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Abstract

A large number of human psychophysical results have been successfully explained in

recent years using Bayesian models. However, the neural implementation of such mod-

els remains largely unclear. In this paper, we show that a network architecture com-

monly used to model the cerebral cortex can implement Bayesian inference for an arbi-

trary hidden Markov model. We illustrate the approach using an orientation discrimi-

nation task and a visual motion detection task. In the case of orientation discrimination,

we show that the model network can infer the posterior distribution over orientations

and correctly estimate stimulus orientation in the presence of significant noise. In the

case of motion detection, we show that the resulting model network exhibits direction

selectivity and correctly computes the posterior probabilities over motion direction and

position. When used to solve the well-known random dots motion discrimination task,

the model generates responses that mimic the activities of evidence-accumulating neu-

rons in cortical areas LIP and FEF. The framework introduced in the paper posits a

new interpretation of cortical activities in terms of log posterior probabilities of stimuli

occurring in the natural world.
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1 Introduction

Bayesian models of perception have proved extremely useful in explaining results from

a number of human psychophysical experiments (see, for example, (Knill & Richards,

1996; Rao, Olshausen, & Lewicki, 2002)). These psychophysical tasks range from

inferring 3D structure from 2D images and judging depth from multiple cues to per-

ception of motion and color ((Bloj, Kersten, & Hurlbert, 1999; Weiss, Simoncelli, &

Adelson, 2002) and chapters by Mamassian et al. and Jacobs in (Rao et al., 2002)). The

strength of the Bayesian approach lies in its ability to quantitatively model the interac-

tion between prior knowledge and sensory evidence. Bayes rule prescribes how prior

probabilities and stimulus likelihoods should be combined, allowing the responses of

subjects during psychophysical tasks to be interpreted in terms of the resulting posterior

distributions.

Additional support for Bayesian models comes from recent neurophysiological and

psychophysical studies on visual decision-making. Carpenter and colleagues have

shown that the reaction time distribution of human subjects making eye movements

to one of two targets is well-explained by a model computing the log likelihood ratio of

one target over the other (Carpenter & Williams, 1995). In another study, the saccadic

response time distribution of monkeys could be predicted from the time taken by neural

activity in area FEF to reach a fixed threshold (Hanes & Schall, 1996), suggesting that

these neurons are involved in accumulating evidence (interpreted as log likelihoods)

over time. Similar activity has also been reported in the primate area LIP (Shadlen &

Newsome, 2001). A mathematical model based on log likelihood ratios was found to

be consistent with the observed neurophysiological results (Gold & Shadlen, 2001).

Given the growing evidence for Bayesian models in perception and decision-

2



making, an important open question is how such models could be implemented within

the recurrent networks of the primate brain. Previous models of probabilistic inference

in neural circuits have been based on the concept of neural tuning curves or basis func-

tions and have typically focused on the estimation of static quantities such as stimulus

position or orientation (Anderson & Van Essen, 1994; Zemel, Dayan, & Pouget, 1998;

Deneve, Latham, & Pouget, 1999; Pouget, Dayan, & Zemel, 2000; Eliasmith & Ander-

son, 2003). Other models have relied on mean-field approximations or various forms of

Gibbs sampling for perceptual inference (Hinton & Sejnowski, 1986; Dayan, Hinton,

Neal, & Zemel, 1995; Dayan & Hinton, 1996; Hinton & Ghahramani, 1997; Rao &

Ballard, 1997; Rao, 1999; Rao & Ballard, 1999; Hinton & Brown, 2002).

In this paper, we describe a new model of Bayesian computation in a recurrent neu-

ral circuit. We specify how the feedforward and recurrent connections may be selected

to perform Bayesian inference for arbitrary hidden Markov models (Sections 2-4). The

approach is illustrated using two tasks: discriminating the orientation of a noisy vi-

sual stimulus and detecting the direction of motion of moving stimuli. In the case of

orientation discrimination, we show that the model network can infer the posterior dis-

tribution over orientations and correctly estimate stimulus orientation in the presence

of considerable noise (Section 5.1). In the case of motion detection, we show that the

resulting model network exhibits direction selectivity and correctly computes the pos-

terior probabilities over motion direction and position (Section 5.2). We then introduce

a decision-making framework based on computing log posterior ratios from the outputs

of the motion detection network. We demonstrate that for the well-known random dots

motion discrimination task (Shadlen & Newsome, 2001), the decision model produces

responses that are qualitatively similar to the responses of “evidence accumulating”

neurons in primate brain areas LIP and FEF (Section 5.3). Some predictions of the
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proposed framework are explored in Section 6. We conclude by discussing several pos-

sibilities for neural encoding of log probabilities and suggest a probabilistic framework

for on-line learning of synaptic parameters (Sections 7 and 8).

2 Modeling Cortical Networks

We begin by considering a commonly used neural architecture for modeling cortical

response properties, namely, a recurrent network with firing-rate dynamics (see, for

example, (Dayan & Abbott, 2001)). Let I denote the vector of input firing rates to

the network and let v represent the output firing rates of the recurrently connected

neurons in the network. Let W represent the feedforward synaptic weight matrix and

M the recurrent weight matrix. The following equation describes the dynamics of the

network:

τ
dv

dt
= −v + WI + Mv (1)

where τ is a time constant. The equation can be written in a discrete form as follows:

vi(t + 1) = vi(t) + ε(−vi(t) + wiI(t) +
∑
j

Mijvj(t)) (2)

where ε is the integration rate, vi is the ith component of the vector v, wi is the ith

row of the matrix W, and Mij is the element of M in the ith row and jth column. The

above equation can be rewritten as:

vi(t + 1) = εwiI(t) +
∑
j

mijvj(t) (3)

where mij = εMij for i �= j and mii = 1+ ε(Mii−1). How can Bayesian computation

be achieved using the dynamics given by Equation 3? We approach this problem by

considering Bayesian inference in a simple hidden Markov model.
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3 Bayesian Computation in a Cortical Network

Let θ1, . . . , θN be the hidden states of a hidden Markov model. Let θ(t) represent the

hidden state at time t with transition probabilities denoted by P (θ(t) = θi|θ(t−1) = θj)

for i, j = 1 . . . N . Let I(t) be the observable output governed by the probabilities

P (I(t)|θ(t)). Then, the posterior probability of being in state θi at time t is given by

Bayes rule:

P (θ(t) = θi|I(t), . . . , I(1)) = kP (I(t)|θ(t) = θi)P (θ(t) = θi|I(t − 1), . . . , I(1)) (4)

where k is a normalization constant. The equation can be made recursive with respect

to the posterior probabilities as follows:

P (θt
i|I(t), . . . , I(1)) = kP (I(t)|θt

i)
∑
j

P (θt
i|θt−1

j )P (θt−1
j |I(t − 1), . . . , I(1)) (5)

where we have written “θ(t) = θi” as θt
i for notational convenience. This equation can

be written in the log domain as:

log P (θt
i|I(t), . . . , I(1)) = log P (I(t)|θt

i) + log k +

log
[∑

j

P (θt
i|θt−1

j )P (θt−1
j |I(t − 1), . . . , I(1))

]
(6)

A recurrent network governed by Equation 3 can implement Equation 6 if:

vi(t + 1) = log P (θt
i|I(t), . . . , I(1)) (7)

εwiI(t) = log P (I(t)|θt
i) (8)

∑
j

mijvj(t) = log
[∑

j

P (θt
i|θt−1

j )P (θt−1
j |I(t − 1), . . . , I(1))

]
(9)

with the normalization term log k being added after each update. In other words, the

network activities are updated according to:

vi(t + 1) = εwiI(t) +
∑
j

mijvj(t) − log
∑
j

euj(t) (10)
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where uj(t) = εwiI(t) +
∑

j mijvj(t). The negative log term, which implements divi-

sive normalization in the log domain, can be interpreted as a form of global recurrent

inhibition.1

In Equation 10, the log likelihoods can be computed using linear filters F(θi)

(= εwi). For example, F(θi) could represent a spatially localized Gaussian or an ori-

ented Gabor filter when the inputs I(t) are images. Note that as formulated above, the

updating of probabilities is directly tied to the time constant of neurons in the network

as specified by the parameter τ in Equation 1 (or ε in Equation 2). However, it may be

possible to achieve longer integration time constants by combining slow synapses (for

example, NMDA synapses) with relatively strong recurrent excitation (see, for exam-

ple, (Seung, 1996; Wang, 2001)).

A particularly challenging problem is to pick recurrent weights mij such that Equa-

tion 9 holds true (the alternative of learning such weights is addressed in Section 8.1).

For Equation 9 to hold true, we need to approximate a log-sum with a sum-of-logs. We

tackled this problem by generating a set of random probabilities xj(t) for t = 1, . . . , T

and finding a set of weights mij that satisfy:

∑
j

mij log xj(t) ≈ log
[∑

j

P (θt
i|θt−1

j )xj(t)
]

(11)

for all i and t (as an aside, note that a similar approximation can be used to compute a set

of recurrent inhibitory weights for implementing the negative log term in Equation 10).

We examine this sum-of-logs approximation in more detail in the next section.

1If normalization is omitted, the network outputs can be interpreted as representing

log joint probabilities i.e. vi(t+1) = log P (θt
i, I(t), . . . , I(1)). However, we have found

that the lack of normalization makes such a network prone to instabilities.
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4 Approximating Transition Probabilities using Recur-
rent Weights

A set of recurrent weights mij can be obtained for any given set of transition probabili-

ties P (θt
i|θt−1

j ) by using the standard pseudoinverse method. Let A represent the matrix

of recurrent weights i.e. Aij = mij , and let L represent a matrix of log probabilities, the

jth element in the tth column representing log xj(t) for t = 1, . . . , T . Let B represent

the matrix of log sums i.e. Bit = log
[∑

j P (θt
i|θt−1

j )xj(t)
]
. To minimize the squared

error in Equation 11 with respect to the recurrent weights mij (= Aij), we need to solve

the equation:

AL = B (12)

Multiplying both sides by the pseudoinverse of L, we obtain the following expression

for the recurrent weight matrix:

A = BLT (LLT )−1 (13)

We first tested this approximation as a function of the transition probabilities

P (θt
i|θt−1

j ) for a fixed set of uniformly random probabilities xj(t). The matrix of tran-

sition probabilities was chosen to be a sparse random matrix. The degree of sparseness

was varied by choosing different values for the density of the matrix, defined as the

fraction of nonzero elements. Approximation accuracy was measured in terms of the

absolute value of the error between the left and right sides of Equation 11, averaged

over both time and neurons. As shown in Figure 1, for any fixed degree of sparse-

ness in the transition probability matrix, the average error decreases as a function of

the number of neurons in the recurrent network. Furthermore, the overall errors also

systematically decrease as the density of the random transition probability matrix is

increased (different curves in the graph). The approximation failed only in one case,
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when the density was 0.1 and the number of neurons was 25, due to the occurrence of

a log 0 term in B (see discussion below).

We also tested the accuracy of Equation 11 as a function of the conditional prob-

abilities xj(t) = P (θt−1
j |I(t − 1), . . . , I(1)) for a fixed set of uniformly random tran-

sition probabilities P (θt
i |θt−1

j ). The matrix of conditional probabilities was chosen to

be a sparse random matrix (rows denoting indices of neurons and columns representing

time steps). The degree of sparseness was varied as before by choosing different values

for the density of the matrix. It is clear that the approximation fails if any of the xj(t)

equals exactly 0 since the corresponding entry log xj(t) in L will be undefined. We

therefore added a small arbitrary positive value to all entries of the random matrix be-

fore renormalizing it. The smallest value in this normalized matrix may be regarded as

the smallest probability that can be represented by neurons in the network. This ensures

that xj(t) is never zero while allowing us to test the stability of the approximation for

small values for xj(t). We define the density of the random matrix to be the fraction of

entries that are different from the smallest value obtained after renormalization.

As shown in Figure 2, for any fixed degree of sparseness of the conditional probabil-

ity matrix, the average error decreases as the number of neurons is increased. The error

curves also show a gradual decrease as the density of the random conditional probabil-

ity matrix is increased (different curves in the graph). The approximation failed in two

cases: when the number of neurons was 75 or less and the density was 0.1, and when

the number of neurons was 25 and the density was 0.25. The approximation error was

consistently below 0.1 for all densities above 0.5 and number of neurons greater than

100.

In summary, the approximation of transition probabilities using recurrent weights

based on approximating a log sum with a sum of logs was found to be remarkably robust
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to a range of choices for both the transition probabilities and the conditional probabil-

ities P (θt−1
j |I(t − 1), . . . , I(1)). The only cases where the approximation failed were

when two conditions both held true: (a) the number of neurons used was very small

(25 to 75) and (b) a majority of the transition probabilities are equal to zero or a major-

ity of the conditional probabilities are near zero. The first of these conditions is not a

major concern given the typical number of neurons in cortical circuits. For the second

condition, we only need assume that the conditional probabilities can take on values

between a small positive number ε and 1, where log ε can be related to the neuron’s

background firing rate. This seems a reasonable assumption given that cortical neurons

in vivo typically have a non-zero background firing rate. Finally, it should be noted

that the approximation above is based on assuming a simple linear recurrent model of

a cortical network. The addition of a more realistic non-linear recurrent function in

Equation 1 can be expected to yield more flexible and accurate ways of approximating

the log sum in Equation 9.

5 Results

5.1 Example 1: Estimating Orientation from Noisy Images

To illustrate the approach, we first present results from a simple visual discrimination

task involving inference of stimulus orientation from a sequence of noisy images con-

taining an oriented stimulus. The underlying hidden Markov model uses a set of dis-

crete states θ1, θ2, ..., θM that sample the space of possible orientations of an elongated

bar in the external world. During each trial, the state is assume to be fixed i.e.

P (θt
i|θt−1

j ) = 1 if i = j (14)

= 0 otherwise (15)
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Finally, the likelihoods are given by the product of the image vector I(t) with a set of

oriented filters F(θi) (see Figure 3A) corresponding to the orientations represented by

the states θ1, θ2, ..., θM :

log P (I(t)|θt
i) = εwiI(t) = F(θi)I(t) (16)

For each trial, the sequence of input images was generated by adding zero-mean Gaus-

sian white noise of fixed variance to an image containing a bright oriented bar against

a dark background (Figure 3B).

The goal of the network was to compute the posterior probabilities of each orienta-

tion given an input sequence of noisy images containing a single oriented bar. Clearly,

the likelihood values, given by Equation 16, can vary significantly over time (see Fig-

ure 4, middle row), the amount of variation being determined by the variance of the

additive Gaussian noise. The recurrent activity of the network however allows a stable

estimate of the underlying stimulus orientation to be computed across time (Figure 4,

bottom row). This estimate can be obtained using the maximum a posteriori (MAP)

method: the estimated orientation at any time is given by the preferred orientation of

the neuron with the maximum activity i.e. the orientation with the maximum poste-

rior probability. We tested the MAP estimation ability of the network as a function

of noise variance for a stimulus set containing 36 orientations (0 to 180 in 10 degree

steps). For these experiments, the network was run for a fixed number of time steps

(250 time steps) and the MAP estimate was computed from the final set of activities.

As shown in Figure 5, the classification rate of the network using the MAP method is

high (above 80%) for zero-mean Gaussian noise of standard deviations less than 1 and

remains above chance (1/36) for standard deviations up to 4 (i.e. noise variances up to

16).
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5.2 Example 2: Detecting Visual Motion

To illustrate more clearly the dynamical properties of the model, we examine the appli-

cation of the proposed approach to the problem of visual motion detection. A prominent

property of visual cortical cells in areas such as V1 and MT is selectivity to the direction

of visual motion. In this section, we interpret the activity of such cells as representing

the log posterior probability of stimulus motion in a particular direction at a spatial

location, given a series of input images.

For simplicity, we focus on the case of 1-D motion in an image consisting of X

pixels with two possible motion directions: leftward (L) or rightward (R). Let the state

θij represent motion at a spatial location i in direction j ∈ {L, R}. Consider a network

of N neurons, each representing a particular state θij (Figure 6A). The feedforward

weights are Gaussians i.e. F(θiR) = F(θiL) = F(θi) = Gaussian centered at location i

with a standard deviation σ. Figure 6B depicts the feedforward weights for a network

of 30 neurons, 15 encoding leftward and 15 encoding rightward motion.

To detect motion, the transition probabilities P (θij|θkl) must be selected to reflect

both the direction of motion and speed of the moving stimulus. For the present study,

the transition probabilities for rightward motion from the state θkR (i.e. P (θiR|θkR))

were set according to a Gaussian centered at location k + x, where x is a parameter

determined by stimulus speed. The transition probabilities for leftward motion from

the state θkL were likewise set to Gaussian values centered at k − x. The transition

probabilities from states near the two boundaries (i = 1 and i = X) were chosen to

be uniformly random values. Figure 6C shows the matrix of transition probabilities.

Given these transition probabilities, the recurrent weights mij can be computed using

Equation 13 (see Figure 6D). Figure 7 shows that for the given set of transition proba-

bilities, the log-sum in Equation 11 can indeed be approximated quite accurately by a
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sum-of-logs using the weights mij .

5.2.1 Bayesian Estimation of Visual Motion

Figure 8 shows the output of the network in the middle of a sequence of input im-

ages depicting a bar moving either leftward or rightward. As shown in the figure, for

a leftward moving bar at a particular location i, the highest network output is for the

neuron representing location i and direction L, while for a rightward moving bar, the

neuron representing location i and direction R has the highest output. The output firing

rates were computed from the log posteriors vi using a simple linear encoding model:

fi = [c · vi + m]+ where c is a positive constant (= 12 for this plot), m is the maximum

firing rate of the neuron (= 100 in this example), and + denotes rectification (see Sec-

tion 7.1 for more details). Note that even though the log likelihoods are the same for

leftward and rightward moving inputs, the asymmetric recurrent weights (which rep-

resent the transition probabilities) allow the network to distinguish between leftward

and rightward moving stimuli. The plot of posteriors in Figure 8 shows that the net-

work correctly computes posterior probabilities close to 1 for the states θiL and θiR for

leftward and rightward motion respectively at location i.

5.2.2 Encoding Multiple Stimuli

An important question that needs to be addressed is whether the network can encode un-

certainties associated with multiple stimuli occurring in the same image. For example,

can the motion detection network represent two or more bars moving simultaneously

in the image? We begin by noting that the definition of “multiple stimuli” is closely

related to the notion of “state.” Recall that our underlying probabilistic model (the hid-

den Markov model) assumes that the observed world can be in only one of M different

states. Thus, any input containing “multiple stimuli” (such as two moving bars) will
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be interpreted in terms of probabilities for each of the M states (a single moving bar at

each location).

We tested the ability of the motion detection network to encode multiple stimuli

by examining its responses to an image sequence containing two simultaneously mov-

ing bars under two conditions: (a) both bars moving in the same direction and (b) the

bars moving in opposite directions. The results are shown in Figures 9 and 10 respec-

tively. As seen in these figures, the network is able to represent the two simultaneously

moving stimuli under both conditions. Note the two peaks in activity representing the

location and direction of motion of the two moving bars. As expected from the under-

lying probabilistic model, the network computes a posterior probability close to 0.5 for

each of the two peaks, although the exact values fluctuate depending on the locations

of the two bars. The network thus interprets the two simultaneously moving stimuli as

providing evidence for two of the states it can represent, each state representing mo-

tion at a particular location and direction. Such a representation could in turn be fed

to a higher level network, whose states could represent frequently occurring combina-

tions of lower level states, in a manner reminiscent of the hierarchical organization of

sensory and motor cortical areas (Felleman & Van Essen, 1991). We discuss possible

hierarchical extensions of the model in Section 8.2.

5.2.3 Encoding Multiple Velocities

The network described above is designed to estimate the posterior probability of a stim-

ulus moving at a fixed velocity as given by the transition probability matrix (Figure 6C).

How does the network respond to velocities other than the ones encoded explicitly in

the transition probability matrix?

We investigated the question of velocity encoding by using two separate networks
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based on two transition probability matrices. The recurrent connections in the first net-

work encoded a speed of 1 pixel/time step (Figure 11A) while the those in the second

network encoded a speed of 4 pixels/time step (Figure 11C). Each network was exposed

to a range of velocities, ranging from 0.5-5 pixels/time step in increments of 0.5. The

resulting responses of a neuron located in the middle of each network are shown in

Figure 11B and 11D respectively. The bars depict the peak response of the neuron dur-

ing stimulus motion at a particular velocity in the neuron’s preferred and non-preferred

(null) direction. The response is plotted as a posterior probability for convenience (see

Equation 7). As evident from the figure, the neurons exhibit a relatively broad tuning

curve centered on their respective preferred velocities (1 and 4 pixels/time step respec-

tively).

These results suggest that the model can encode multiple velocities using a tuning

curve even though the recurrent connections are optimized for a single velocity. In other

words, the posterior distribution over velocities can be represented by a fixed number

of networks optimized for a fixed set of preferred velocities, in much the same way as

a fixed number of neurons can sample the continuous space of orientation, position, or

any other continuous state variable. In addition, as discussed in Section 8.1, synaptic

learning rules could be used to allow the networks to encode the most frequently occur-

ring stimulus velocities, thereby allowing the state space of velocities to be tiled in an

adaptive manner.

5.3 Example 3: Bayesian Decision-Making in a Random Dots Task

To establish a connection to behavioral data, we consider the well-known random dots

motion discrimination task (see, for example, (Shadlen & Newsome, 2001)). The stim-

ulus consists of an image sequence showing a group of moving dots, a fixed fraction of
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which are randomly selected at each frame and moved in a fixed direction (for example,

either left or right). The rest of the dots are moved in random directions. The fraction of

dots moving in the same direction is called the coherence of the stimulus. Figure 12A

depicts the stimulus for two different levels of coherence. The task is to decide the

direction of motion of the coherently moving dots for a given input sequence. A wealth

of data exists on the psychophysical performance of humans and monkeys as well as

the neural responses in brain areas such as MT and LIP in monkeys performing the task

(see (Shadlen & Newsome, 2001) and references therein). Our goal is to explore the

extent to which the proposed model can explain the existing data for this task and make

testable predictions.

The motion detection network in the previous section can be used to decide the

direction of coherent motion by computing the posterior probabilities for leftward and

rightward motion, given the input images. These probabilities can be computed by

marginalizing the posterior distribution computed by the neurons for leftward (L) and

rightward (R) motion over all spatial positions i:

P (L|I(t), . . . , I(1)) =
∑

i

P (θiL|I(t), . . . , I(1)) (17)

P (R|I(t), . . . , I(1)) =
∑

i

P (θiR|I(t), . . . , I(1)) (18)

Note that the log of these marginal probabilities can also be computed directly from

the log posteriors (i.e. outputs of the neurons) using the log sum approximation method

described in Sections 3 and 4. The log posterior ratio r(t) of leftward over rightward

motion can be used to decide the direction of motion:

r(t) = log P (L|I(t), . . . , I(1)) − log P (R|I(t), . . . , I(1)) (19)

= log
P (L|I(t), . . . , I(1))

P (R|I(t), . . . , I(1))
(20)
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If r(t) > 0, the evidence seen so far favors leftward motion and vice versa for r(t) <

0. The instantaneous ratio r(t) is susceptible to rapid fluctuations due to the noisy

stimulus. We therefore use the following decision variable dL(t) to track the running

average of the log posterior ratio of L over R:

dL(t + 1) = dL(t) + α(r(t) − dL(t)) (21)

and likewise for dR(t) (the parameter α is between 0 and 1). We assume that the deci-

sion variables are computed by a separate set of “decision neurons” that receive inputs

from the motion detection network. These neurons are once again leaky-integrator

neurons as described by Equation 21, with the driving inputs r(t) being determined

by inhibition between the summed inputs from the two chains in the motion detection

network (as in Equation 19). The output of the model is “L” if dL(t) > c and “R” if

dR(t) > c, where c is a “confidence threshold” that depends on task constraints (for

example, accuracy versus speed requirements) (Reddi & Carpenter, 2000).

Figures 12B and 12C show the responses of the two decision neurons over time

for two different directions of motion and two levels of coherence. Besides correctly

computing the direction of coherent motion in each case, the model also responds faster

when the stimulus has higher coherence. This phenomenon can be appreciated more

clearly in Figure 12D, which predicts progressively shorter reaction times for increas-

ingly coherent stimuli (dotted arrows).

5.3.1 Comparison to Neurophysiological Data

The relationship between faster rates of evidence accumulation and shorter reaction

times has received experimental support from a number of studies. Figure 12E shows

the activity of a neuron in the frontal eye fields (FEF) for fast, medium, and slow re-

sponses to a visual target (Schall & Hanes, 1998; Schall & Thompson, 1999). Schall
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and collaborators have shown that the distribution of monkey response times can be

reproduced using the time taken by neural activity in FEF to reach a fixed threshold

(Hanes & Schall, 1996). A similar rise-to-threshold model by Carpenter and colleagues

has received strong support in human psychophysical experiments that manipulate the

prior probabilities of targets (Carpenter & Williams, 1995) and the urgency of the task

(Reddi & Carpenter, 2000) (see Section 6.2).

In the case of the random dots task, Shadlen and collaborators have shown that in

primates, one of the cortical areas involved in making the decision regarding coherent

motion direction is area LIP. The activities of many neurons in this area progressively

increase during the motion viewing period, with faster rates of rise for more coherent

stimuli (see Figure 12F) (Roitman & Shadlen, 2002). This behavior is similar to the

responses of “decision neurons” in the model (Figures 12B–D), suggesting that the out-

puts of the recorded LIP neurons could be interpreted as representing the log posterior

ratio of one task alternative over another (see (Carpenter & Williams, 1995; Gold &

Shadlen, 2001) for related suggestions).

5.3.2 Performance of the Network

We also examined the performance of the network as a function of motion coherence

for different values of the decision threshold. As shown in Figure 13, the results ob-

tained show two trends that are qualitatively similar to human and monkey psychophys-

ical performance on this task. First, for any fixed decision threshold T , the accuracy

rate (% correct responses) increases from chance levels (50% correct) to progressively

higher values (up to 100% correct for higher thresholds) when the motion coherence is

increased from 0 to 1. These graphs are qualitatively similar to psychometric perfor-

mance curves obtained in human and monkey experiments (see, for example, (Britten,
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Shadlen, Newsome, & Movshon, 1992)). We did not attempt to quantitatively fit the

model curves to psychophysical data because the model currently operates only on 1D

images. A second trend is observed when the decision threshold T is varied. As the

threshold is increased, the accuracy also increases for each coherence value, revealing

a set of curves that asymptote around 95-100% accuracy for large enough thresholds.

However, as expected, larger thresholds also result in longer reaction times, suggest-

ing a correlate in the model for the type of speed-accuracy tradeoffs typically seen in

psychophysical discrimination and search experiments. The dependence of accuracy

on decision threshold suggests a model for handling task urgency: faster decisions can

be made by lowering the decision threshold, albeit at the expense of some accuracy (as

illustrated in Figure 13). Predictions of such a model for incorporating urgency in the

decision-making process are explored in Section 6.2.

6 Model Predictions

6.1 Effect of Multiple Stimuli in a Receptive Field

A first prediction of the model arises from the log probability interpretation of firing

rates and the effects of normalization in a probabilistic system. In a network of neu-

rons where each neuron encodes the probability of a particular state, the sum of the

probabilities should sum to one. Thus, if an input contains multiple stimuli consistent

with multiple states, the probabilities for each state would be appropriately reduced

to reflect probability normalization. The current model predicts that one should see a

concomitant logarithmic decrease in the firing rates as illustrated in the example below.

Consider the simplest case of two static stimuli in the receptive field, reflecting two

different states encoded by two neurons (say, 1 and 2). Let v1 and v2 be the outputs (log

posteriors) of neurons 1 and 2 respectively when their preferred stimulus is shown alone
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in the receptive field. In the ideal noiseless case, both log posteriors would be zero.

Suppose both stimuli are now shown simultaneously. The model predicts that the new

outputs v′
1 and v′

2 should obey the relation ev′1 +ev′2 = 1.If both states are equally likely,

ev′1 = 0.5 i.e. v′
1 = −0.69, a non-linear decrease from the initial value of zero. To see

the impact on firing rates, consider the case where neuronal firing rate f is proportional

to the log posterior, i.e., f = [c · v + m]+, where c is a positive constant and m is the

maximum firing rate (see Section 7.1 for a discussion). Then, the new firing rate f ′
1 for

neuron 1 is related to the old firing rate f1 (= m) by f ′
1 = −0.69c + m = f1 − 0.69c.

Note that this is different from a simple halving of the single stimulus firing rate, as

might be predicted from a linear model. Thus, the model predicts that in the pres-

ence of multiple stimuli, the firing rate of a cell encoding for one of the stimuli will

be non-linearly reduced in such a way that the sum of exponentials of the firing rates

in the network approximates 1. Evidence for non-linear reductions in firing rates for

multiple stimuli in the receptive field comes from some experiments in V1 (DeAngelis,

Robson, Ohzawa, & Freeman, 1992) and other attention-related experiments in higher

cortical areas (Reynolds, Chelazzi, & Desimone, 1999). The existing data is however

insufficient to quantitatively validate or falsify the above prediction. More sophisti-

cated experiments involving multi-unit recordings may be needed to shed light on this

prediction derived from the log probability hypothesis of neural coding.

6.2 Effect of Changing Priors and Task Urgency

The strength of a Bayesian model lies in its ability to predict the effects of varying prior

knowledge or various types of biases in a given task. We explored the consequences

of varying two types of biases in the motion discrimination task: (a) changing the

prior probability of a particular motion direction (L or R) and (b) lowering the decision
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threshold to favor speed instead of accuracy.

Changing the prior probability for a particular motion direction amounts to initial-

izing the decision neuron activities dL and dR to the appropriate log prior ratios:

dL(0) = log P (L) − log P (R) (22)

dR(0) = log P (R) − log P (L) (23)

where P (L) and P (R) denote the prior probabilities of leftward and rightward mo-

tion respectively. Note that for the equiprobable case, these variables get initialized to

0 as in the simulations presented thus far. We examined the distribution of reaction

times obtained as a result of assuming a slightly higher prior probability for L com-

pared to R (0.51 versus 0.49). Figure 14A compares this distribution (shown on the

right) to the distribution obtained for the unbiased (equiprobable) case (shown on the

left). Both distributions shown are for trials where the direction of motion was L. The

model predicts that the entire distribution for a particular task choice should shift left-

wards (towards shorter reaction times) when the subject assumes a higher prior for that

particular choice.

Similarly, when time is at a premium, a subject may opt to lower the decision

threshold to reach decisions quickly, albeit at the risk of making some incorrect de-

cisions. Such an urgency constraint was simulated in the model by lowering the deci-

sion threshold to half the original value, keeping the stimulus coherence constant (60%

in this case). As shown in Figure 14B, the model again predicts a leftward shift of

the entire reaction time histogram, corresponding to faster (but sometimes inaccurate)

responses.

Although these predictions are yet be tested in the context of the motion discrimi-

nation task (see (Mazurek, Ditterich, Palmer, & Shadlen, 2001) for some preliminary
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results), psychophysical experiments by Carpenter and colleagues lend some support to

the model’s predictions. In these experiments (Carpenter & Williams, 1995), a human

subject was required to make an eye movement to a dim target that appeared randomly

to the left or right of a fixation point after a random delay of 0.5–1.5 seconds. The la-

tency distributions of the eye movements were recorded as a function of different prior

probabilities for one of the targets. As predicted by the model for the motion discrimi-

nation task (Figure 14A), the response latency histogram was observed to shift leftward

for increasing prior probabilities.

In a second set of experiments, Reddi and Carpenter examined the effects of impos-

ing urgency constraints on the eye movement task (Reddi & Carpenter, 2000). They

asked subjects to respond as rapidly as possible and to worry less about the accuracy

of their response. Once again, the latency histogram shifted leftwards, similar to the

model simulation results in Figure 14B. Furthermore, in a remarkable follow-up ex-

periment, Reddi and Carpenter showed that this leftward shift in the histogram due

to urgency could be countered by a corresponding rightward shift due to lower prior

probability for one of the targets, resulting in no overall shift in the latency histogram

(Reddi & Carpenter, 2000). This provides strong evidence for a rise-to-threshold model

of decision-making, where the threshold is chosen according to the constraints of the

task at hand.

7 Discussion

In this section, we address the problem of how neural activity may encode log prob-

ability values, which are non-positive. We also discuss the benefits of probabilistic

inference in the log domain for neural systems and conclude the section by summariz-

ing related work in probabilistic neural models and probabilistic decision-making.
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7.1 Neural Encoding of Log Probabilities

The model introduced above assumes that the outputs of neurons in a recurrent network

reflect log posterior probabilities of a particular state, given a set of inputs. However,

log probabilities take on non-positive values between −∞ and 0, raising two important

questions: (1) How are these non-positive values encoded using firing rates or a spike-

based code? (2) How do these codes capture the precision and range of probability

values that can be encoded? We address these issues below in the context of rate-based

and spike-based encoding models.

A simple encoding model is to assume that firing rates are linearly related to the

log posteriors encoded by the neurons. Thus, if vi denotes the log posterior encoded by

neuron i, then the firing rate of the neuron is given by:

fi = [c · vi + m]+ (24)

where c is a positive gain factor, m is the maximum firing rate of the neuron, and

+ denotes rectification ([x]+ = x if x > 0 and 0 otherwise). Note that the firing

rate fi attains the maximum value m when the log posterior vi = 0 i.e. the posterior

probability P (θt
i |I(t), . . . , I(1)) = 1. Likewise, fi attains its minimal value of 0 for

posteriors below e−m/c. Thus, the precision and range of probability values that can be

encoded in the firing rate are governed by both m and c. Since e−x quickly becomes

negligible (e.g. e−10 = 0.000045), for typical values of m in the range 100-200 Hz,

values for c in the range 10-20 would allow the useful range of probability values to

be accurately encoded in the firing rate. These firing rates can be easily decoded when

received as synaptic inputs using the inverse relationship: vi = (fi − m)/c.

A second straightforward but counterintuitive encoding model is to assume that
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fi = −c · vi, up to some maximum value m.2 In this model, a high firing-rate implies a

low posterior probability i.e. an unexpected or novel stimulus. Such an encoding model

allows neurons to be interpreted as novelty detectors. Thus, the suppression of neural

responses in some cortical areas due to the addition of contextual information (e.g.

surround effects in V1 (Knierim & Essen, 1992; Zipser, Lamme, & Schiller, 1996))

or due to increasing familiarity with a stimulus (e.g. response reduction in IT due to

stimulus repetition (Miller, Li, & Desimone, 1991)) can be interpreted as increases in

posterior probabilities of the state encoded by the recorded neurons. Such a model

of response suppression is similar in spirit to predictive coding models (Srinivasan,

Laughlin, & Dubs, 1982; Rao & Ballard, 1999) but differs from these earlier models in

assuming that the responses represent log posterior probabilities rather than prediction

errors.

A spike-based encoding model can be obtained by interpreting the leaky integrator

equation (Equation 1) in terms of the membrane potential of a neuron rather than its

firing rate. Such an interpretation is consistent with the traditional RC circuit-based

model of membrane potential dynamics (see, for example, (Koch, 1999)). We assume

that the membrane potential V m
i is proportional to the log posterior vi:

V m
i = k · vi + T (25)

where k is a constant gain factor and T is a constant nonnegative offset. The dynamics

of the neuron’s membrane potential is then given by:

dV m
i

dt
= k

dvi

dt
(26)

where dvi

dt
is computed as described in Sections 2 and 3. Thus, in this model, changes

2A different model based also on a negative log encoding scheme has been suggested

by Barlow (1969, 1972).
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in the membrane potential due to synaptic inputs are proportional to changes in the

log posterior being represented by the neuron. More interestingly, if T is regarded as

analogous to the spiking threshold, one can define the probability of neuron i spiking

at time t + 1 as:

P (spikei(t+1)|V m
i (t+1)) = e(V m

i (t+1)−T )/k = evi(t+1) = P (θt
i|I(t), . . . , I(1)). (27)

Such a model for spiking can be viewed as a variant of the noisy threshold model,

where the cell spikes if its potential exceeds a noisy threshold. As defined above, the

spiking probability of a neuron becomes exactly equal to the posterior probability of the

neuron’s preferred state θi given the inputs (see also (Anastasio, Patton, & Belkacem-

Boussaid, 2000; Hoyer & Hyvärinen, 2003)). This provides a new interpretation of

traditional neuronal spiking probabilities computed from a post stimulus time histogram

(PSTH). An intriguing open question, given such an encoding model, is how these spike

probabilities are decoded “on-line” from input spike trains by synapses and converted

to the log domain to influence the membrane potential as in Equation 26. We hope to

explore this question in future studies.

7.2 Benefits of Probabilistic Inference in the Log Domain

A valid question to ask is why a neural circuit should encode probabilities in the log

domain in the first place. Indeed, it has been suggested that multiplicative interactions

between inputs may occur in dendrites of cortical cells (Mel, 1993), which could per-

haps allow Equation 5 to be directly implemented in a recurrent circuit (cf. (Bridle,

1990)). However, there are several reasons why representing probabilities in the log

domain could be beneficial to a neural system:

• Neurons have a limited dynamic range. A logarithmic transformation allows the
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most useful range of probabilities to be represented by a small number of activity

levels (see discussion above on neural encoding of log probabilities).

• Implementing probabilistic inference in the log domain allows the use of addition

and subtraction instead of multiplication and division. The former operations are

readily implemented through excitation and inhibition in neural circuits while

the latter are typically much harder to implement neurally. As shown earlier in

this paper, a standard leaky-integrator model suffices to implement probabilistic

inference for a hidden Markov model if performed in the log domain.

• There is growing evidence that the brain uses quantities such as log likelihood

ratios during decision-making (see Related Work below). These quantities can

be readily computed if neural circuits are already representing probabilities in

the log domain.

On the other hand, it is clear that representing probabilities in the log domain also

makes certain operations such as addition or convolution harder to implement. Specific

examples include computing the OR of two distributions or adding noise to/convolving

a given distribution with noise. To implement such operations, neural circuits oper-

ating in the log domain would need to resort to approximations, such as the log-sum

approximation for addition discussed in Section 4.

7.3 Neural Encoding of Priors

An important question for Bayesian models of brain function is how prior knowledge

about the world can be represented and used during neural computation. In the model

discussed in this paper, “priors” influence computation in two ways:

1. Long-term prior knowledge about the statistical regularities of the environment
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is stored within the recurrent and feedforward connections in the network. Such

knowledge could be acquired through evolution, learning, or some combination

of these two strategies. For example, the transition probabilities stored in the

recurrent connections of the motion detection network capture prior knowledge

about the expected trajectory of a moving stimulus at each location. This stored

knowledge could be changed by adapting the recurrent weights if the statistics

of moving stimuli suddenly changes in the organism’s environment. Similarly,

the likelihood function stored in the feedforward connections captures properties

of the physical world and can be adapted according to the statistics of the in-

puts. The study of such stored “priors” constitutes a major research direction in

Bayesian psychophysics (e.g. (Bloj et al., 1999; Weiss et al., 2002) and chapters

in (Rao et al., 2002)).

2. At shorter time scales, recurrent activity provides “priors” for expected inputs

based on the history of past inputs. These priors are then combined with the

feedforward input likelihoods to produce the posterior probability distribution

(cf. Equations 6 and 10). Note that the priors provided by the recurrent activity

at each time step reflect the long-term prior knowledge about the environment

(transition probabilities) stored in the recurrent connections, as discussed in 1

above.

7.4 Related Work

This paper makes contributions in two related areas: neural models of probabilistic in-

ference and models of probabilistic decision-making. We review below previous work

in these two areas with the aim of comparing and contrasting our approach with these

previous approaches.
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7.4.1 Neural Models of Probabilistic Inference

Perhaps the earliest neural model of probabilistic inference is the Boltzmann machine

(Hinton & Sejnowski, 1983, 1986), a stochastic network of binary units. Inference

in the network proceeds by randomly selecting a unit at each time step and setting

its activity equal to 1 according to a probability given by a sigmoidal function of a

weighted sum of its inputs. This update procedure, also known as Gibbs sampling,

allows the network to converge to a set of activities characterized by the Boltzmann

distribution (see, for example, (Dayan & Abbott, 2001) for details). The current model

differs from the Boltzmann machine in both the underlying generative model as well

as the inference mechanism. Unlike the Boltzmann machine, the present model utilizes

a generative model with explicit dynamics in the state space and can therefore model

probabilistic transitions between states. For inference, the model explicitly operates

on probabilities (in the log domain), thereby avoiding the need for sampling-based

inference techniques which can be notoriously slow. These features also differentiate

the proposed approach from other more recent probabilistic neural network models such

as the Helmholtz machine (Dayan et al., 1995; Lewicki & Sejnowski, 1997; Hinton &

Ghahramani, 1997).

Bridle first suggested that statistical inference for hidden Markov models could be

implemented using a modification of the standard recurrent neural network (Bridle,

1990). In his model, known as an “Alpha-Net,” the computation of the likelihood for

an input sequence is performed directly using an analog of Equation 5. Thus, Bridle’s

network requires a multiplicative interaction of input likelihoods with the recurrent ac-

tivity. As mentioned above, the model we have proposed performs inference in the

log domain, thereby requiring only additive interactions, which are more easily imple-

mented in neural circuitry. In addition, experimental data from human and monkey
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decision-making tasks have suggested an interpretation of neural activities in terms of

log probabilities, supporting a model of inference in the log domain. The log domain

implementation however necessitates the approximation of the transition probabilities

using Equation 13, an approximation that is avoided if multiplicative interactions are

allowed (as in Bridle’s approach).

A second set of probabilistic neural models stems from efforts to understand encod-

ing and decoding of information from populations of neurons. One class of approaches

uses basis functions to represent probability distributions within neuronal ensembles

(Anderson & Van Essen, 1994; Anderson, 1995; Deneve & Pouget, 2001; Eliasmith &

Anderson, 2003). In this approach, a distribution P (x) over stimuli x is represented

using a linear combination of basis functions (kernels):

P (x) =
∑

i

ribi(x) (28)

where ri is the normalized response (firing rate) and bi the implicit basis function asso-

ciated with neuron i in the population. The basis function of each neuron is assumed

to be linearly related to the tuning function of the neuron as measured in physiologi-

cal experiments. The basis function approach is similar to the approach proposed in

this paper in that the stimulus space is spanned by a limited number of neurons with

preferred stimuli or state vectors. The two approaches differ in how probability distri-

butions are decoded from neural responses, one using an additive method and the other

using a logarithmic transformation as discussed above.

A limitation of the basis function approach is that due to its additive nature, it can-

not represent distributions that are sharper than the component distributions. A second

class of models addresses this problem using a generative approach, where an encoding

model is first assumed and a Bayesian decoding model is used to estimate the stimulus

28



x (or its distribution), given a set of responses ri (Zhang, Ginzburg, McNaughton, &

Sejnowski, 1998; Pouget, Zhang, Deneve, & Latham, 1998; Zemel et al., 1998; Zemel

& Dayan, 1999; Wu, Chen, Niranjan, & Amari, 2003). For example, in the distribu-

tional population coding (DPC) method (Zemel et al., 1998; Zemel & Dayan, 1999),

the responses are assumed to depend on general distributions P (x) and a Bayesian

method is used to decode a probability distribution over possible distributions over x.

The best estimate in this method is not a single value of x but an entire distribution over

x, which is assumed to be represented by the neural population. The underlying goal of

representing entire distributions within neural populations is common to both the DPC

approach and the model being proposed in this paper. However, the approaches differ

in how they achieve this goal: the DPC method assumes prespecified tuning functions

for the neurons and a sophisticated, non-neural decoding operation whereas the method

introduced in this paper directly instantiates a probabilistic generative model (in this

case, a hidden Markov model) with a comparatively straightforward linear decoding

operation as described above.

Several probabilistic models have also been suggested for solving specific problems

in visual motion processing such as the aperture problem (Simoncelli, 1993; Koechlin,

Anton, & Burnod, 1999; Zemel & Dayan, 1999; Ascher & Grzywacz, 2000; Freeman,

Haddon, & Pasztor, 2002; Weiss & Fleet, 2002; Weiss et al., 2002). These typically

rely on a prespecified bank of spatiotemporal filters to generate a probability distribu-

tion over velocities, which is processed according to Bayesian principles. The model

proposed in this paper differs from these previous approaches in making use of an ex-

plicit generative model for capturing the statistics of time-varying inputs (i.e. a HMM).

Thus, the selectivity for direction and velocity is an emergent property of the network

and not a consequence of tuned spatiotemporal filters chosen a priori.
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Finally, Rao and Ballard have suggested a hierarchical model for neural compu-

tation based on Kalman filtering (or predictive coding) (Rao & Ballard, 1997, 1999;

Rao, 1999). The Kalman filter model is based on a generative model similar to the one

used in the hidden Markov model as discussed in this paper, except that the states are

assumed to be continuous-valued and both the observation and transition probability

densities are assumed to be Gaussian. As a result, the inference problem becomes one

of estimating the mean and covariance of the Gaussian distribution of states at each

time step. Rao and Ballard showed how the mean could be computed in a recurrent

network in which feedback from a higher layer to the input layer carries predictions of

expected inputs and the feedforward connections convey the errors in prediction, which

are used to correct the estimate of the mean state. The neural estimation of covari-

ance was not addressed. In contrast to the Kalman filter model, the current model does

not require propagation of predictive error signals and allows the full distribution of

states to be estimated, rather than just the mean. In addition, the observation and tran-

sition distributions can be arbitrary and need not be Gaussian. The main drawback is

the restriction to discrete states, which implies that distributions over continuous state

variables are approximated using discrete samples. Fortunately, these discrete samples,

which are the preferred states θi of neurons in the network, can be adapted by changing

the feedforward and feedback weights (W and M) in response to inputs. Thus, the

distribution over a continuous state space can be modeled to different degrees of accu-

racy in different parts of the state space by a finite number of neurons that adapt their

preferred states to match the statistics of the inputs. Possible procedures for adapting

the feedforward and feedback weights are discussed in Section 8.1.
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7.4.2 Models of Bayesian Decision-Making

Recent experiments using psychophysics and electrophysiology have shed light on the

probabilistic basis of visual decision-making in humans and monkeys. There is con-

verging evidence that decisions are made based on the log of the likelihood ratio of one

alternative over another (Carpenter & Williams, 1995; Gold & Shadlen, 2001). Car-

penter and colleagues have suggested a mathematical model called “LATER” (Linear

Approach to Threshold with Ergodic Rate) (Carpenter & Williams, 1995; Reddi & Car-

penter, 2000) for explaining results from their visual decision-making task (described

in Section 6.2). In their model, the evidence for one alternative over another is accu-

mulated in the form of a log likelihood ratio at a constant rate for a given trial, resulting

in a decision in favor of the first alternative if the accumulated variable exceeds a fixed

threshold. This is similar to the decision-making process posited in the current paper,

except that we do not assume a linear rise to threshold. Evidence for the LATER model

is presented in (Carpenter & Williams, 1995; Reddi & Carpenter, 2000). A related

and more detailed model has been proposed by Gold and Shadlen to explain results

from the random dots task (Gold & Shadlen, 2001). The Gold-Shadlen model is related

to “accumulator models” commonly used in psychology (Ratcliff, Zandt, & McKoon,

1999; Luce, 1986; Usher & McClelland, 2001) and treats decision-making as a diffu-

sion process that is biased by a log likelihood ratio. Rather than assuming that entire

probability distributions are represented within cortical circuits as proposed in this pa-

per, the Gold-Shadlen model assumes that the difference between two firing rates (e.g.

from two different motion selective neurons in cortical area MT) can be interpreted as a

log likelihood ratio of one task alternative over another (e.g., one motion direction over

another). We believe that there are enormous advantages to be gained if the brain could

represent entire probability distributions of stimuli because such a representation allows
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not just decision-making when faced with a discrete number of alternatives but also a

wide variety of other useful tasks related to probabilistic reasoning, such as estimation

of an unknown quantity and planning in uncertain environments.

A number of models of decision-making, based typically on diffusion processes or

races between variables, have been proposed in the psychological literature (Ratcliff

et al., 1999; Luce, 1986; Usher & McClelland, 2001). Other recent models have fo-

cused on establishing a relation between the effects of rewards on decision-making and

concepts from decision theory and game theory (Platt & Glimcher, 1999; Glimcher,

2002). These models, like the models of Carpenter, Shadlen, and colleagues, are math-

ematical models that are aimed mainly at explaining behavioral data but are formulated

at a higher level of abstraction than the neural implementation level. The model pre-

sented in this paper seeks to bridge this gap by showing how rigorous mathematical

models of decision-making could be implemented within recurrent neural circuits. A

recent model proposed by Wang (2002) shares the same goal but approaches the prob-

lem from a different viewpoint. Starting with a biophysical circuit that implements an

“attractor network,” Wang shows that the network exhibits many of the properties seen

in cortical decision-making neurons. The inputs to Wang’s decision-making model are

not based on a generative model of time-varying inputs but are assumed to be two

abstract inputs modeled as two Poisson processes whose rates are determined by Gaus-

sian distributions. The means of these distributions depend on the motion coherence

level linearly, such that the two means approach each other as the coherence is reduced.

Thus, the effects of motion coherence on the inputs to the decision-making process

are built-in rather than being computed from input images as in the present model.

Consequently, Wang’s model, like the other decision-making models discussed above,

does not directly address the issue of how probability distributions of stimuli may be
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represented and processed in neural circuits.

8 Conclusions and Future Work

We have shown that a recurrent network of leaky integrator neurons can approximate

Bayesian inference for a hidden Markov model. Such networks have previously been

used to model a variety of cortical response properties (Dayan & Abbott, 2001). Our

results suggest a new interpretation of neural firing rates in such networks as represent-

ing log posterior probabilities. Such a hypothesis is consistent with the suggestions

made by Carpenter, Shadlen, and others based on studies in visual decision-making.

We illustrated the performance of the model using the examples of visual orientation

discrimination and motion detection. In the case of motion detection, we showed how

a model cortical network can exhibit direction selectivity and compute the log poste-

rior probability of motion direction, given a sequence of input images. The model thus

provides a probabilistic interpretation of direction selective responses in cortical areas

V1 and MT. We also showed how the outputs of the motion detection network could

be used to decide the direction of coherent motion in the well-known random dots task.

The activity of the “decision neurons” in the model during this task resemble the activ-

ity of evidence-accumulating neurons in LIP and FEF, two cortical areas known to be

involved in visual decision-making. The model correctly predicts reaction times as a

function of stimulus coherence and produces reaction time distributions that are qual-

itatively similar to those obtained in eye movement experiments that manipulate prior

probabilities of targets and task urgency.

Although the results described thus far are encouraging, several important questions

remain: (a) How can the feedforward weights W and recurrent weights M be learned

directly from input data, (b) How can the approach be generalized to graphical models
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that are more sophisticated than hidden Markov models, and (c) How can the approach

be extended to incorporate the influence of rewards on Bayesian estimation, learning,

and decision-making? We conclude by discussing below some potential strategies for

addressing these questions in future studies.

8.1 Learning Synaptic Weights

We intend to explore the question of synaptic learning using biologically-plausible ap-

proximations to the expectation-maximization (EM) algorithm (Dempster, Laird, &

Rubin, 1977). For standard hidden Markov models, the E-step in the EM algorithm

is realized by the “forward-backward” algorithm (Rabiner & Juang, 1986). The net-

work described in this paper implements the “forward” part of this algorithm and can

be regarded as an approximate E-step for the case of on-line estimation. One possible

likelihood function3 for the on-line case is:

Qt(W,M) =
∑
j

P (θt
j|I(t), . . . , I(1),W,M) logP (θt

j, I(t)|I(t − 1), . . . , I(1),W,M)

This function can be re-written in terms of the outputs vj of the model network and the

summed inputs uj from Section 3 for the current values of the weights W and M:

Qt(W,M) =
∑
j

evj(t+1)uj(t) (29)

For synaptic learning, we can perform an on-line M-step to maximize Qt through gra-

dient ascent with respect to W and M (this actually implements a form of incremental

or generalized EM algorithm (Neal & Hinton, 1998)):

∆wi(t) = α
∂Qt

∂wi
(30)

3This approximates the full on-line likelihood function QF
t (W,M) =

∑
j P (θt

j|I(t), . . . , I(1),W,M) logP (θt
j, I(t), I(t − 1), . . . , I(1)|W,M).

34



= αεgi(t)e
vi(t+1)I(t)

∆mik(t) = β
∂Qt

∂mik
(31)

= βgi(t)e
vi(t+1)vk(t)

where α and β are learning rates, and gi(t) = (1+ui(t)−Qt(W,M)) is a gain function.

The above expressions were derived by substituting the right hand side of the equations

for vi(t + 1) and ui(t) respectively (see Section 3), and approximating the gradient by

retaining only the first-order terms pertaining to time step t.

The learning rules above are interesting variants of the well-known Hebb rule

(Hebb, 1949): the synaptic weight change is proportional to the product of the input

(I(t) or vk(t)) with an exponential function of the output vi(t + 1) (rather than simply

the output), thereby realizing a soft form of winner-take-all competition. Furthermore,

the weight changes are modulated by the gain function gi(t), which is positive only

when (ui(t) − Qt(W,M)) > −1 i.e. when P (θt
i, I(t)|I(t − 1), . . . , I(1),W,M) >

(1/e)eQt(W,M). Thus, both learning rules remain anti-Hebbian and encourage decor-

relation (Földiák, 1990) unless the net feedforward and recurrent input (ui(t)) is high

enough to make the joint probability of the state i and the current input exceed the

threshold of (1/e)eQt(W,M). In that case, the learning rules switch to a Hebbian regime,

allowing the neuron to learn the appropriate weights to encode state i. An in-depth

investigation of these and related learning rules is currently underway and will be dis-

cussed in a future article.

8.2 Generalization to Other Graphical Models

A second open question is how the suggested framework could be extended to allow

neural implementation of hierarchical Bayesian inference in graphical models that are

more general than hidden Markov models (cf. (Dayan et al., 1995; Dayan & Hinton,
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1996; Hinton & Ghahramani, 1997; Rao & Ballard, 1997, 1999)). Such models would

provide a better approximation to the multi-layered architecture of the cortex and the hi-

erarchical connections that exist between cortical areas (Felleman & Van Essen, 1991).

In future studies, we hope to investigate neural implementations of various types of

graphical models by extending the method described in this paper for implementing

Equation 5. In particular, Equation 5 can be regarded as a special case of the general

sum-product rule for belief propagation in a Bayesian network (Jordan & Weiss, 2002).

Thus, in addition to incorporating “belief messages” from the previous time step and the

current input as in Equation 5, a more general rule for Bayesian inference would also

incorporate messages from other hierarchical levels and potentially, from future time

steps. Investigating such generalizations of Equation 5 and their neural implementation

is an important goal of our ongoing research efforts.

8.3 Incorporating Rewards

A final question of interest is how rewards associated with various choices available in a

task can be made to influence the activities of decision neurons and the decision-making

behavior of the model. We expect ideas from reinforcement learning and Bayesian

decision theory as well as recent neurophysiological results in the monkey (Platt &

Glimcher, 1999) to be helpful in guiding our research in this direction.
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Figure Captions

Figure 1. Approximation Accuracy for Different Classes of Transition Probability

Matrices. Each data point represents the average approximation error from Equation 11

for a particular number of neurons in the recurrent network for a fixed set of conditional

probabilities xj(t) = P (θt−1
j |I(t − 1), . . . , I(1)). Each curve represents the errors for

a particular density d of the random transition probability matrix (d is the fraction of

nonzero entries in the matrix).

Figure 2. Approximation Accuracy for Different Sets of Conditional Probabilities

P (θt−1
j |I(t− 1), . . . , I(1)) (= xj(t)). The data points represent the average approxima-

tion error from Equation 11 as a function of the number of neurons in the network for

a fixed set of transition probabilities. Each curve represents the errors for a particular

density d of the random conditional probability matrix (see text for details).

Figure 3. Estimating Stimulus Orientation from Noisy Images. (A) Twelve of

the 36 oriented filters used in the recurrent network for estimating stimulus orientation.

These filters represent the feedforward connections F(θi). Bright pixels denote positive

(excitatory) values and dark pixels denote negative (inhibitory) values. (B) Example of

a noisy input image sequence containing a bright oriented bar embedded in additive

zero-mean Gaussian white noise with a standard deviation of 1.5.

Figure 4. Example of Noisy Orientation Estimation. (Top Row) Example images

at different time steps from a noisy input sequence containing an oriented bar. (Mid-

dle Row) Feedforward inputs representing log likelihood values for the inputs shown

above. Note the wide variation in the peak of the activities. (Bottom Row) Output ac-

tivities shown as posterior probabilities of the 36 orientations encoded by the neurons in

the network. Note the stable peak in activity achieved through recurrent accumulation
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of evidence over time despite the wide variation in the input likelihoods.

Figure 5. Orientation Estimation Accuracy as a Function of Noise Level. The

data points show the classification rates obtained for a set of 36 oriented bar stimuli

embedded in additive zero-mean Gaussian white noise with standard deviation values

as shown on the x axis. The dotted line shows the chance classification rate (1/36×100)

obtained by the strategy of randomly guessing an orientation.

Figure 6. Recurrent Network for Motion Detection. (A) depicts a recurrent network

of neurons, shown for clarity as two chains selective for leftward and rightward mo-

tion respectively. The feedforward synaptic weights for neuron i (in the leftward or

rightward chain) are determined by F(θi). The recurrent weights reflect the transition

probabilities P (θiR|θkR) and P (θiL|θjL). (B) Feedforward weights F(θi) for neurons

i = 1, . . . , 15 (rightward chain). The feedforward weights for neurons i = 15, . . . , 30

(leftward chain) are identical. (C) Transition probabilities P (θ(t) = θi|θ(t − 1) = θj)

for i = 1, . . . , 30. Probability values are proportional to pixel brightness. (D) Recurrent

weights mij computed from the transition probabilities in (C) using Equation 13.

Figure 7. Approximating Transition Probabilities with Recurrent Weights. (A)

compares the right and left sides of Equation 11 for random test data xj(t) (different

from the training xj(t)) using the transition probabilities and weights shown in Fig-

ures 6C and 6D respectively. The solid line represents the right side of Equation 11

while the dotted line represents the left side. Only the results for a single neuron (i = 8)

are shown but similar results were obtained for the rest of the neurons. (B) shows the

approximation error (difference between the two sides of Equation 11 over time).

Figure 8. Network Output for a Moving Stimulus. (Left Panel) The four plots

depict respectively the log likelihoods, log posteriors, neural firing rates, and posterior

probabilities observed in the network for a rightward moving bar when it arrives at the

46



central image location. Note that the log likelihoods are the same for the rightward and

leftward selective neurons (the first 15 and last 15 neurons respectively, as dictated by

the feedforward weights in Figure 6B) but the outputs of these neurons correctly reflect

the direction of motion as a result of recurrent interactions. (Right Panel) The same

four plots for a leftward moving bar as it reaches the central location.

Figure 9. Encoding Multiple Motions: Same Direction Motion. (A) Six images

from an input sequence depicting two bright bars, both moving rightward. (B) The

panels from top-to-bottom on the left and continued on the right show the activities

(left) and posterior probabilities (right) for the image sequence in (A) in a motion de-

tection network of 60 neurons, the first 30 encoding rightward motion and the next 30

encoding leftward motion. Note the two large peaks in activity among the right selec-

tive neurons, indicating the presence of two rightward moving bars. The corresponding

posterior probabilities remain close to 0.5 until only one moving bar remains in the

image with a corresponding single peak of probability close to 1.

Figure 10. Encoding Multiple Motions: Motion in Opposite Directions. (A) Six

images from an input sequence depicting two bright bars moving in opposite direc-

tions. (B) The panels show the activities in the motion detection network (left) and

posterior probabilities (right) for the image sequence in (A). Note the two large peaks

in activity moving in opposite directions, indicating the presence of both a leftward and

a rightward moving bar. The corresponding posterior probabilities remain close to 0.5

throughout the sequence (after an initial transient).

Figure 11. Encoding Multiple Velocities. (A) Transition probability matrix that en-

codes a stimulus moving at a speed of 1 pixel/time step in either direction (see also

Figure 6C). (B) Output of a neuron located in the middle of the network as a function

of stimulus velocity. The peak outputs of the neuron during stimulus motion (in both
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the neuron’s preferred (“Pref”) direction and the null direction) are shown as posterior

probabilities. Note the relatively broad tuning curve indicating the neuron’s ability to

encode multiple velocities. (C) Transition probability matrix that encodes a stimulus

moving at a speed of 4 pixels/time step. (D) Peak outputs of the same neuron as in

(B) (but with recurrent weights approximating the transition probabilities in (C)). Once

again, the neuron exhibits a tuning curve (now centered around 4 pixels/time step) when

tested on multiple velocities. Note the shift in velocity sensitivity due to the change in

the transition probabilities. A small number of such networks can compute a discrete

posterior distribution over the space of stimulus velocities.

Figure 12. Output of Decision Neurons in the Model. (A) Depiction of the random

dots task. Two different levels of motion coherence (50% and 100%) are shown. A 1-D

version of this stimulus was used in the model simulations. (B) & (C) Outputs dL(t)

and dR(t) of model decision neurons for two different directions of motion. The deci-

sion threshold is labeled “c.” (D) Outputs of decision neurons for three different levels

of motion coherence. Note the increase in rate of evidence accumulation at higher co-

herencies. For a fixed decision threshold, the model predicts faster reaction times for

higher coherencies (dotted arrows). (E) Activity of a neuron in area FEF for a monkey

performing an eye movement task (from (Schall & Thompson, 1999) with permission).

Faster reaction times were associated with a more rapid rise to a fixed threshold (see

the three different neural activity profiles). The arrows point to the initiation of eye

movements, which are depicted at the top. (F) Averaged firing rate over time of 54 neu-

rons in area LIP during the random dots task, plotted as a function of motion coherence

(from (Roitman & Shadlen, 2002) with permission). Solid and dashed curves represent

trials in which the monkey judged motion direction toward and away from the receptive

field of a given neuron, respectively. The slope of the response is affected by motion
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coherence (compare, for example, responses for 51.2% and 25.6%) in a manner similar

to the model responses shown in (D).

Figure 13. Performance of the Model Network as a Function of Motion Coherence.

The three curves show the accuracy rate (% correct responses) of the motion network in

discriminating between the two directions of motion in the random dots task for three

different decision thresholds T . Two trends, which are also observed in human and

monkey performance on this task, are the rapid increase in accuracy as a function of

motion coherence (especially for large thresholds) and the increase in accuracy for each

coherence value for increasing thresholds, with an asymptote close to 100% for large

enough thresholds.

Figure 14. Reaction Time Distributions as a Function of Prior Probability and

Urgency. (A) The left panel shows the distribution of reaction times for the motion

discrimination task obtained from model simulations when leftward and rightward mo-

tion are equiprobable. The right panel shows the distribution for the case where leftward

motion is more probable than rightward motion (0.51 versus 0.49). Note the leftward

shift of the distribution towards shorter reaction times. Both distributions here were

restricted to leftward motion trials only. (B) The right panel shows the result of halving

the decision threshold, simulating an urgency constraint that favors speed over accu-

racy. Compared to the non-urgent case (left panel), the reaction time distribution again

exhibits a leftward shift towards faster (but potentially inaccurate) responses.
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