharge rates that �10 maxima
occurred in the 20 s of simulated time and a reliable classifi-
cation was not possible. 2) A second group was silent, tonically
active, or bursting, but had not reached their steady state after
the 10 s allotted for it. These neurons did not fulfill the
classification criteria because of maxima stored before the
steady state was reached. 3) A 3rd group did not fulfill the
criteria for tonic activity or bursting because of truly nonperi-
odic firing patterns.

To separate group 2 from the others, the simulation time and
maxima count were reset to 0 for all unclassified neurons. The
gray box in Fig. 1 was then repeated up to 3 more times for
these neurons, corresponding to a total of 90 s of simulated
time or �4,500 maxima. After this, all neurons in group 2 had
reached their steady state and could be classified.

Of the remaining unclassified neurons, those with �10 max-
ima were classified as nonperiodic. The spontaneous activity of
those with �10 maxima was further simulated until 100 max-
ima had been stored and the activity could be classified.

Spontaneous activity data

Once a neuron was classified, a list with the time t, voltage
V at the peak or trough, and synaptic release measure T for
each stored extremum was saved to ASCII files along with a
conductance code that uniquely identifies each neuron. Al-
though these extrema contain salient information about the
neurons’ activity patterns, their storage does not require the
prohibitive amounts of memory that would be needed if a
complete voltage trace were saved for each neuron. In a sep-
arate file, the activity type—silent, tonically active, bursting, or
nonperiodic—was saved for each neuron.

The approach to steady state was sometimes lengthy. At the
end of the simulation of spontaneous activity, we therefore
saved a snapshot of the 13 dynamic variables (the membrane
potential, the intracellular calcium concentration, and the 7
activation variables and 4 inactivation variables) for each neu-
ron. This allowed us to later reset all dynamic variables to their
saved value and resume simulation at the same point, which
greatly reduces the computation time necessary for additional
simulations.

FIG. 1. Flowchart for simulation of spontaneous activity. Simulation and
classification algorithm was designed to minimize simulation time per neuron.
n is number of voltage maxima, t is simulation time. After �10 s of simulated
time allotted for reaching steady state, spontaneous activity was simulated in
epochs of 1 s and classification was attempted after each epoch. Simulation
was terminated as soon as a neuron was identified as tonically active or
bursting. For silent neurons, simulation was continued until 20 s of spontane-
ous activity had passed without voltage extrema. To avoid misclassification of
neurons that had not reached their steady state after 10 s or 500 maxima, t and
n were reset after 20 epochs (one pass through gray box) and the algorithm in
box was repeated. Neurons that had not been classified as silent, tonically
active, or bursting after 4 passes through box were classified as nonperiodic.
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Reclassifications

The spontaneous activity classification results were checked
for a random subset of neurons by inspecting their extrema.
During this, we encountered several classes of misclassified
neurons. One misclassified group consisted of silent neurons
that took minutes to reach steady state. During this time their
membrane potential showed damped oscillations with regularly
spaced extrema (Fig. 3A), such that these neurons were mis-
taken as tonically active based on their IMIs. To fix these
misclassifications, we searched all tonically active neurons for
monotonically decreasing oscillation amplitude. Neurons for
which the voltage difference between each saved maximum
and its preceding minimum was monotonically decreasing
were identified as potential slowly damped silent neurons.
Their dynamic variables were reset to the stored snapshot
values and the simulation was continued until the silent steady
state was reached. The neurons were then reclassified as silent.

Similar misclassifications occurred for a group of toni-
cally active neurons that also reached their stable activity
pattern only after minutes of simulated time and showed

nonperiodic activity as they approached it (Fig. 3B). To
identify such neurons, all nonperiodic neurons were reclas-
sified based on the last 100 of their saved maxima. Neurons
that showed tonic or bursting activity in this last part of the
voltage series were reclassified accordingly. However, this
reclassification is likely incomplete because it is possible
that some neurons reached a periodic activity pattern so late
that they appeared to be nonperiodic for all of the simulated
90 s or 4,500 maxima. In principle, this possibility remains
for all irregular neurons, which make up about 0.5% of the
neurons in the database.

A 3rd group of reclassifications was motivated by the fact
that many nonperiodic neurons appeared like bursters with
only slightly irregular firing patterns, whereas others showed
no tendency to be periodic (Fig. 3, C and D). To distinguish
them, we used a less-strict periodicity criterion: nonperiodic
neurons were classified as irregular bursters if their IMI se-
quence showed bursts of maxima with the time between con-
secutive burst onsets differing by 10% from the average
period (Fig. 3C). All other nonperiodic neurons were classified

FIG. 2. Classification of spontaneous activity. A–D: examples of steady-state activity categories used to classify all neurons in
database. Horizontal gray bar indicates �50 mV, and time and voltage scales are identical for all traces. A: silent neurons have a
steady-state voltage trace without extrema. Maximal conductances of this neuron are (in mS/cm2): Na 500, CaT 0, CaS 0, A 40,
KCa 0, Kd 75, H 0.01, leak 0. B: tonically active neurons have extrema and interval between any 2 consecutive maxima differs
by 1% from average interval. Maximal conductances (in mS/cm2): Na 100, CaT 0, CaS 10, A 40, KCa 50, Kd 75, H 0.02, leak
0.03. C: bursting neurons have periodic sequences of maxima and homologous intervals in consecutive periods differ by 1%.
Maximal conductances (in mS/cm2): Na 100, CaT 0, CaS 4, A 0, KCa 15, Kd 50, H 0.02, leak 0.03. D: neurons that were neither
silent, tonically active, nor bursting were classified as nonperiodic. Maximal conductances of this neuron (in mS/cm2): Na 300, CaT
0, CaS 10, A 20, KCa 20, Kd 125, H 0.05, leak 0.01. E: sample traces of tonically active neurons with (top) and without (bottom)
a shoulder after peak. Insets: area (gray) under trace used to distinguish between spiking neurons and one-spike bursters. Numbers
in insets give area and peak potential. Maximal conductances (in mS/cm2) are Na 100, CaT 0, CaS 4, A 10, KCa 10, Kd 75, H 0.01,
leak 0.03 for spiker and Na 0, CaT 12.5, CaS 10, A 20, KCa 5, Kd 75, H 0.04, leak 0.03 for one-spike burster. F: area under peak,
plotted against peak voltage for all tonically active neurons. There are 2 distinct groups of neurons. Those with a small area and
a high peak potential were classified as spiking neurons; all others were classified as one-spike bursters.
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as truly irregular. This distinction between irregular bursting
and truly irregular firing is somewhat arbitrary.

Many tonically active neurons had narrow spikes, whereas
others showed pronounced shoulders after their discharge (Fig.
2E). To distinguish between the 2 groups, we computed the
area under the peak between �40 and �15 mV for each
tonically active neuron and plotted it against the peak voltage
(Fig. 2, E and F and METHODS). The neurons fall into 2 distinct
groups: one type of neuron has small areas under the discharge
in spite of relatively depolarized peak potentials, whereas the
other type has larger areas and shows a wide range of peak
potentials. We defined tonically active neurons with an area
0.4 mVs and a peak �0 mV as spiking neurons and reclas-
sified all other tonically active neurons as one-spike bursters
(Goldman et al. 2001). Given that 2 simple features of the
voltage trace, the area under the trace and the peak potential,
are sufficient to distinguish between 2 types of neurons, we
believe that this classification reflects 2 different discharge

mechanisms, rather than artificially splitting a continuum of
neurons into subcategories (Fig. 2F).

Additional spontaneous activity data processing

To facilitate searches of the database, we extracted several
features from the stored extrema and saved them: for silent
cells we saved the resting potential. For tonically active neu-
rons we saved the discharge frequency (inverse of the IMI),
and the transmitter release per period (increase in the integral
T per period) at a graded synapse. For regular bursters we
saved the burst period, the number of maxima per period, and
the transmitter release per period. We also saved the number of
spikes (maxima �0 mV) per burst period, the burst duration
[burst period minus largest interspike interval (ISI)], and the
duty cycle (burst duration divided by period). For nonperiodic
neurons we saved the average discharge frequency (inverse of
the average IMI).

We reduced the size of the database by removing redundant
information from the saved extrema lists. The lists were re-
duced to the last 3 periods of extrema for tonically active or
bursting neurons and the last 2,000 extrema for nonperiodic
neurons.

Overview of model neurons in the database

Figure 4A illustrates the content of the database. Of the
approximately 1.7 million neurons, 17% were silent, 16% were
spiking, 67% were bursting (including 19% one-spike bursters
and 3% irregular bursters), and 0.5% were irregular. Figure 4
shows that each of these categories contains a wide variety of
neurons.

Because the set of possible values each maximal membrane
conductance could assume included 0 mS/cm2, the database
contains pathological neurons such as ones with only inward
currents. Many such pathological combinations were silent.
This is why Fig. 4B, a histogram of resting potentials for all
silent neurons, includes cells with resting potentials in the
depolarized range. In the physiologically meaningful hyperpo-
larized range, the silent neurons cluster around the reversal
potentials of the underlying conductances. Presumably, this is
because one conductance is so dominant that it keeps the
membrane potential close to its reversal potential and prevents
the neuron from spiking or bursting.

Figure 4C shows a spike frequency histogram for the spiking
neurons. The spike frequencies in the database range from 0.03
to 124 Hz, covering more than 4 orders of magnitude. The
histogram shows 2 distinct distributions around 3.5 and 60 Hz
with almost no overlap. We inspected the conductances of
these 2 groups and found that the low-frequency spiking neu-
rons had no ICaT and low densities of ICaS, whereas the high-
frequency spiking neurons had higher densities of ICaS, but no
or little IKCa. These differences suggest that the 2 neuron
populations reflect 2 different mechanisms for supporting spik-
ing. Separate regions of conductance space with low-frequency
and high-frequency spiking neurons that differ in their calcium
conductance were previously reported (LeMasson et al. 1993).

The burst durations of the regular bursters with �1 voltage
maxima per burst are plotted against the burst period in Fig.
4D. The durations and periods cover wide value ranges. Just
below the diagonal, there is a band of about 300 ms width with

FIG. 3. Neurons that were difficult to classify. A: after initialization, this
neuron showed damped oscillations that required �30 min to decay. Maximal
conductances (in mS/cm2) are Na 0, CaT 0, CaS 4, A 40, KCa 10, Kd 100, H
0.02, leak 0.01. B: traces from a spiking neuron that initially showed no
periodicity. After about 1 min, activity switched to regular spiking and re-
mained regular as long as simulation was continued. Times in A and B refer to
simulated time, not simulation time. Maximal conductances of this neuron are
(in mS/cm2): Na 100, CaT 0, CaS 10, A 50, KCa 5, Kd 75, H 0.05, leak 0.03.
C–D: traces from 2 neurons at far ends of a continuum of nonperiodic neurons.
C: nonperiodic neuron reclassified as an irregular burster. Number of spikes in
each burst is indicated. Discharge pattern looks regular at first sight, but close
examination reveals no strict periodicity. Maximal conductances (in mS/cm2):
Na 400, CaT 0, CaS 8, A 50, KCa 20, Kd 50, H 0.04, leak 0. D: irregular
neuron. This model neuron showed no periodicity, even by less-strict criterion
used to detect irregular bursters. Maximal conductances (in mS/cm2): Na 100,
CaT 0, CaS 10, A 50, KCa 20, Kd 100, H 0.04, leak 0.02. Horizontal bars
indicate �49 mV in A and �50 mV in B–D.
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low burster density, suggesting that there is a lower limit for
the interburst interval.

The burst durations in Fig. 4D were determined based on the
timing of the voltage maxima �0 mV. This threshold was
introduced to separate spikes from small-amplitude voltage

maxima that we would be reluctant to call spikes (e.g., see the
last maximum in each burst in Fig. 2C). Because the overall
distribution of voltage values at local maxima in the entire
database suggests no one threshold for spike detection (data not
shown), this choice of threshold is arbitrary. However, the plot

FIG. 4. Database contains a wide variety of neurons. A: pie chart showing percentage of database neurons in each category. B:
histogram of resting potentials for silent neurons with logarithmic vertical scale. Silent category includes neurons with depolarized
resting potentials. C: frequency histogram for spiking neurons. Insets: percentages of slow spikers (left) and fast spikers (right) with
a given conductance density for ICaT, ICaS, and IKCa. Slow spikers have no ICaT and are likely to have small amounts of ICaS, whereas
fast spikers tend to have a lot of ICaS and little or no IKCa. D: burst duration as determined from voltage maxima �0 mV, plotted
against burst period for all regular bursters with �1 maxima per burst. E: histogram of number of voltage maxima per burst for
all regular bursters. Note logarithmic vertical scale. Gray distribution was determined by counting all maxima per period; black
distribution is based on maxima �0 mV. Insets: voltage traces for neurons with few (left) and many (right) maxima per period.
Maximal conductances (in mS/cm2) are Na 400, CaT 2.5, CaS 4, A 50, KCa 25, Kd 75, H 0, leak 0.04 for left inset and Na 300,
CaT 7.5, CaS 8, A 0, KCa 10, Kd 125, H 0.01, leak 0.03 for right inset.
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in Fig. 4D looked similar when we used all voltage maxima for
the determination of the burst duration. The distribution of
burst durations therefore seems to be fairly insensitive to the
choice of spike threshold.

The gray histogram in Fig. 4E shows the number of maxima
per burst for all regular bursters. Although 99% of the bursters
have 30 maxima per burst, the number of maxima per burst
ranges up to almost 500. When we again counted only the
voltage maxima �0 mV, we obtained the black histogram in
Fig. 4E. This distribution is similar to the histogram based on
all maxima, but contains fewer neurons with �250 maxima per
burst. This is attributed to elliptic bursters in the database (Fig.
5E). The voltage traces of these elliptic bursters show low-
amplitude oscillations between bursts (Bertram et al. 1995;
Izhikevich 2000; Wang and Rinzel 2003) that do not contribute
to the number of maxima per burst if a threshold of 0 mV is
applied.

The diversity of firing patterns found in the database is
further illustrated by Fig. 5. By varying the maximal conduc-
tances of otherwise unchanged membrane currents we obtained
a large variety of different discharge shapes, including very
high and wide action potentials (Fig. 5A), spike multiplets (Fig.
5B), and unusual burst shapes (Fig. 5C). The database also
contains parabolic and elliptic bursters (Bertram et al. 1995;
Izhikevich 2000; Wang and Rinzel 2003). A parabolic burster
is shown in Fig. 5D; the ISIs within its burst first decrease and
then increase again, leading to an approximately parabolic ISI
profile. Figure 5E shows an example for an elliptic burster with
small voltage oscillations in the interburst interval. The ampli-
tude of the oscillations increases dramatically during the burst,
leading to a voltage envelope reminiscent of an ellipse.

A subset of database neurons showed higher-order discharge
periodicity. Examples are shown in Fig. 5, F and G. The

neuron in Fig. 5F shows subthreshold oscillations whose am-
plitude repeats only every 6th maximum. Similarly, the cell in
Fig. 5G alternates between 2 different interburst intervals,
resulting in a period that contains 2 bursts of spikes.

Accuracy of the numerical integration

To allow the simulation and classification of almost 1.7
million model neurons within an acceptable time frame, we
had to make a compromise between numerical accuracy and
computation speed by selecting a time step of 50 �s for the
numerical integration. To assess the impact of our choice of
integration time step on the database as a whole, we randomly
selected 10,000 neurons from the database and simulated their
spontaneous activity with 5-�s time resolution and the 2nd-
order method described in Dayan and Abbott (2001). The
activity of these model neurons with a time step of 5 �s was
then classified as described above, and the results were com-
pared with the original classification from the simulation with
50 �s. The comparison showed that 99% of the 10,000 neurons
had the same type of activity with both integration methods. Of
the 107 (1%) neurons that had a different activity type under
the 2 conditions, 55 were irregular in the database but were
classified as spiking or bursting when simulated at high time
resolution. Correspondingly, only 0.1% of the 10,000 test
neurons were irregular at high time resolution, as opposed to
0.5% in the database itself. This suggests that many of the
irregular neurons in the database were classified as irregular
because of numerical artifacts and that this is responsible for
more than half of the type differences at low compared with
high time resolution.

We further quantified the influence of the integration method
on our results by analyzing how the activity of each type of

FIG. 5. Diverse electrical behavior of database neurons. Examples that illustrate diversity of firing patterns found in database.
Horizontal lines at left edge of each trace indicate �50 mV. A: neuron with unusually large discharge amplitude and width.
Maximal conductances (in mS/cm2): Na 200, CaT 0, CaS 2, A 0, KCa 15, Kd 0, H 0.03, leak 0.04. B: neuron firing spike triplets.
Maximal conductances (in mS/cm2): Na 100, CaT 0, CaS 10, A 50, KCa 10, Kd 50, H 0.03, leak 0.05. C: neuron with pronounced
plateau at end of burst. Maximal conductances (in mS/cm2): Na 400, CaT 2.5, CaS 10, A 20, KCa 5, Kd 25, H 0.04, leak 0.03.
Scale bar and �50 mV marker are same for A, B, and C. D: parabolic burster. Parabolic interspike interval (ISI) profile is
superimposed on 2nd burst. Maximal conductances (in mS/cm2) are Na 100, CaT 0, CaS 6, A 10, KCa 10, Kd 50, H 0.03, leak
0.05. E: elliptic burster. Inset: voltage oscillations in interburst interval, expanded 4-fold in time and 100-fold in voltage with
respect to main trace. Maximal conductances (in mS/cm2): Na 100, CaT 12.5, CaS 0, A 30, KCa 0, Kd 50, H 0.04, leak 0.02. F:
low-amplitude oscillations. Arrows indicate beginning and end of one oscillation period. Maximal conductances (in mS/cm2): Na
0, CaT 0, CaS 6, A 20, KCa 25, Kd 0, H 0.02, leak 0.05. G: bursting neuron that alternates between 2 slightly different burst shapes.
Number of spikes in each burst is indicated. Maximal conductances (in mS/cm2) are Na 500, CaT 2.5, CaS 8, A 0, KCa 15, Kd
75, H 0.05, leak 0. Scale is identical in F and G.
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neuron was affected. For each of the 1,710 (17%) test neurons
that were silent in the database and at high time resolution, we
computed the difference between the resting potentials in the 2
conditions. The mean and SD of this difference were �0.08
and 47.67 �V, indicating that the silent neurons were practi-
cally identical in the 2 conditions. This is not surprising be-
cause the numerical integration method should affect mainly
the dynamics, but not the silent steady state of the simulated
neurons.

For the 1,639 (16%) test neurons that were spiking at high
and low time resolution we compared the spike periods. For
86% of these neurons, the periods differed by 1% of the
spike period at high resolution. The difference was smaller
than 2% for 95%, smaller than 3% for 98%, and smaller than
4% for 99% of the spiking neurons. Using the low instead of
the high time resolution tended to slow down the spiking
neurons: 1,334 (81%) were slower in the database than at high
resolution.

Similarly, we compared the burst periods of the 6,533 (65%)
test neurons that were bursting in the database and at high time
resolution. For 95% of these neurons, the burst period saved in
the database differed by 3% from the high resolution burst
period. The remaining 5% showed larger period deviations. In
most of these cases, the burst period saved in the database was
an integer multiple of the period found at high time resolution,
or vice versa. This can occur if the burst pattern in one of the
2 cases shows higher-order periodicity, with a repeating se-
quence of 2 or more only slightly different burst periods. Such
a sequence can be incorrectly detected as one long period by
the fairly strict periodicity detection algorithm we used. As
with the spiking neurons, most (i.e., 87%) of the bursters were
slightly slower in the database than at high time resolution.

We also compared the number of maxima per burst at low
and at high resolution and found that 93% of the regular
bursters had the same number of maxima per burst under both
conditions and 98% differed by 2 or less maxima. The numbers
of maxima per burst with peak voltages above or below 0 mV
were similarly sensitive to the time resolution of numerical
integration: 95% of the regular bursters had the same number
of spikes (maxima with peaks �0 mV) per burst at high and
low time resolution and 98% differed by one spike or less.
Compared with that, 94% of the regular bursters had the same
number of maxima 0 mV per burst under both conditions and
99% differed by one or no maximum 0 mV.

It is conceivable that small accumulated errors resulting
from the 50-�s time resolution could contribute to the long
settling times and response times observed in some neurons
(Figs. 2A and 8F). Although we did not systematically explore
this possibility, we have evidence that the choice of time
resolution may have a small influence on some of these slow
processes. For example, the extremely slowly damped neuron
in Fig. 2A reaches its silent steady state slightly faster at high
than at low numerical time resolution. On the other hand, the
long delay after inhibitory input shown in Fig. 8F is indepen-
dent of the time resolution, suggesting that not all slow pro-
cesses are subject to this type of error.

Taken together, these results show that the influence of the
numerical integration time step on the overall database com-
position is fairly subtle. However, we believe it is important to
quantify and be aware of these differences. Even with substan-
tially higher computer speeds, the simulation of large numbers

of numerical models will always have to deal with a trade-off
between simulation speed and accuracy. A compromise be-
tween these 2 goals will therefore continue to be a part of
database construction.

Sampling of conductance space

Our database covers an 8-dimensional conductance space
with a grid of 6 values for each conductance. We addressed
how well such a sparse sample captures the distribution of
different types of activity in this space in 2 ways.

First, we examined families of neurons that differ in only
one conductance. In conductance space, each such family
corresponds to a line parallel to one of the conductance axes
(Fig. 6). To gain insight into the distribution of the types of
activity in our conductance space, we consider 2 extreme
theoretical cases: in a simple conductance space, neurons of a
given type (silent, spiking, bursting, or irregular) would occupy
a single, continuous region, and all such regions would be of
simple shape. In such a space, increasing one conductance
while keeping all others constant means moving along a line
that never returns to a region of one activity type after crossing
through regions of other types. Figure 6A illustrates this for a

FIG. 6. Exploring conductance space with a sparse grid. A: 2D slice
through a “well-behaved” region of conductance space. Conductances of INa

and IH were varied; other conductances were held constant at (in mS/cm2): CaT
0, CaS 8, A 50, KCa 0, Kd 75, leak 0. Black lines show sampling grid. Symbols
on grid points indicate spontaneous activity type of corresponding neuron.
Bold black arrow shows a well-behaved family line crossing through different
regions without returning to an activity type previously left behind. Two
symbols off grid are random neurons. Top: located in a square with bursters on
all corners and is itself a burster. Bottom: differs from its nearest neighbor on
grid because it is near a boundary between regions of different types. B: 2D
slice through a less well behaved region of conductance space. ICaS and IA were
varied; other maximal conductances were (in mS/cm2): Na 400, CaT 5, KCa
10, Kd 125, H 0.02, leak 0.03. Bold arrow is a family line that encounters a
burster, then an irregular neuron, and then returns to a region of bursters.
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2D slice through the conductance space of our database. In
contrast, a conductance space with a complex distribution of
activity types could have small, discontinuous, or warped re-
gions. In such a space, a line parallel to a conductance axis
would likely cross in and out of a region of a given type
multiple times. Figure 6B shows a slice through the database
that contains such lines.

We previously defined a family of neurons as those that
differ in only one conductance whereas the other 7 conduc-
tances are the same. For example, there are 67 families whose
members differ only in their amount of INa. Analogously, there
are 67 families for each of the 8 membrane conductances,
resulting in a total of 8 � 67 � 2,239,488 families in the
database. There are more families than neurons in the database
because each family contains 6 neurons, whereas every neuron
belongs to 8 families. Each neuron has one of the 4 activity
types described above. Given these 4 types, 98% of the family
lines in our database never returned to an activity region they
had previously left behind. This suggests that the distribution
of activity types in our conductance space is well-behaved and
does not contain many disconnected or warped regions. Our
sparse sample of this space is therefore likely to capture the
salient features of the dependence of electrical activity on the
underlying membrane conductances.

This result depends on our choice of activity types. The most
arbitrary choice we made is the distinction between truly
irregular neurons and irregular bursters, and our decision to
include the latter in the burster category. We therefore repeated
the family line analysis, but tentatively grouped the irregular
bursters in the irregular category, resulting in 95% “well-
behaved” families. Similarly, 98% of the lines were well-
behaved when we grouped all irregular neurons in the burster
category. Irrespective of this choice of categories, the space
covered by the database seems to be well-behaved, suggesting
that its structure can be studied on the basis of a sparse
sampling grid.

Many of the family lines that were not “well-behaved”
contained irregular neurons; examples for this can be seen in
Fig. 6B. We have shown above that many of the irregular
neurons in the database turn into spikers or bursters when the
numerical integration is performed at a 10 times higher time
resolution, suggesting that their irregularity is an artifact of the
low time resolution we had to use for reasons of feasibility. For
example, one of the 12 irregular neurons in the database slice
in Fig. 6B turned out to be a regular burster at high time
resolution. It is therefore conceivable that the true percentage
of well-behaved family lines would be even higher than re-
ported above if the entire database were simulated at high time
resolution.

For our 2nd approach to the sampling question, we covered
the range of conductance space defined by our grid with a new
data set consisting of 10,000 neurons with random membrane
conductances. We refer to this set of neurons as “random data
set” and to its members as “random neurons.” If the sparse
database grid captures the distribution of activity types in the
space, one would expect most random neurons to be of the
same type as neurons on nearby grid points.

We classified the activity of the random neurons as de-
scribed for the neurons on the grid. Each random neuron is
located in an 8-dimensional hypercube of conductance space
whose 28 � 256 corners are defined by all possible combina-

tions of the 2 grid values that bracket the random value of each
conductance. In each dimension, a random point is either closer
to the grid value below it or to the grid value above it. The
combination of the 8 grid values closest to a random point
therefore defines a unique nearest neighbor on the grid. Using
the 4 activity types described above, we found that 90% of the
random neurons had a nearest grid neighbor that showed the
same activity type.

Furthermore, the 10% of random neurons that were not of
the same type as their nearest grid neighbor were all located in
hypercubes with corners of more than one type. This indicates
that the activity type of these random neurons may differ from
that of their nearest neighbors because they are located close to
boundaries between conductance space regions of different
types. A random neuron in Fig. 6A illustrates this in 2 dimen-
sions.

The random neurons yielded an additional indication that the
distribution of activity types is not very complex or discontin-
uous: we inspected random neurons that were located in a
hypercube with the same activity type on all corners. All such
random neurons showed the same type of activity as the
corners of the hypercube in which they were located. This
again indicates that there are few or no small-scale pockets of
one activity type in regions of another type. Figure 6A shows
an example in 2 dimensions.

Current injections

We further characterized all neurons by their response to de-
polarizing current steps of 3 and 6 nA. To simulate a current step,
all dynamic variables were set to the values stored in the snapshot
and the simulation was continued while storing extrema. For
tonically active or bursting neurons, the current was stepped up
when the simulation was halfway through the largest IMI of the
period. For irregular neurons, the current step started at a local
voltage minimum. The injection was continued and extrema were
saved until a new steady state was reached, but for �1 s after the
step (Fig. 7, A and B). The steady-state activity in response to 3-
and 6-nA current injection was then characterized and saved as it
was for the spontaneous activity. We tried to classify the neurons
that were tonically active under current injection as either one-
spike bursters or spiking neurons as in Fig. 2, E and F. However,
there was no obvious separation of the tonically active neurons
under current injection. The equivalents of Fig. 2F for 3- and 6-nA
current injection showed the same 2 populations as Fig. 2F
(neurons with narrow spikes and high peak potentials and neurons
with broad shoulders after the discharge), but at peak potential
between 30 and 50 mV the 2 populations were connected by
neurons with a continuum of areas under the discharge (data not
shown). We therefore treat one-spike bursters and spiking neurons
both as tonically active in the following analysis.

A total of 970,553 (58%) of the neurons showed the same
type of steady-state activity whether no current, 3 nA, or 6 nA
was injected. This was the case for 34% of the silent, 77% of
the tonically active, 53% of the bursting, but for none of the
irregular neurons. That no neuron showed irregular activity
under all 3 injection conditions means that the firing of all
irregular neurons in this database can be regularized by DC
current injection. The remaining 709,063 (42%) neurons
switched to a different activity type under one or both of the
current injections, and 43,922 (3%) neurons showed 3 different
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types of activity under the 3 injection conditions. Figure 7C
summarizes this for the 3-nA step. The majority of tonically
active and bursting neurons retained the same type of activity
under 3 nA, whereas most of the silent and irregular neurons
switched to tonic activity (gray boxes in Fig. 7C). Similar
results apply for the 6-nA step (data not shown). Figure 7D

shows the numbers of silent, tonically active, bursting, and
irregular neurons in the 3 injection conditions. With increasing
current, more neurons became tonically active and fewer neu-
rons were silent or bursting.

During the injection simulation, we saved the number of
maxima (regardless of their peak voltage) during the first 1 s of

FIG. 7. Current injections. A and B: activity of 2 neurons before and after injection current is stepped to 3 nA (top) and 6 nA
(bottom). Maximal conductances (in mS/cm2) are Na 0, CaT 5, CaS 4, A 10, KCa 20, Kd 100, H 0.02, leak 0.03 in A and Na 400,
CaT 2.5, CaS 10, A 50, KCa 20, Kd 0, H 0.04, leak 0 in B. C: number of neurons of activity types under 0 and 3 nA injection.
D: number of neurons of 4 activity types under 3 injection conditions. E: number of voltage maxima during 1st s after step to 3
nA, plotted against steady-state discharge frequency during 3-nA injection. Neurons above diagonal show frequency adaptation.
Insets: examples of neurons above and below diagonal. Maximal conductances (in mS/cm2) are Na 400, CaT 12.5, CaS 6, A 50,
KCa 15, Kd 0, H 0.01, leak 0.02 for the top inset and Na 100, CaT 0, CaS 8, A 0, KCa 25, Kd 100, H 0.05, leak 0.01 for the bottom
inset. F: steady-state fI curve examples. Curves can be linear (1) or have increasing (2, 4) or decreasing slope (3, 5). Maximal
conductances of corresponding neurons are (in mS/cm2): Na 400, CaT 5, CaS 4, A 50, KCa 0, Kd 25, H 0.05, leak 0 for curve 1;
Na 400, CaT 5, CaS 2, A 50, KCa 0, Kd 25, H 0.03, leak 0 for curve 2; Na 0, CaT 2.5, CaS 4, A 50, KCa 25, Kd 50, H 0.02, leak
0.04 for curve 4; Na 0, CaT 2.5, CaS 6, A 20, KCa 5, Kd 50, H 0.01, leak 0 for curve 5. Curve 3 belongs to neuron in A.
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injection and the steady-state discharge frequency to allow the
measurement of adaptation. Figure 7E shows the number of
maxima in the first 1 s after the step to 3 nA, plotted against the
steady-state frequency during the 3-nA injection. Points above
the diagonal are neurons that discharge more often in the first
1 s than during 1 s of steady-state activity, thus showing
frequency adaptation. The neurons below the diagonal fire less
during the first 1 s than later on. Based on this measure, 81%
of all neurons showed adaptation when the injection current
was stepped to 3 nA, and 77% adapted after a step to 6 nA.
However, whether a neuron shows adaptation depends on the
length of the spike-counting time window after the step. This is
illustrated by the bottom inset in Fig. 7E, where a window of
0.1 s instead of 1 s would have resulted in an initial discharge
frequency higher than the steady-state frequency.

The current injection data allow the construction of initial
and steady-state 3-point fI curves for each neuron. Figure 7F
shows examples for steady-state fI curves. The fI curves in the
database show a variety of slopes and shapes and thus indicate
that the neurons respond differently to the same input. fI curves
with only 3 points can, however, give only a rough idea of the
response properties of the neurons. For example, it is not
possible to decide whether a neuron shows class 1 or class 2
excitability (Hodgkin 1948) based on these fI curves, that is,
whether it can fire with arbitrarily low frequency.

An obvious extension of the current step simulations de-
scribed here are current pulse simulations in which the injec-
tion current returns to 0 nA after a limited injection duration.
Comparing the activity of database neurons before and after
such a current pulse could be used to systematically search the
database for bistable neurons. We have not simulated such
current pulses in database neurons on a large scale, but we have
evidence that some bistable neurons exist in the database from
current pulse simulations in a selected subset of spikers (data
not shown).

PRCs

The response of an oscillator to inputs depends on their
timing relative to the oscillation (Brown and Eccles 1934). The
response can be characterized by a phase-response curve
(PRC) that describes the change in single-cycle period caused
by inputs arriving at different times during the rhythm (Pinsker
1977; Pinsker and Kandel 1977). For the spontaneously, reg-
ularly bursting neurons in the database, we simulated PRCs in
response to instantaneous, inhibitory synaptic inputs of
1,000-nS amplitude that lasted for 25% of the intrinsic burst
period of the neuron (Fig. 8A). Such inputs were simulated at
10 equidistant phases of the ongoing rhythm, resulting in PRCs
with a phase resolution of 0.1 (Fig. 8B).

Figure 8, B–E illustrate the distribution of phase-response
properties of the bursters in the database. Of the 1,065,225
PRCs we computed, 65% showed monotonically increasing
delays with increasing stimulus phase (like PRCs 1, 2, and 4 in
Fig. 8B). Over 99% of the PRCs showed advances at some
phases and delays at others, whereas the remaining 7,197 PRCs
had delays at all tested phases (Fig. 8C). No PRCs showed
advances for the entire phase range, so inhibitory synaptic
inputs, if properly timed, can delay the next discharge of any
regular burster in this model. At the phase where the PRC
crosses the horizontal axis, the stimulus has no effect on the

timing of the next burst—we call this the “neutral phase point.”
The distribution of neutral phases shown in Fig. 8D drops off
sharply between phase 0.6 and 0.7. This indicates that all
bursters can be slowed by inhibitory synaptic inputs that occur
during the last 20% of the burst period.

The range of advances and delays that can be achieved by
inhibitory inputs to regular bursters is illustrated by Fig. 8E,
which is a histogram of the minimum and maximum phase
response �P/P in the PRC of each burster. Most of the mini-
mum responses (largest advances) are between �0.7 and 0, and
most of the maximum reponses (largest delays) are between
0.2 and 0.6. However, we found bursters that responded with
extreme delays: for 1,671 bursters (0.16%), inhibitory input
delayed the next burst by �1 period at all phases; in 609
bursters (0.06%), the delay was �10 periods; and in 74 burst-
ers (0.01%), it was even �100 periods at all examined phases.
Figure 8B shows an example of a PRC with delays of about
100 periods at all phases, and Fig. 8F shows a voltage trace for
the same neuron. The burster remains hyperpolarized after the
brief inhibitory input, slowly depolarizes over the next 250 s,
and finally resumes bursting with a delay of �100 periods.
Neurons with such extreme response properties are worth
further investigation because these neurons are in a sense
retaining a “memory” of previous inhibition for durations that
far exceed the time constants of the neuron’s conductances.

Example application

One application of a database of model neurons is the
identification of model parameters that reproduce the behavior
of a specific biological neuron. To illustrate this approach, we
use the database introduced above to identify model neurons
that reproduce the behavior of the pyloric pacemaker of the
lobster. This pacemaker consists of an anterior burster (AB)
neuron that is electrically coupled to 2 pyloric dilator (PD)
neurons. Figure 9C shows a recording from a PD neuron that
was obtained as described in Prinz et al. (2003) and illustrates
the bursting activity exhibited by this pacemaker in its modu-
latory environment in the STG.

To identify database neurons that reproduce the pacemak-
er’s behavior, we started with the entire database and pro-
gressively refined our selection criteria to narrow the search
to progressively more suitable subsets of neurons (Fig. 9).
We first required that the selected neurons be bursters,
reducing the number of candidates to 1,120,235. Next, we
specified that the burst period be between 1 and 2 s, the
range typical for pyloric pacemakers. This reduced the num-
ber of suitable neurons to 200,986. When we further re-
quired that the burster be regular and have a burst duration
between 0.5 and 0.75 s, 8,047 neurons were left in the
candidate pool. Limiting the range of duty cycles (burst
duration divided by period) to 0.3– 0.4 left 80 neurons that
showed the desired spontaneous activity.

Next, we used the phase-response properties of the pyloric
pacemaker to further limit the set of candidate neurons. Figure
9B shows PRC data recorded from 3 synaptically isolated
pyloric pacemakers in response to inhibitory synaptic inputs
with durations between 20 and 30% of the pyloric period
[PRCs were recorded as described in Prinz et al. (2003)].
Superimposed are the PRCs of the 80 candidate neurons.
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Although none of the simulated PRCs fits the experimental
data perfectly, there is a subset of PRCs that shows higher
curvature than the rest and agrees better with the general shape

of the experimental PRC. Using a cutoff criterion for the
chi-square deviation of the model PRCs from the experimental
PRC, we identified the 35 model bursters whose PRCs best fit

FIG. 8. Phase-response properties of regular bursters. A: definition of phase-response curve (PRC) parameters. Voltage trace of
regular burster before, during, and after pulse of inhibitory synaptic conductance. The 1,000-nS stimulus arrived with a delay �T
after previous burst onset and lasted for 25% of unperturbed burst period. For PRC, relative period change (P
 � P)/P � �P/P is
plotted against stimulus phase �T/P. Positive values are delays, negative values advances. Maximal conductances of this burster
are (in mS/cm2): Na 100, CaT 0, CaS 8, A 0, KCa 25, Kd 100, H 0.05, leak 0.01. Horizontal bar indicates �50 mV. B: example
PRCs of regular bursters. Gray arrows indicate neutral phases (see text) for PRC 3 and PRC 4. Maximal conductances (in mS/cm2):
Na 100, CaT 0, CaS 2, A 10, KCa 5, Kd 25, H 0, leak 0 for PRC 1; Na 400, CaT 0, CaS 6, A 30, KCa 0, Kd 100, H 0, leak 0.01
for PRC 2; Na 100, CaT 5, CaS 0, A 0, KCa 25, Kd 75, H 0, leak 0.02 for PRC 3; Na 400, CaT 0, CaS 6, A 30, KCa 20, Kd 25,
H 0.01, leak 0.02 for PRC 4. C: histogram of percentage of period where inputs caused delays. D: distribution of neutral phases
obtained by linear intrapolation from 2 neighboring PRC values. All bursters respond with delays to inputs in last 20% of their
period. E: histogram of minimum (black) and maximum (gray) phase response �P/P. Because of scale, some very long delays are
not visible. F: voltage trace from burster that responds to brief inhibitory input (indicated by bar below trace) with a long delay
of next burst. PRC 1 in B is from this bursting neuron.
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the pyloric pacemaker PRC. They are shown in dark gray in
Fig. 9B, among them the best fit in black.

The voltage traces of the neuron that gave the best PRC fit
and of one other neuron from the group of 35 are shown in Fig.
9, D and E. Although both neurons fulfill all criteria we used
thus far, the traces look different. Whereas the spikes in Fig. 9E
ride on a slow wave, the trace is almost flat between bursts in
Fig. 9D. As Fig. 9C shows, the pyloric pacemaker output
consists of spikes occurring during the depolarized part of a
slow wave voltage oscillation. In PD neurons, the lowest point
of the slow wave typically lies between �70 and �50 mV, the
highest point is between �55 and �25 mV, and the slow wave

amplitude (difference between the highest and the lowest po-
tential) ranges from 10 to 30 mV. We determined the lowest
point, highest point (approximated by the last voltage maxi-
mum in the burst), and amplitude of the slow wave for the
previously selected 35 model neurons and determined whether
they fell in the ranges given above. Of the 35 candidates, 9
neurons had highest and lowest point, and amplitude in the
right range, including the neuron in Fig. 9E, but not the one in
Fig. 9D. These 9 neurons represent our final selection for
model neurons that approximate the behavior of the pyloric
pacemaker.

Figure 9A shows how the first 4 criteria reduce the number

FIG. 9. Using database to identify pyloric pacemaker models. A: circles representing number of candidate pacemaker models
at different stages of search. B: pyloric dilator (PD) neuron PRC (black dots) and model neuron PRCs (lines) in response to
inhibitory synaptic conductance pulses lasting 25% of burst period in model neurons and 20–30% of burst period in experiments
(n � 3). Best-fitting model PRC is black, 34 other PRCs with acceptable fits are dark gray, and 45 PRCs that fit data less well are
light gray. Maximal conductances for best fit (in mS/cm2) are Na 500, CaT 10, CaS 0, A 40, KCa 0, Kd 100, H 0.01, leak 0.04.
C: PD neuron voltage trace with typical burst period, burst duration, duty cycle, and slow wave. Gray bars in C, D, and E indicate
�60 mV. D: voltage trace of model neuron that gave best PRC fit in B. E: voltage trace of one of remaining 34 bursters with
acceptable PRCs. Maximal conductances (in mS/cm2) are Na 200, CaT 5, CaS 4, A 40, KCa 5, Kd 125, H 0.01, leak 0. F: circles
representing number of candidate neurons with INa densities given next to each circle after period was required to be between 1
and 2 s (black) and after burst duration was required to be between 0.5 and 0.75 s (white). Nonzero INa is necessary for burst
durations in desired range. G: circles representing number of candidate neurons with IH densities given next to each circle after
period and burst duration were required to be in right range (black) and after duty cycle and PRC criteria were applied (white). For
duty cycles and PRCs similar to those of pyloric pacemaker, density of IH has to be around 0.01 mS/cm2.
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of suitable neurons step by step. In principle, the final result of
this search—9 pyloric pacemakers models—could have been
achieved in a single step by applying the criteria described
above all at once. Why perform the search step by step? If the
criteria are applied one at a time, inspection of the conductance
distribution after each step can reveal information about the
role of the underlying conductances in shaping the neuron’s
electrical activity. Figure 9, F and G show examples for this.
The black circles in Fig. 9F illustrate that the bursters with
periods between 1 and 2 s are almost evenly distributed over
the 6 sodium conductance values, including the lowest value, 0
mS/cm2. Adding just one additional criterion—burst durations
between 0.5 and 0.75 s—eliminates all neurons with 0 Na�

conductance (see white circles), implying that a nonzero Na�

current is not necessary for bursting with a period similar to the
pyloric period, but is necessary for bursting with a burst
duration in the range seen in PD neurons. This is reassuring
because burst durations between 0.5 and 0.75 s can be achieved
only with multiple spikes per burst, a behavior one would not
expect in neurons without reasonable amounts of INa. Simi-
larly, the circles in Fig. 9G show that bursting in the required
range of periods and burst durations can be achieved with a
wide distribution of IH densities, but that additional constraints
on the duty cycle and the PRC narrow this distribution to just
one of the IH conductance values covered in the database. Both
the duty cycle criterion and the PRC criterion contribute to this
narrowing: the duty cycle requirement alone leads to a distri-
bution in which 54% of the candidates have an IH conductance
of 0.01 mS/cm2, with the remaining 46% distributed nearly
evenly over the other 5 values (data not shown). Additional
application of the PRC criterion then reduces the number of
candidates with 0.01 mS/cm2 from 43 to 35 and eliminates all
other candidates (Fig. 9G). These findings suggest that IH plays
an important role in controlling both the duty cycle and the
phase-response properties of pacemaker neurons. This is con-
sistent with previous results indicating that IH shapes the re-
sponse of neural oscillators to hyperpolarizing perturbations
(Prinz et al. 2003).

The maximal conductances of the 9 pyloric pacemaker mod-
els and their similarity to one another are shown in Fig. 10.
Two of the 8 membrane conductances, those of IH and Ileak, are
identical in all 9 pacemaker models, but the remaining con-
ductances cover ranges of 2 to 4 of their 6 possible values.
Seven of the pacemaker models are a direct grid neighbor of at
least one other pacemaker model, where direct neighbors are
neurons that have identical values for 7 of their conductances
and adjacent values for the 8th. These 7 neurons form 2 pairs

and one triplet of direct neighbors. The 2 pairs are in turn
connected by pairs that have identical values for 6 of their 8
conductances, and the group of 4 they form together is linked
to the triplet by several pairs that have 5 identical conduc-
tances. The remaining 2 pacemaker models (the first and the
last in the list in Fig. 10) differ in 2 or 3 conductances from the
nearest other pacemaker model. Taken together, the results
shown in Fig. 10 indicate that the 9 pacemaker models are
located in the same region of conductance space but do not
form a directly connected, tight group. However, it is conceiv-
able that all 9 pacemakers would be part of a continuous
(although probably not convex) subspace if the “empty” space
between them were sampled.

D I S C U S S I O N

Adaptive simulation and classification algorithm

Our adaptive simulation and classification algorithm simu-
lates the activity of a model neuron in epochs of 1 s and
attempts to classify the activity at the end of each epoch. For
tonically active or bursting neurons, this limits the simulation
time to the smallest number of epochs that permit classifica-
tion.

The question of when to stop simulating is more difficult for
nonperiodic neurons because the failure to identify a periodic
sequence of IMIs in the simulated data can be the result either
of truly nonperiodic activity or of periodic activity with a
period longer than the duration of the simulation. Without an
estimate of the maximum possible burst period in our model,
this problem is unsolvable. We therefore limited the simulation
for nonperiodic neurons to 90 s of simulated time. The longest
burst period in the database is 43.3 s, which is much longer
than the longest time constant in the model, and 99.9% of all
identified bursters have periods below 7.6 s. We therefore
assume that the neurons we classified as nonperiodic actually
are nonperiodic, rather than bursters with a very long period.

Similarly, we limited the simulation time for silent neurons
to 30 s. Given that 99.9% of the bursters in the database had a
longest IMI below 3.7 s and that 99.9% of the tonically active
neurons had periods 1 s, it is again unlikely that neurons
classified as silent were misclassified because of very low
discharge rates.

An additional and fundamental classification problem is
caused by the potential for bistable neurons. We know that at
least some bistable neurons exist in the database. We classified
each neuron based on the stable activity pattern it approached

FIG. 10. Conductances and similarity of pyloric pacemaker
models. Maximal conductances (left) and similarity matrix
(right) of pyloric pacemaker models found in database. For
every pair of neurons, similarity matrix shows how many
conductances are identical in both neurons. Neurons are in
same order in conductance table and in matrix. Maximal con-
ductances of IH and Ileak (0.01 and 0 mS/cm2, respectively)
were identical in all 9 models and are therefore not listed. Not
all models are a direct neighbor of (i.e., have 7 identical
conductances with) another pacemaker model, but every model
has 5 or more conductances in common with at least one other
pacemaker model.
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after initialization of its dynamical variables. For bistable neu-
rons, which can discharge in either of 2 different, stable pat-
terns, this is necessarily incomplete, given that only one of the
2 stable states of the neuron is classified. This problem is not
easily solved because there is no single stimulus that can
switch all bistable neurons from one activity pattern to another.
Searching the database for bistable neurons by simulating
transient current pulses (as described in RESULTS) will therefore
not necessarily identify all bistable neurons present in the
database.

Sampling distributions in conductance space with a sparse
grid

We sampled the distribution of silent, spiking, bursting, and
irregular neurons in an 8-dimensional conductance space with
a relatively sparse sampling grid of only 6 different conduc-
tance values in each dimension. The distribution of activity
types in a space with more than 3 dimensions is hard to grasp,
and further work is necessary to elucidate how the underlying
conductances shape neuronal behavior. However, our analysis
of the distribution of activity types in conductance space indi-
cates that the salient features of such a distribution can be
captured with a coarse sampling grid. This is fortunate from a
computational viewpoint because it means that this high-di-
mensional parameter space can be characterized with a toler-
able amount of computation.

The well-behaved nature of this conductance space is also
fortunate from the viewpoint of the neuron. Neurons face
ongoing turnover of their molecular components and must
constantly regulate the channel densities in their membrane to
maintain a stable electrical identity (Desai et al. 1999; Golo-
wasch et al. 1999a, b; Marder and Prinz 2002; Thoby-Brisson
and Simmers 2002). If the distribution of a given type of
activity in conductance space were complex and discontinuous,
small fluctuations in channel densities could lead to dramatic
changes in the activity of a neuron, thus requiring cells to
monitor and regulate their conductances very tightly. In con-
trast, experimental evidence suggests that biological neurons
can achieve similar firing patterns with a continuum of differ-
ent membrane conductances and can maintain their activity by
regulating their current densities (Golowasch et al. 1999b;
MacLean et al. 2003). This is understandable if the dependence
of the electrical activity on the current densities is well-be-
haved in the above sense.

For feasibility reasons, databases of model neurons in high-
dimensional parameter spaces necessarily must use sparse sam-
pling, although this means that groups of neurons that fulfill a
given set of requirements—like the 9 pyloric pacemaker mod-
els identified above—are likely surrounded by many more
suitable neurons not covered by the sparse grid. There are
several conceivable ways to identify these off-grid neurons and
to thereby increase the number of neurons that meet a set of
criteria. One possibility is to cover the hypercube surrounding
each suitable grid neuron with a finer grid and apply the
database method to it. Another possibility is to use the solution
neurons identified on the sparse grid as starting points for
manual parameter tuning to explore their vicinity in parameter
space. In a 3rd option, one could scan lines connecting the
solution neurons on the grid to neighboring grid points outside
the solution region at higher resolution, thus searching for the

high-dimensional boundaries of the solution region. Any off-
grid neuron within those boundaries would then also be part of
the solution region.

On using single-compartment models

The PRCs in Fig. 9B reveal that even the best 35 model
PRCs found in our database do not perfectly agree with the
experimental data. Instead, they show phase responses larger
than most of the PD responses, with larger advances at early
phases and larger delays at late phases. This may be an exam-
ple of the limitations when using a database of single-compart-
ment model neurons to mimic an electrotonically extended
biological neuron or, as here, a group of electrically coupled
neurons. In the pyloric pacemaker group, a hyperpolarizing
input applied to a PD cell body will likely be attenuated before
reaching the burst generation site in the AB neuron. It may thus
cause a smaller phase change than the same input simulated in
a single-compartment model neuron.

Despite this limitation, we believe that the identification of
single-compartment models that approximate the behavior of
an electrically extended biological neuron is useful. Even in
cases where more elaborate models are needed to fully repro-
duce the behavior of a biological neuron in all detail, such
single-compartment model neurons and their distribution in
conductance space can be valuable. These models can be used
as a starting point for the manual or automated construction of
model neurons with several compartments. In this manner, we
believe that the database method can facilitate or complement
the traditional method of identifying suitable model neurons by
manually tuning cellular parameters.

Furthermore, the general method of simulating and classi-
fying the behavior of a large set of model neurons is not limited
to conductance space. Although the first database we introduce
here varies only the maximal conductances of a single-com-
partment model, the technique can easily be expanded to
models with several compartments and/or the variation of other
membrane parameters such as midpoints of activation or time
constants.

Other potential applications

The database described here contains information about the
spontaneous activity of a large number of model neurons and
the way they respond to input. This information can be used to
identify model neurons that mimic a desired set of behaviors,
although this is only the simplest of many applications of such
a database. The database can be used to search for any com-
bination of conductance values, activity type, resting potential,
spike or burst frequency, spikes per burst, fI curve, PRC, and
any property extractable from the saved voltage extrema. Most
such applications fall into 3 categories. The 1st category in-
cludes applications that identify model neurons with a given set
of properties, as in the example above. The 2nd category of
applications is concerned with analyzing the role of a model
parameter in a given behavior. An example of this would be an
analysis of the role of the 8 membrane conductances in gain
modulation. This could be studied by searching the database
for pairs of neurons that differ in only one of their conduc-
tances, but have different fI curve slopes (or “gains”). The
existence of such pairs would indicate that changing just one
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conductance can affect the gain of the fI curve—such a con-
ductance could be a target for gain modulation (Chance et al.
2002; Holt and Koch 1997; Smith et al. 2002). A 3rd category
of database applications is concerned with the distribution of
different behaviors in conductance space.

Alternative approaches

Using a database of computational models is not the only
approach that can shed light on the dependence of a neuron’s
behavior on its membrane conductances. A number of studies
have used nonlinear systems theory and bifurcation analysis to
classify neural behaviors (mainly for different types of burst-
ing) and determine their dependence on parameters of the
underlying model (Guckenheimer et al. 1993, 1997; Izhikevich
2000; Rush and Rinzel 1994). Such studies are rewarding in
models with a small number of dynamic variables that operate
on clearly separable time scales. Models with a large number
of variables with overlapping time scales, like the model used
here, have to be simplified to make them amenable to bifurca-
tion analysis (Canavier et al. 1991). In addition, the insights
obtained from bifurcation analysis are often qualitative. For the
quantitative analysis of physiologically realistic, multivariable
conductance-based models, large-scale numerical simulations
may be more fruitful than studies based on dynamical systems
theory.

Foster et al. (1993) used a stochastic search method to locate
regions of parameter space that fit certain predefined criteria,
such as fI curve shape, to within a given tolerance. This
approach generates valuable insight into the relative impor-
tance of different parameters for the desired behavior and into
relationships between these parameters. However, the data
generated with this approach are specific to the initial question
and, in contrast to the data generated with our database method,
cannot be used to answer other questions about the same
system.

Conclusion and future applications

We have described the construction and preliminary analysis
of a database of about 1.7 million model neurons and demon-
strated that such a database can be used for the identification of
suitable model neurons that mimic a desired set of behaviors.
The single-compartment model we used is based on data from
lobster STG neurons (Turrigiano et al. 1995), and we varied the
maximal conductances of the membrane currents and charac-
terized the behavior of each resulting model neuron without
external stimuli, under DC current injection, and—for bursting
neurons—in response to phasic inputs. The approach described
here can be generalized in several ways. 1) Biophysical mea-
surements from any neuronal type in any organism can be used
to construct a database of model neurons appropriate for mod-
eling that preparation. 2) The same strategy can be used to
study the effects of conductances in different neuronal com-
partments (Mainen and Sejnowski 1996). 3) The database
method can be used to study the influence of intrinsic and
synaptic properties on the dynamics of small networks. 4)
Similar analyses can be employed to study the effects of other
model parameters such as activation and inactivation thresh-
olds and slopes.

The method described here has only recently become prac-

tical as computer speed has increased and costs decreased.
However, in years to come, as computers become increasingly
faster, this kind of brute force approach should become part of
the compendium of techniques available to neuroscientists
wishing to construct models to inform our understanding of
cellular level computation in the nervous system.
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