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Abstract

Reliably decoding neuronal responses requires knowing what aspects of neuronal responses are stimulus related, and

which aspects act as noise. Recent work shows that spike trains can be viewed as stochastic samples from the rate

variation function, as estimated by the time dependent spike density function (or normalized peristimulus time

histogram). Such spike trains are exactly described by order statistics, and can be decoded millisecond-by-millisecond

by iterative application of order statistics.
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1. Introduction

The amount of information a spike train con-

veys depends on how the spike train is read, or

decoded. Some aspects of the spike train are

considered important for carrying stimulus-related

information and used for decoding, while other

aspects are considered noise and ignored. Fre-

quently the number of spikes arriving in a

relatively long time window (spike count) is

considered the information-carrying code, and

spike timing is disregarded. However, it is known

that at least some aspects of the time course of

firing, such as the variation in firing rate, also

carry stimulus-related information not available

from spike count alone (Richmond et al., 1987;

Richmond and Optican, 1990; McClurkin et al.,

1991; Victor and Purpura, 1996; Tovee et al.,

1993). Fig. 1 shows an example in which the spike

count distributions elicited by two stimuli are

identical (and therefore, spike count can carry no

information distinguishing the two stimuli) but the

firing rate over time differs, and could be used to

distinguish the two stimuli.

The example in Fig. 1 shows that modulation in

the firing rate over time can carry stimulus-related

information. However, the responses in the lower

panels of Fig. 1 were low-pass filtered with a

Gaussian (s�/5 ms, 3 db point B/20 Hz), so this is

a coarse representation of the timing in the

responses. It has also been proposed that precise
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(on the order of 1 ms) time relations among spikes

within or between spike trains might also carry

information. Specifically, it has been proposed

that such relations might underlie higher functions

(such as perception of whole objects) requiring

large regions of cortex subserved by large numbers

of neurons (von der Malsburg, 1995). If precisely

timed spike patterns do carry information, we

would expect them to occur at frequencies greater

than those expected by chance. Determining

whether they do occur at greater than chance

frequencies requires knowing how many to expect

by chance.

A number of studies over approximately the

past 10 years have modeled spike trains as non-

homogeneous Poisson processes, and concluded

that some patterns of three or four spikes (triplets

or quadruplets) occur more frequently than ex-

pected by chance (Lestienne and Tuckwell, 1998;

Abeles et al., 1993; Riehle et al., 1997; Aertsen et

al., 1991; Prut et al., 1998; Martignon et al., 2000).

If the inhomogeneous Poisson process model of

Fig. 1. Responses of a V1 complex cell to two different visual stimuli. The two responses are indistinguishable in spike count. The

shapes of the spike densities are different, showing that the changes in rate over time could differentiate the stimuli.
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spike trains is correct, we would expect the overall

distribution of spike counts to be a Poisson

distribution. However, it has been shown that

spike counts are frequently not Poisson-distributed

(Baddeley et al., 1997; Gershon et al., 1998).

Recently Oram et al. (1999) studied whether

triplets or quadruplets of spikes occur at levels

other than those expected from stochastic sam-

pling of the spike density function. The model used

to evaluate how many patterns would occur by

chance was similar to the non-homogeneous

Poisson models, but instead of assuming the spike

count distribution was Poisson, the model forced

the spike count distribution to match the distribu-

tion seen in the data. This ‘spike count matched’

model can be implemented by selecting an appro-

priate set of trials from a set generated by a non-

homogeneous Poisson process, although the actual

implementation is more efficient (Fig. 2). The

spike count matched model generates simulated

spike trains with the same spike count distribution

and (smoothed) firing rate over time as seen in the

data, but with stochastically determined spike

times.

Using the spike count matched model for data

from V1 and LGN, Oram et al. (1999) were able to

generate simulated spike trains in which the

numbers and types of triplets and quadruplets

were indistinguishable from those observed in

recorded spike trains. Similar results were found

in primary motor cortex (Oram et al., 2001) and, in

preliminary work in this lab, in areas TE and

perirhinal cortex. Baker and Lemon (2000), using

a related but distinct method, also found that spike

patterns occurred at chance levels both within and

between neurons. Because the occurrence of spike

patterns can be predicted from the spike count

distribution and the spike density function, the

patterns cannot carry any information not already

available from these primary features.

To summarize: the information-carrying aspects

of single neuronal responses can be characterized

by conventional and relatively easily obtainable

measurements. When the spike count distribution,

a severely low-pass filtered version of the spike

density function, and to a small degree, the

interspike interval distribution are taken into

account, all of the more complex relations among

individual spike times are predictable using a

simple stochastic model, that is, the number and

types of repeating patterns observed in data are

consistent with the predictions of the stochastic

model (Oram et al., 1999; Richmond et al., 1999;

Oram et al., 2001). This provides a strong and

exact null hypothesis for evaluating the results of

further experiments.

Fig. 2. Left: Spike count matched model. The PSTH above is

normalized and integrated to provide the cumulative prob-

ability function over the interval (here 500 ms). Enough random

numbers (range: 0�/1) to match the number needed for the

simulated spike train are chosen and mapped through the

cumulative distribution (arrows). These new values (x -axis)

represent the spike times in the simulated spike train. In this

example, six equally spaced numbers between 0 and 1 lead to six

spikes with different intervals between them.
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2. Order statistics and decoding stochastic spike
trains

The success of the spike count matched model

shows that spike trains elicited by a stimulus can

be described as a series of independent draws from

the spike density function. This is exactly the

situation described by order statistics (Arnold et

al., 1992). Classically, order statistics describe
stochastic sampling of continuous processes, in

which two draws can be arbitrarily close together.

In neuronal responses, spikes are prevented from

falling too close together by the refractory period.

Order statistics can be adjusted to allow for the

refractory period that prevents spikes from falling

too close to one another.

The fundamental equation of order statistics
(Arnold et al., 1992) is:

hn;k;s(t)�
�

n!

(k � 1)!(n � k)!

�
Fs(t)

k�1fs(t)

� [1�Fs(t)]
n�k (1)

where hn ,k ,s(t) is the probability of the k th spike

occurring at time t in a train with n spikes; f , the

spike density function; F , the corresponding

cumulative spike density function; and the sub-
script s indexes the stimulus. The terms in the

equation are a normalizing term for the number of

combinations, a term for the number of spikes that

have occurred up to time t , the term for the

probability of a spike at time t , and a term for the

number of spikes that will follow time t . This form

is, however, unsuitable because it describes a

continuous process. By conditioning on the spikes
that have already appeared (actually just the

immediately preceding spike because order statis-

tics have a Markov property), we can recursively

calculate subsequent order statistics for the ‘next

first spike’. The equation then simplifies to:

hn;1;s(t1½t0)�n[Fs(t1½t0)]0fs(t1½t0)[1�Fs(t1½t0)]n�1 (2)

i.e.

hn;1;s(t1½t0)�nfs(t1½t0)[1�Fs(t1½t0)]n�1 (3)

This recursive procedure allows inclusion of a

refractory period by multiplying the order statistic

by a refractory function.

Calculating order statistics requires knowing
how many spikes will be in a train. To avoid

needing the decoder to know the future, we

average the first order statistics hn ,1,s for particular

spike counts n according to distribution of spike

counts, h1;s�an p(n)hn;1;s(t): To avoid problems

based on undersampling, we have used a truncated

Gaussian fit to the measured distribution (Ger-

shon et al., 1998; Wiener and Richmond, 1999).
Using Bayes rule we can then calculate the

probabilities of the stimuli from the spike trains

on a trial-by-trial, spike-by-spike basis:

p(s½t1)�
p(s)h1;s(t1½t0)X

s?

p(s?)h1;s?(t1½t0)
(4)

p(s jt1) becomes p (s) needed for the next iteration.

A similar equation gives the probability when no

spike appears at time t , allowing decoding milli-

second-by-millisecond, whether or not there is a

spike (Fig. 3). These probabilities are those that
would be arrived at by an ideal observer. Given a

decision, one can then guess which stimulus

Fig. 3. Ms-by-ms decoding, in the sense of classifying among

four stimuli using the order statistic model. The x -axis shows

time relative to stimulus onset, with the spike train below; the

y -axis shows stimulus probability. What appear to be thick

lines in the representation of the spike train in fact represent

two spikes occurring close together. This shows that, as more

spikes arrive, the certainty of the decoding becomes greater,

although, in this example, the correct stimulus would have been

easily chosen at an early time. Not shown: the correct stimulus

is the one with the largest response, which weighs heavily in this

result. The a priori response probabilities must be known; we

assume that they arise from genetics and/or learning.
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elicited the response. We choose the maximum

likelihood rule. Fig. 4 shows that considering the

timing significantly increases the information ex-

tracted and the percent of trials correctly decoded.

3. Discussion

There is only one assumption needed for order

statistics to apply. The spikes need to be describ-

able as stochastic samples from spike probability
functions set by the spike density and the spike

count distribution. This assumption is likely to be

true at some resolution; it is the timing resolution

that must be determined. This resolution may well

depend on brain region and experimental condi-

tion. For example, in the LGN neurons can follow

flicker at rates up to 100 Hz (e.g. they follow the

refresh rate of TV monitors), whereas in inferior
temporal cortex there is no suggestion that neu-

rons do that. In MT neurons are sensitive to some

aspects of rapidly changing stimuli (Bair and

Koch, 1996; Buracas et al., 1998), yet this sensi-

tivity is modulated by other factors (Bair and

Koch, 1996).

Any decoder needs to know something about

the responses to be decoded. Our decoder relies on

a particular stochastic model: it assumes that spike

trains can be described as stochastic samples from

the spike density function, with the number of

samples in different trains set by the spike count

distribution. The spike count distribution and

spike density function must be estimated from

data, but all other calculations in the decoding are

exact. Thus to the extent this model is accurate, the

decoding described here extracts all possible in-

formation from the spike trains (up to precision of

the estimates of spike count distribution and spike

density function).

The decoder also relies on a set of a-priori

stimulus probabilities. In an experiment these are

simply taken to be the relative frequencies of the

various stimuli, and are under our control. In

nature such priors might be genetically specified or

learned. In our experiments we use static stimuli,

and are able (because of the Markov property of

order statistics) to ignore all spikes but the

immediately preceding one. Brown et al. (1998),

examining the responses of place fields in rat

hippocampus, found that better decoding occurred

by taking into account more of the preceding spike

(Brown et al., 1998). We have not yet examined the

order statistic method with such data.

Finally, it is clear that most brain functions rely

on the activity of many neurons. Oram et al.

(2001) extended the spike count matched model to

investigate spike patterns in pairs of neurons, and

found that the number of synchronous spikes seen

in pairs of motor cortex neurons exceeded those

expected by a constant scale factor. The scaling

was such that the synchronous spikes carried no

information beyond that available from the spike

count distribution (including correlation between

spike counts in the two neurons) and the two spike

density functions. The synchrony acts as though it

arises from an input pool shared by the two

neurons, a conclusion similar to that reached by

Bair et al. (2001). This suggests that in the future

suitable manipulations of order statistics should

describe the responses of neuronal populations,

also.

Fig. 4. Information (upper panel) and probability of guessing

right assuming a maximum likelihood decoder (lower panel) for

spike count (squares) and the full spike count plus timing code

(filled circles). This shows that for timing, information rises

throughout this time period, whereas the other three sets of

measures rise relatively quickly and stabilize.
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