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The same target luminance in different contexts can elicit markedly
different perceptions of brightness, a fact that has long puzzled
vision scientists. Here we test the proposal that the visual system
encodes not luminance as such but rather the statistical relation-
ship of a particular luminance to all possible luminance values
experienced in natural contexts during evolution. This statistical
conception of vision was validated by using a database of natural
scenes in which we could determine the probability distribution
functions of co-occurring target and contextual luminance values.
The distribution functions obtained in this way predict target
brightness in response to a variety of challenging stimuli, thus
explaining these otherwise puzzling percepts. That brightness is
determined by the statistics of natural light patterns implies that
the relevant neural circuitry is specifically organized to generate
these probabilistic responses.

The perception elicited by the luminance of a visual target,
generally called brightness, is arguably the most basic quality

of vision. A central puzzle in understanding how such percepts
are generated by the visual system is that brightness does not
correspond in any simple way to luminance. Thus, the same
amount of light arising from a given region in a scene can elicit
dramatically different brightness percepts when presented in
different contexts (1, 2) (Fig. 1).

A variety of explanations have been suggested since the basis
for such phenomena was first debated by Helmholtz, Hering,
Mach, and others. Although lateral inhibition in early visual
processing has often been proposed to account for these ‘‘illu-
sions’’ (1), this mechanism cannot explain instances in which
similar overall contexts produce different brightness effects
(compare Fig. 1 A with Figs. 1 B and E; see also Fig. 1C). This
failure has led to several more recent suggestions, including
complex filtering and neural network models (3, 4), the idea that
brightness depends on detecting edges and junctions that pro-
mote the grouping of various luminances into interpretable
spatial arrangements (5–11), and the proposal that brightness is
‘‘resynthesized’’ from 3D scene properties ‘‘inferred’’ from the
stimulus (12–14). None of these approaches, however, can
explain the full the range of brightness phenomena illustrated in
Fig. 1 (1).

Here we examine a different concept of the way brightness is
generated by the visual system. A growing body of evidence has
shown that the visual system uses the statistics of stimulus
features in natural environments to generate the visual percepts
of the physical world (15); if so, the visual system must incor-
porate these statistics as a central feature of processing relevant
to brightness and other visual qualia (2). Accordingly, we
suppose that the perceived brightness elicited by the luminance
of a target in any given context is based on the value of the target
luminance in the probability distribution function of the possible
values that co-occur with that contextual luminance experienced
during evolution. In particular, whenever the target luminance in
a given context corresponds to a higher value in the probability
distribution function of the possible luminance values in that
context, the brightness of the target will be greater than the
brightness elicited by the same luminance in contexts in which

that luminance has a lower value in the probability distribution
function.

A large set of images of natural scenes (16) was used to
approximate the range of visual stimuli experienced by humans
in natural environments. From this database, we obtained the
probability distribution functions of target luminance in contex-
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Fig. 1. The influence of spatial patterns of luminance on the apparent
brightness of a target [the targets (T) in each stimulus are equiluminant and
are indicated in Right Insets]. (A) Standard simultaneous brightness contrast
effect. The central square in the dark surround appears brighter than the
equiluminant square in the light surround. (B) White’s illusion. Although the
gray rectangles in the left stimulus are all equiluminant, the ones surrounded
by the generally lighter context (left side of the stimulus) appear brighter than
those surrounded by the generally darker context (right side of the stimulus).
When, however, the luminance of the target rectangles is the lowest (center
stimulus) or highest (right stimulus) value in the presentation, the targets in
the generally lighter context appear somewhat less bright than ones in the
generally darker context (called the ‘‘inverted White’s effect’’). (C) Werthei-
mer–Benary illusion. The triangle embedded in the arm of the black cross
appears brighter than the one that abuts the corner of the cross. The slightly
different brightness of the equiluminant triangles is maintained whether the
presentation is upside down (Center) or reflected along the diagonal (Right).
(D) The intertwined cross illusion. The target in the left stimulus appears
substantially brighter than the equiluminant target in the right stimulus.
(E) The inverted T illusion. The inverted T shape in the left stimulus appears
somewhat brighter than the equiluminant target in the right stimulus.
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tual luminance patterns similar to those in Fig. 1. The predictions
of brightness made on the basis of these probability distributions
explain the full range of these phenomena, strongly supporting
the hypothesis that brightness percepts are based on instantia-
tion in the visual processing circuitry of the statistical structures
of light patterns experienced in natural environments.

Materials and Methods
Statistical Framework. Natural environments comprise objects of
different sizes at various distances that are physically related to
each other and the observer in a variety of ways (17, 18). When
the light arising from objects is projected onto an image plane,
these complex relationships are transformed into 2D patterns of
light intensity with highly structured statistics. As a result, the
luminance at any location in a pattern of light arising from
natural scenes will have a characteristic distribution. A corollary
is that in such scenes the probability distribution of the lumi-
nance of, say, the central target in a standard simultaneous
brightness contrast stimulus (Fig. 2A) will depend on the sur-
rounding luminance values (Fig. 2B).

Fig. 2C illustrates the supposition that, for any context, the
visual system generates the brightness of a target according to
the value of its luminance in the probability distribution function
of the possible target luminance experienced in that context.
This value is referred to subsequently as the percentile of the
target luminance among all possible luminance values that
co-occur with the contextual luminance pattern in the natural
human environment. In formal terms, this supposition means
that the visual system generates brightness percepts according to
the relationship Brightness � A�(P)�A0, where A and A0 are
constants, and �(P) is a monotonically increasing function of the
probability distribution function P.

By definition, then, the percentile of target luminance for the
lowest luminance value within any contextual light pattern is 0%
and corresponds to the perception of maximum darkness; the
percentile for the highest luminance within any contextual
pattern is 100% and corresponds to the maximum perceivable
brightness. In any given context, a higher luminance will always
have a higher percentile and will always elicit a perception of
greater brightness compared to any luminance that has a lower
percentile. Because the relation Brightness � A�(P)�A0 is
based not on a particular luminance within the context in
question but rather on the entire distribution of possible lumi-
nance values experienced in that context, the context-dependent
relationship between brightness and luminance is highly nonlin-
ear (see Fig. 2C). In consequence, the same physical difference
between two luminance values will often signify different
percentile differences and thus perceived differences in bright-
ness. Furthermore, because the percentiles change more rapidly
as the target luminance approaches the luminance of the sur-
round, one would expect greater changes of brightness, an
expectation that corresponds to the well known ‘‘crispening’’
effect in perception (19).

Finally, because the same value of target luminance will often
correspond to different percentiles in the probability distribution
functions of target luminance in different contexts, two targets
having the same luminance can elicit different brightness per-
cepts, the higher percentile always corresponding to a brighter
percept. Thus, in the standard simultaneous brightness contrast
stimulus in Fig. 1 A, the target (T) in Fig. 2 A Left appears
brighter than the equiluminant target in Fig. 2 A Right.

Obtaining Conditional Probability Distribution Functions. The rele-
vant probability distribution functions were obtained by sam-
pling a database of natural scenes (ref. 16; http:��hlab.phys.
rug.nl) with target-surround configurations that had the same
local geometry as the stimuli in Fig. 1. As a first step, these
configurations were superimposed on the images to find light

patterns in which the luminance values of both the surround and
target regions were approximately homogeneous (see supporting
information, which is published on the PNAS web site, for
further details); for those configurations in which the surround
comprised more than one region of the same luminance (see Fig.
1), we also required that the relevant sampled regions meet this
criterion. The sampling configurations were moved in steps of
one pixel to screen the full image, in this way obtaining a large
number of samples that met the stipulated criteria. The mean
luminance values of the target and the surrounding regions in the

Fig. 2. Statistical framework for understanding the generation of brightness
percepts. (A) The brightness elicited by a given target luminance in any context
depends on the frequency of occurrence of that luminance relative to all of the
possible target luminance values experienced in that context in natural envi-
ronments. This concept is illustrated here by using the standard simultaneous
brightness contrast stimulus in Fig. 1A. The series of squares with different
luminance values indicate all of the possible occurrences of luminance in the
target (T) in the two different contexts; the symbol (�) indicates the relation-
ship of a particular occurrence of luminance to the all possible occurrences of
target luminance values experienced in the two contexts in natural environ-
ments. (B) This statistical relationship can be derived from the probability
distribution density of target luminance values co-occurring with the lumi-
nance pattern of the two contexts of interest. The red and blue curves indicate
these probability densities of the luminance of the targets in A, obtained by
sampling the natural image database. The size of the sampling configuration
was 1° � 1° (see supporting information). In this example, the most likely
luminance values of the targets in the distributions are the same as the mean
luminance of the corresponding surrounds. (C) The brightness elicited by the
luminance of the targets in A is based on the percentile of that luminance in
the probability distribution functions (i.e., the integrals of the probability
densities in B) for the two different contexts, which are indicated by the icons.
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samples were then calculated and their occurrences tallied in the
form of histograms. Given the specific surround luminance
values similar to those shown in Fig. 1, the probability distribu-
tion functions of the target luminance were obtained from the
histograms.

Results
White’s Illusion. White’s illusion (Fig. 1B), which has no generally
accepted explanation, presents a particular challenge for any
explanation of brightness (20–24). The equiluminant rectangular
areas surrounded by predominantly more luminant regions in the
stimulus appear brighter than areas of identical luminance
surrounded by less luminant regions (Fig. 1B Left). The espe-
cially perplexing characteristic of this percept is that the effect
is opposite that elicited by standard simultaneous brightness
contrast stimuli (Fig. 1 A). Even more puzzling, the effect
reverses when the luminance of the rectangular targets is either
the lowest or highest value in the stimulus (21, 22) (Fig. 1B Center
and Right).

The explanation for White’s illusion provided by the statistical
framework outlined above is illustrated in Fig. 3. When pre-
sented separately, as in Fig. 3A, the components of White’s
stimulus elicit much the same effect as in the usual presentation.
By sampling the images of natural visual environments using
configurations based on these components (Fig. 3B) (see sup-
porting information), we obtained the probability distribution
functions of the luminance of a rectangular target (T) embedded
in the two different configurations of surrounding luminance in
White’s stimulus. As shown in Fig. 3C, when the target in the
intermediate range of luminance values (i.e., between the lumi-
nance values at the two crossover points) abuts two dark
rectangles laterally (Fig. 3B Left), the percentile of the target
luminance (red line) is higher than the percentile when the target
abuts the two light rectangles (Fig. 3B Right; blue line in Fig. 3C).
If, as we suppose, the percentile in the probability distribution
function of target luminance within any specific context deter-
mines the brightness perceived, the target with an intermediate
luminance in Fig. 3B Left should appear brighter than the
equiluminant target in Fig. 3B Right. Moreover, because the
difference between the percentiles of the same luminance in
the two different contexts is relatively large for this standard set
of luminance values in White’s stimulus, the brightness percepts
elicited should be quite different, as they are. Finally, when all
of the luminance values in the stimulus are limited to a very
narrow range (e.g., from 0 to 100 cd�m2 or from 1,000 to 1,100
cd�m2), when the sampling configurations are orientated verti-
cally, or when the aspect ratio of the sampling configurations is
changed (e.g., from 1:2 to 1:5), the probability distribution
functions derived from the database are not much different.
These further results are consistent with the observations that
White’s stimulus elicits much the same effect when presented at
a wide range of overall luminance levels, in a vertical orientation,
or with different aspect ratios (21).

An aspect of White’s illusion that has been particularly
difficult to explain is the so-called ‘‘inverted White’s effect’’:
when the target luminance is either the lowest or the highest
value in the stimulus, the effect is actually opposite the usual
percept (21, 22) (see Fig. 1B). The explanation for this further
anomaly is also evident in Fig. 3C. When the target luminance
is the lowest value in the presentation (see Fig. 3C Insets), the
blue curve is above the red curve. As a result, a relatively dark
target surrounded by more light area should now appear darker,
as it does (see also Fig. 1B Center). By the same token, when the
target luminance is the highest value in the stimulus (see Fig. 3C
Insets), the blue curve is also above the red curve. Accordingly,
the relatively light target surrounded by more dark area should
appear lighter, as it does (see also Fig. 1B Right). Thus the
statistical structure of natural light patterns predicts not only

White’s illusion but the inverted White’s effect as well. Notice
further that the two crossover points of the blue and red curves
shift to the right when the contextual luminances increase and to
the left when they decrease; thus the inverted effect will be
apparent, although altered in magnitude, for any luminance
values of the surrounding areas.

Once the probability distribution function of target luminance
had been obtained, we could also determine the most likely
target luminance in natural environments, given the contextual
luminance patterns in the basic components of the standard
White’s stimulus. Fig. 3D shows examples from the database
corresponding to the most often encountered target luminance
in the contextual luminance patterns illustrated in Fig. 3D Left.
When the upper and lower bars are relatively light and bars that
abut the target laterally dark (upper row), the most likely
luminance of the target is relatively low and similar to that of
middle bars. Thus, when the target luminance is higher than the
luminance most frequently experienced at that location in that

Fig. 3. Statistical explanation of White’s illusion. (A) The usual presentation
of White’s illusion; boxed areas indicate the basic components of the stimulus,
which elicit about the same effect as the usual presentation. (B) The sampling
configurations used to obtain the probability distribution functions of target
luminance (the red and blue rectangles), given a pattern of surrounds with
luminance values Lu and Lv (size of the sampling configuration in this example
was 0.6°[H]�0.3°[V]). (C) The probability distribution functions of the lumi-
nance of the targets in these contexts (red curve: Lu � 145, Lv � 105; blue curve:
Lu � 105, Lv � 145). Here and in Figs. 4 and 5, surround luminance values were
chosen in the middle range of the values in the database to ensure sufficient
samples to fairly assess variations in natural luminance. For the middle lumi-
nance values lying within the two crossover points (at �105 and 145), the red
curve is above the blue curve; as a result, the luminance configurations in B
generate White’s illusion [as indicated (Insets)]. For other luminance values of
the target, the blue curve is above the red curve; as a result, the luminance
configurations in B generate the inverted White’s effect. (D) Examples from
the database illustrating the most likely luminance value of the target in B,
given the contextual luminance indicated by the icon (Left). Because the most
likely target luminance is similar to that of the relevant part of the surround,
the target does not ‘‘pop out’’ of the scene here or in Figs. 4 and 5.
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context, the target should appear brighter (because the target
has a higher percentile than the most probable luminance on the
red curve in Fig. 3C). Conversely, when the upper and lower bars
are relatively dark and middle bars light (lower row), the most
probable luminance of the target is similar to that of middle bars
and is relatively high. Accordingly, when the target has a
luminance that is lower than the luminance most often experi-
enced at that location in that context, it should appear darker
(because the target now has a lower percentile than the most
probable luminance on the blue curve). The basis for all of the
effects elicited by White’s stimulus is thus the characteristic
co-occurrence of luminance in natural environments.

These characteristic natural statistics (which we found to be
scale invariant in all of the analyses reported here) appear to
explain all of the peculiar phenomenology of White’s effect. The
results, however, should not be taken to imply that the visual
system needs to group luminance patches into particular spatial
arrangements to generate brightness, as has often been sug-
gested (5–11). It should also be apparent from Fig. 3D that, in
agreement with other recent evidence (23, 24), the natural
luminance patterns that give rise to the probability distribution
functions in Fig. 3C are rarely configurations that have straight
edges, well-defined junctions, and�or occlusions, all of which
have been suggested to be essential in this and other brightness
illusions. We should further emphasize that the behavior of the
probability distribution functions in Figs. 2–6 depends on the
occurrences of all the possible luminance values in the relevant
contexts, regardless of whether the test region is of higher or
lower luminance than the surrounding region in any particular
occurrence. This behavior cannot therefore be derived from the
most probable target luminance in the relevant contexts or from
processing any particular stimulus with Gaussian, Laplacian, or
Gabor filters. It is also worth pointing out that the brightness of
any region in the stimuli in Fig. 1 is determined in the same way;
the reason the major effect is on the target rather than the
surround is simply that the contexts of the surround (i.e., the rest
of page or computer screen) do not shift the distribution of the
luminance values of the surrounds very much. These several
points are further considered in the Discussion.

The Wertheimer–Benary Illusion. In the Wertheimer–Benary illu-
sion (Fig. 1C), equiluminant gray triangles, which unlike the
targets in White’s illusion have similar local contexts, appear
differently bright, the triangle in the corner of the cross looking
slightly darker than the triangle embedded in arm of the cross.
Like White’s illusion, the Wertheimer–Benary illusion has no
satisfactory explanation.

The explanation of the Wertheimer–Benary illusion in the
statistical framework considered here is illustrated in Fig. 4. Fig.
4A shows that, when presented separately, the basic components
of the Wertheimer–Benary stimulus elicit much the same effect
as in the usual presentation. By sampling the images of natural
environments using configurations based on these components
(Fig. 4B), we obtained the probability distribution functions of
target luminance in these contexts. As shown in Fig. 4C, when the
triangular patch is embedded in a dark bar with its base facing
a lighter area, the percentile of the luminance of the triangular
patch (red line) is always higher than the percentile when the
triangular patch abuts a dark corner with its base facing a similar
light background (blue line). Accordingly, the same gray patch
should always appear brighter in the former context than in the
latter, as is the case. Moreover, because the typical difference
between the percentiles here is less than the difference in White’s
illusion at comparable surrounding luminance values, the Wer-
theimer–Benary effect should not be as strong as White’s
illusion, as is also the case. The probability distribution functions
obtained after changing the triangles to rectangles, rotating the
configurations in Fig. 4B by 180°, or reflecting the configurations

along the diagonal of the cross (see Fig. 1C Center and Right)
were much the same as those shown in Fig. 4C. These several
observations accord with the fact that the Wertheimer–Benary
effect is little changed by such manipulations.

As in the analysis of White’s stimulus, we could also examine
the most frequently encountered target luminance values in
natural environments, given the contextual luminance patterns
in the Wertheimer–Benary illusion. Fig. 4D illustrates the most
likely target luminance encountered in natural scenes in which
the contextual luminance values are similar to the basic com-
ponents of the Wertheimer–Benary stimulus. When the trian-
gular patch is embedded in a dark vertical bar with its base
abutting a light area, a relatively low luminance similar to that of
the dark vertical bar is likely to coincide with the position of the
triangle. When, however, the triangular patch lies in the corner
of the dark cross with its base abutting a light background, a
higher luminance similar to that of the light background is likely
in that location. Thus when the two triangles in these configu-
rations are presented as equiluminant gray patches, as in the
Wertheimer–Benary illusion, the lower triangle, which occupies
a lower percentile on the blue curve, should appear darker, as it
does.

Fig. 4. Statistical explanation of the Wertheimer–Benary illusion. (A) The
usual presentation of the Wertheimer–Benary stimulus. As in White’s stimulus,
the components of the stimulus (boxed areas) elicit about the same effect as
the usual presentation. (B) Configurations used to sample the database (size �
0.4° � 0.4°). Due to the shapes of the local contexts, the geometries of the two
sampling configurations in this case necessarily differ (see supporting infor-
mation). (C) The probability distribution functions of target luminance, given
the surrounding luminances in B. The red curve corresponds to the conditions
shown in B Left (Lu � 205, Lv � 45) and the blue curve to the conditions shown
in B Right (Lu � 45, Lv � 205). (D) Examples from the database illustrating the
most likely luminance value of the targets in B, given the contextual luminance
indicated by the icon (Left).
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More Complex Brightness Illusions. The brightness percepts elicited
by other more complex luminance patterns are equally well
explained by this statistical framework. For example, the bright-
ness difference of two equiluminant targets is much enhanced by
the specially configured, intertwined contexts in Fig. 1D (10).
Fig. 5 shows the statistical basis of this further phenomenon.
When a rectangular area is surrounded by a pattern of luminance
configured as in Fig. 5A Left, the percentile of any luminance of
that target is far greater (red curve in Fig. 5B) than the percentile
for the same target luminance when the surrounding luminance
pattern is configured as in Fig. 5A Right (blue curve in Fig. 5B).
Accordingly, the target in Fig. 5A Left should appear brighter
than the equiluminant target in Fig. 5A Right. Moreover, because
the difference between the percentiles in the two contexts is
much larger than the difference for the Wertheimer–Benary
illusion with comparable surrounding luminance values, the
difference in brightness elicited by the same target luminance in
the two contexts should be much greater, as it is. Fig. 5C, as Figs.
3D and 4D, shows examples from natural image database that
correspond to the most likely target luminance, given the
configurations in Fig. 5C Left. This framework can also explain
some especially subtle brightness effects such as Fig. 1E that are
otherwise extraordinarily difficult to rationalize (see supporting
information).

Discussion
These results show that the probability distributions of naturally
co-occurring luminance values can account for the brightness
percepts generated by a variety of stimuli whose consequences
have been difficult to explain in other ways.

The Statistical Nature of Perception. Although studies of brightness
perception now span more than 100 years, this phenomenon has
never been considered in statistical terms; indeed, there has been
very little analysis at the ‘‘computational theory level’’ (25).
Here, we show that brightness percepts encode not luminance as
such but rather the statistical relationship between the lumi-
nance in an area within a particular contextual light pattern and
all possible occurrences of luminance in that context experienced
by humans in natural environments.

The statistical basis for this aspect of visual perception is quite
different from traditional approaches to rationalizing brightness.
In the ‘‘relational approach’’ (26), an idea that evolved from the
late 19th century debate between Helmholtz, Hering, and others,
brightness percepts are ‘‘recovered’’ by the visual system from
explicitly coded luminance contrasts and gradients. Another
idea that has recently gained ground is that brightness depends
on intermediate-level visual processes that detect edges, gradi-
ents, and junctions, which are then grouped into specific spatial
layouts to allow an appropriate interpretation of the scene
(5–11). Finally, the brightness elicited by a given luminance has
also been considered to be ‘‘resynthesized’’ by processing at
several levels of the visual system that is based on inferences
about the possible arrangements of surfaces in 3D, their material
properties, and their illumination (12–14). These various ap-
proaches, however, cannot account for the range of phenomena
illustrated in Fig. 1 (as well as other related effects) (1). As a
result, the debate initiated by Helmholtz, Hering, Mach, and
others remains current.

The common deficiency of these various ways of thinking
about brightness is their failure to relate the statistics of light
patterns experienced in the course of evolution to what the
corresponding brightness percepts need to signify (namely, the
relationship of a particular occurrence of luminance to all
possible occurrences of luminance in a given context). Because
light patterns on the retina are the only information the visual
system receives, basing brightness percepts on the statistics of
natural light patterns allows visual animals to deal optimally with
all possible natural occurrences of luminance, using the full
range of perceivable brightness to represent the physical world.
This statistical concept of perception and its neural mechanisms
(see below) has deep roots (27, 28) and has recently gained
considerable support (15, 29–33).

Segmentation and Grouping. The use of a set of spatial configu-
rations specific to the phenomena in Fig. 1 to predict brightness
percepts on a probabilistic basis obviously does not address how
the brain computes and represents the relevant statistics, or how
it relates them to perception. A prevalent intuition in many
studies has been that to generate perceptions of brightness, the
visual system must first detect edges and junctions and then
appropriately group various luminance patches (5–11). The
results we report here do not support this view. Segmentation
and grouping neither address the statistical nature of perception
nor provide the means to compute these statistics from a set of
natural stimuli. By the same token, given a particular stimulus,
the percentile of any luminance in that stimulus in the relevant
probability distribution function is determined. Thus ‘‘knowl-
edge’’ about background and foreground or edges generated by
reflectance or illumination is irrelevant to a determination of the
percentile of the luminance values in the relevant probability
functions. Accordingly, these functions, which predict percep-
tion, cannot be derived from segmentation and grouping. In-
deed, because such concepts, like brightness, are meaningful
only in a probabilistic sense, the statistics that generate bright-
ness are the basis for segmentation and grouping, not the other
way around.

Fig. 5. Statistical explanation of the intertwined cross illusion. (A) Config-
urations used to sample the database (size � 0.6° � 0.6°). (B) The probability
distribution functions of target luminance for the configurations in A. The red
curve corresponds to the condition shown in A Left (Lu � 75, Lv � 125, Lw � 100)
and the blue curve to the condition shown in A Right (Lu � 175, Lv � 125, Lw �
150). (C) Examples from the database illustrating the most likely luminance
value of the target in A, given the contextual luminance indicated by the icon
(Left).

Yang and Purves PNAS � June 8, 2004 � vol. 101 � no. 23 � 8749

N
EU

RO
SC

IE
N

CE



Neural Instantiation of Natural Statistics. What sort of neural
mechanisms, then, could incorporate these statistics of natural
light patterns and relate them to brightness percepts? Although
the answer is not known, the present results suggest that the
circuitry at all levels of the visual system instantiates the statis-
tical structures of light patterns in natural environments.

In this conception, the center-surround organization of the
receptive fields of retinal ganglion cells (34) provides the initial
basis for representing the necessary statistics. A further specu-
lation would be that neural circuitry at the level of the visual
cortex is organized to instantiate the statistics of luminance
patterns with arbitrary target and context shapes and sizes within
an appropriate range. These statistical structures at the cortical
level would be functionally similar to the adaptive deformable
templates that have been used successfully in computational
studies of pattern recognition (35). Given the statistical regu-
larity of natural visual environments, the number of templates
needed for this task is necessarily limited. When a visual stimulus
is presented, the luminance at and around any location would
drive the system toward one of the instantiated statistical
structures, perhaps in the way that associative memory is gen-
erated by attractor dynamics (36). As a result, the neuronal

response at each location would signify the percentile of the
target luminance in the probability distribution function perti-
nent to a given context.

A good deal of physiological evidence accords with this
general concept of visual brain function. For example, neuronal
responses are strongly modulated by context (37), and many
perceptual qualities have neuronal correlates in the primary
visual cortex (38–40). Finally, other evidence supports the idea
that neuronal responses are closely related to the statistical
characteristics of naturally occurring stimuli (41–43).

Despite the rudimentary nature of these speculations about
the way the visual system elaborates percepts, the strength of the
evidence here that brightness is generated on the basis of
statistics of natural light patterns as they pertain to consequent
behavior implies that the relevant visual circuitry will eventually
need to be understood in these terms.
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