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Population coding in neuronal systems with correlated noise
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Neuronal representations of external events are often distributed across large populations of cells. We study
the effect of correlated noise on the accuracy of these neuronal population codes. Our main question is whether
the inherent error in the population code can be suppressed by increasing the size of the pdgutatios
presence of correlated noise. We address this issue using a model of a population of neurons that are broadly
tuned to an angular variable in two dimensions. The fluctuations in the neuronal activities are modeled as
Gaussian noises with pairwise correlations that decay exponentially with the difference between the preferred
angles of the correlated cells. We assume that the system is broadly tuned, which means that both the
correlation length and the width of the tuning curves of the mean responses span a substantial fraction of the
entire system length. The performance of the system is measured by the Fisher infofFlatiahich bounds
its estimation error. By calculating the Fl in the limit of a lafyewe show that positive correlations decrease
the estimation capability of the network, relative to the uncorrelated population. The information capacity
saturates to a finite value as the number of cells in the population grows. In contrast, negative correlations
substantially increase the information capacity of the neuronal population. These results are supplemented by
the effect of correlations on the mutual information of the system. Our analysis provides an estimate of the
effective number of statistically independent degrees of freedom, dehtedthat a large correlated system
can have. According to our theoN,y remains finite in the limit of a larghl. Estimating the parameters of the
correlations and tuning curves from experimental data in some cortical areas that code for angles, we predict
that the number of effective degrees of freedom embedded in localized populations in these areas is less than
or of the order of~1C?.
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[. INTRODUCTION accuracy of the population codg$2]. Since cross correla-
tions in neuronal activity are frequently observed in sensory

In many neural systems, information regarding sensoryand motor cortical ared43—-15, understanding the effect of
inputs or(intended motor outputs is distributed across large noise correlation in biologically relevant situations is of great
populations of neurongl-6]. It is generally believed that importance.
one of the main features of neuronal population codes is their In this paper we present an analytical study of the effect
redundancy{7-9], and that this redundancy serves to com-of noise correlations on the population coding of a pool of
pensate for the inherent noise caused by the stochasticity otlls that encode a single variable, which for convenience is
the neuronal responses. The ability to overcome neuronadhken to represent an angle, such as the orientation of a visual
noise by pooling a large number of responses generally holdstimulus or the direction of an arm movement in a plane. We
for an ensemble of neurons whose variabilities are statistiassume that the correlation in the noisy activity of the neu-
cally independent. This is far from obvious in situationsrons follows the multivariate Gaussian distribution. As will
where the “noisy” part of the neuronal activity is correlated be shown, the effect of correlations depends crucially on
within the population. their spatial dependence. Here, we will assume that the cor-

Naively it seems reasonable to assume that when theelations between a pair of neurons decay exponentially as
noise is correlated, population averaging would not be effecthe difference between their functional spatial coordinates
tive in suppressing the noise, hence the information capacitincreases. In the present case, the functional coordinate of a
of the population should be limited even when the number oheuron is its preferred angle, which is the angle that elicits
participating cells is large. This intuition has been supportedhe strongest mean response. We investigate the accuracy of
by recent studies which found that averaging the responsehe information in the population in biologically relevant pa-
of a uniformly correlated population does not suppress theameter regimes, using the frameworks of the Fisher infor-
inherent errorf10]. On the other hand, a recent analytical mation(FI) and the Shannon mutual informaticil ).
investigation by Abbott and Daydi 1] showed that uniform The paper is organized as follows: We begin by analyzing
positive correlations increase the information capacity of thea simple example in Sec. Il that clarifies the special case of
population. They further concluded that more generally, evemniform correlations, a topic that has been discussed exten-
if the information is not enhanced compared to the uncorresively in the literaturd10,11,14. To relate directly to some
lated situation, it still increases linearly with the size of theof the previous treatments of this problem, we will consider
population, so that pooling a large population is effective inthe task of discrimination between two values of a signal by
improving the accuracy of the extracted information even ina linear rule, rather than the problem of general stimulus
the presence of correlations. Other studies based on simulastimation that will be the focus of the rest of the paper. In
tions have also found that positive correlations enhance th8ec. Il we describe the main model investigated in this
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work. This model consists of neurons coding an angle with [Lw(F)—Lw(f)]?
spatially dependent correlations. The properties of the FI of = PN (6)
this system in various parameter regimes are studied in Sec. ([Lw(n) =Lw(f)19)

IV. In Sec. V we present the results for the effect of corre- h denotes th fluctuat in thi
lations on the MI of the system. Discussion of the results and” ere(. - -) denotes the average over fluctuations, in this

their implications f t g tal svst is giverfase, with respect tE(r|+), Eq. (2). This SNR is the vari-
elr ImpIcations for concrete experimental systems 1S giVeTlnce of the signal divided by the variance of the noise. An

in Sec. VL. . . : .
Partial preliminary results of this work have been reporte dentical result holds for the S.NR n th_e case 0*35“”1“' .
elsewherd 17]. us. The average over fluctuations, which is a Gaussian inte-

gration, can be performed easily,

Il. UNIFORM NOISE CORRELATIONS
— )12y = W (r—F ) (r—fF
A. Linear discrimination ([Lw(r)—Lw(fH)IT9) %: WiWi((ri =) (= 7)),
We begin our analysis of the effect of correlations by
considering the problem of discriminating two stimuli on the =S ww.c, @)
basis of noisy responses of a correlated pooNafeurons. T
We assume that each neuron fires on average at  fate
(i=1,2,...N), for one stimulus, and af; for the other. C;; of Eq. (1) gives
We further assume uniform pairwise correlations among

. 2
neurons in the pool, namely,
P y 1 (EI giWi>
Cij=al6j+c(1—6;)], (1) S=— >, (8
a (1-c)>, W2+c| >, W,
wherea is the variance of the responses of each neuron and i : i :
c is the correlation coefficient of the pairwise fluctuations.
Assuming Gaussian statistics, the probability distribution ofwhere
an activity profile of the population is
. g="f—f. 9
P(r|i)=zlexp< -5 > (ri—fHciir =),
g 2 B. Uniform pooling
A simple majority rule is a uniform pooling in which
wherer={rq,r,, ...y}, rj is the response of thih neu-

ron, andZ is a normalization constant. W;=W (10

A simple discrimination rule is based on a linear readout . .
for all i. In this case, Eq(8) reduces to

N

Lw<r>=i§1 Wir;. (3) N

S:(1—c)+cNS°’ (19

The distribution of this quantity consists of a mixture of two

Gaussians with equal variance and meaggf*), where S, denotes the SNR per neuron in an independent

population, which is

N

T\ * 2

Lw(F)=2, Wif", (@) 6% 1
a

whereL,(f*) corresponds to the case oftaand — stimu- _
lus, respectively. A maximum likelihood discrimination rule ﬂherex represents an averagexgfover the population, i.e.,
based onL,(r) makes a+ decision ifL(r) is closer to le/NE{\‘zlxi. Equation(11) predicts thatS saturates to a
Lw(f"). Otherwise, the inputs are classified-asNote that finite value in large systems,
we have assumed that the correlations are independent of the
stimulus, hence the distributions afy(r) have the same Sy 1
variance for both stimuli. The error of this decision ruk,, S=—- N>c. (13
for a case where the stimulus wasis given by

A linear increase oS with N will be seen when the correla-

P - f“‘ dx e‘("z’z), ®) tions are weak in the regime of a smél|
SN2 1
whereS is the (squared signal to noise ratigSNR), S=5N,  1<N< c (14
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C. Optimal linear readout 60
Next we consider a linear readout with weights that are k=1
optimized to maximize the accuracy of its discrimination. By 50 7]
differentiating SNR with respect oV} it can be shown that el
the following vectorW maximizes the SNR18]. S 40 7
N «'/
30' '¢' _
Wioc Zl CJlg] ’ (15) ,/’» k=04
i 20l L
cN  — 16 e
<0, — — L G =
9~ TN (16) 10 p k=0
Note thatw, changes frong; to g; —EasN increases beyond 0o 10 20 30 40 50
Nc=1/c unlessc=0. For the optimal linear readout the N

SNR becomes . . . .
FIG. 1. Squared signal to noise ratio as a function of the number

) (1-c)(1—x)\] 1 of neuronsN that are uniformly correlated witb=0.1. The dashed
S=N g 1+c¢c|l - 1+N———— ° . (1) line represents the signal to noise Ratio of the independent popula-
a 1-c(1-Nk) tion. The topmost curve is fot=1, and from the bottora =0 and

k=0.4.

wherek, 0<k<1, defined by

N. This in fact is not the case, as is shown in the analysis
below. Nevertheless, the simple example discussed in this
section illustrates one of the important features in correlated
populations: the interplay between the correlation of the fluc-
represents the inhomogeneity of the population. The deperuation, which in this example is denoted byand the ho-
dence of Eq.(17) on N is very different from that of the mogeneity or diversity of the response characteristics of the
uniform pooling, Eq.(11). Most importantly unlesk=0, S  neurons in the population, which in the present case is rep-
does not saturate for a larg¢ but diverges linearly wittiN ~ resented by the parameter

as

=
P _29 : (18
g

Ill. MODEL: ESTIMATION OF AN ANGULAR VARIABLE

] P )N Ns 1 C
“\1-c 0. CK

(19 The remainder of this paper deals with a populatioMNof
neurons that responds to a stimulus characterized by an angle
Thus, for a largeN, Sincreases faster thaiS, if c>1—«, 0, where — w< <. The activity of each neuron is again
which means that for sufficiently strong uniform correla- assumed to be Gaussian with a még) that represents its
tions, the performance of the optimal linear readout in a largduning curve, and a uniform varianee The noise is assumed
population is superior to the independent case. Finally, fot0 be pairwise-correlated throughout the population. Hence

weak positive correlations (0c<1), there is another linear the activity profile of the whole populationy={r,,
regime forS, which is given by o, --,Int, given a stimulug, follows the following multi-
variate Gaussian distribution

S=5N, 1<N<E, (20 1 1
¢ P(f|9)zzexﬁ<—§izj [ri=fi(0)1C; Tri—f;(0)] ),
as in the uniform pooling case. These properties are shown in ’ (21)
Fig. 1.
This analysis clarifies some of the apparently conflictingwhereZ is a normalization constant.
conclusions drawn previously with regard to the effect of The tuning curves of all the neurons are assumed to be
uniform positive correlations. We show here that in the presunimodal and identical in form but peaked at different
ence of a substantial inhomogeneity of the mean responsesngles, i.e.,
accurate information can be extracted from a large uniformly
correlated ensemble. However, a simple majority rule is in- fi(0)=1(6— ;). (22
capable of extracting this information.
Naively, we would expect that the behavior exhibited inHere the angles at peaks or preferred anglesre distrib-
the case of uniform correlations should be indicative of theuted uniformly from —r to 7, that is, ¢;= — w(N+1)/N
more general case. In particular, we would expect that ever-jw, j=1,... N. The lattice spacingw, between two
if the correlations are not uniform but rather decay in spaceneighboring preferred angles is
an optimal readout will be able to extract the information
from the system with an accuracy that increases linearly with w=2m/N. (23
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For concreteness, we use the following tuning curve: ) T
30)=2 f(O[C ;F{(0), (29
f(0) = (fmax— fre €Xp((cOSH— 1)/0'2)+ fref, (24 4

for our numerical calculations. Here is the tuning width. Wheref{(8)=0af;(6)/3¢. Diagonalizing this quadratic form

The correlations are assumed to be independent of the stimdields

lus, but dependent on the angular coordinates, 9

|2
n
C,’

Cj=al s +C(d—d)(1-5)). (29 AO=NZ 30

We assume tha€(¢; — ¢;) decreases with a decay length  \yhere {C,} are the eigenvalues of the covariance matrix.
as the difference in the preferred angles of the correlated pafjote that the eigenvectors of the correlation matixde-
increases. A decrease in the magnitude of neuronal correlgneq in Egs.(25) and(26) have the form of harmonic func-

tions with the dissimilarity in the preferred angles is oftenijons e~ "¢ Hence C, is one of the Fourier components of
observed in cortical are440,14,19,20 A concrete example C(||¢i7¢j||)_

IS

N
C(¢i_¢j)zcexp< _ M) or i%i, (26 Cr=a(l-c)+a3 exi-in(¢i~¢)]C(¢i~ ).
g (31
where| ¢, — ¢, is the relative angle difference between

and ¢,, hence its range is from 0 t@. The coefficientc
measures the correlations between neighboring cells. Thl%y

g, is the Fourier transform of the derivative { ¢), defined

positive-definiteness of the correlation mat@y implies the 1 N
following bounds orc: g“:N le e ing; f,-’(e). (32
1 #lp . . . .
N m< c<1. (277  The mode index is an integer running from- (N—1)/2 to
—e

(N—1)/2 (for odd N). In the case of an uncorrelated popu-

This equation implies that stability puts strong limits on theIatlon (c=0), the Flis given by

magnitude of broadly tuned negative correlations in a large |gn?

population. In the present context, it implies that for a given J=NJy, Jo= E . (33

strength|c| of negative correlations, the population size can- noa

not be larger tha(1/|c|). Unless otherwise stated, we Will ¢ 5614 e noted that in the uncorrelated case, the FI per

assume that IS positive. _ neuronJy is of the order of one, since the particular normal-
The properties of the_syste:m for a Igrgleare cruma_lly ization for |g,|2, Eq. (32), ensures thak|g,|2~O(1). The

depelndent on thel way r:n whlcr;]_the d|stancefconstants Fl is a local measure of the sensitivity of the response prob-

angular spadescale withN. In this paper we focus on a ability of the population to small changes in the stimulus

broadly tuned system that we believe is the most relevar\;alue, and may therefore depend on the stimulus value.

case In biology. We define broad tuning to mean that all owever, in our case the isotropy of the system ensures that
distance constants span a substantial fraction of the tot% is the same for alb

range of the system. In our model the distance constants are Figure 2 displays the FI of the above model for various
the tuning widtho and the correlation lengtp. We thus values ofc as a function ofp. The number of neuronN is

assume that a given stimulus generates a response in a SY%00 and Eq(24) is used for the tuning curves. The results

stantial .fract|on| c;f ctjhe.tvr\]/hole EotpuI?tlloP, atf‘d thfa:ha glVenclearly demonstrate several distinct regimesXais we vary
neuron is correlated with a substantial fraction of the popus, . .0\ ralation lengthy, as explained below.

lation. Mathematically, this means that as we take the large
N limit, the parametersr and p stay finite. In addition, we
assume that(6) andC(¢) are smooth, differentiable func-
tions.

A. The Fisher information for a system with broadly
tuned correlations

The behavior of], Eq.(29), for a largeN depends on the
IV. THE FISHER INFORMATION range of correlations and the width of the tuning curves.
) o Obviously, if the correlations are short ranged so that each
A useful way of measuring the efficiency of the popula- neyron is correlated with only a few of its neighbors, the

tion coding is the F[9,11,17, amount of information in the system will still grow linearly
) with N. Here we analyze the biologically interesting limit of
| _ ‘9_ broadly tuned systems. The broad tuningfdmplies that
J()= 5 P(r|6) ). (29 > : . .
960 |gn| decays rapidly as increases beyond a characteristic

value, which is proportional to the inverse of the tuning
For the Gaussian ensemble, K1), the Fl reads width o so that the signal resides in the first few Fourier
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FIG. 3. Fisher information of the population as a function of the

FIG. 2. Normalized Fisher information as a function of correla- number of neurond in the pool. The linear curvédashed ling

tion lengthp. The correlation coefficient varies from=0.8—0.1
with a uniform spacing of 0.1 from top to bottom whernis large.
Equation(24) was used for the tuning curves, with= /4, .«
=25, andf,.s=5. The number of neurori¥ is 1000. The ratid/J,
does not depend on the variance of the calls,

modes. At the same time, the broad tuningZoimplies that
the noise, namely, the variance of these modxs, are of
orderN, resulting in the FI, which is of order unifsee Eq.

(36) below]. To illustrate this important point, we evaluate

C,, for the example of Eq(26), assuming a larg&l and p
~0(1), andobtain (see Appendix A

|9nl? Nt
J—N; - 1+N—n : (34)
where
-2 2
TP p °+n
n— (35)

C 1 (~1re e

B. Positive correlations

representd, for an independent populatiod.with negative corre-
lations lies abovel,, whereas) with positive correlations lies be-
low. For all casesp=1, a=15, o= 7/4, f .= 25, andf .=5.

In our case for a larg&l we obtain thatNg; is finite and is
equal to

Neff:<Nn>na (38)
where(- - -), is defined as a weighted average
2 1gnl X,
(Xp)n= (39

; |9,

While it is easy to see from Ed35) that N is inversely
proportional toc, the dependence dfl¢ on p is slightly
more complicated. This is shown in Fig. 4. As a function of
p, Ngi has a minimum aroungd~1.

In the case of positive, N,, is positive and can be inter- 700 .
preted as representing the number of degrees of freedom in S Neff
each mode in thath term(see below. The largeN limit can o 600 N.
be taken in Eq(34) for N>1/c, yielding 2 ~o77 in
. o 5004
J:En‘, |g;| N,, (36) % 400},
-
O 300;
which is O(1). Hence the FI of the entire population does g
not scale linearly with the population sidebut saturates to & 2001
a size-independent finite lim{see Fig. 3, withc=0.1). <
It is useful to introduceNg; as the effective number of O 100/
independent degrees of freedom in the correlated system. In 0 , , , ,
general, it can be defined as the ratio between the Fl of the 0 1 2 3 4 5
system and the FI per neuron in the absence of correlations P
J FIG. 4. Nz and Ny, as a function of the correlation lenggh
Neg==". (37) N=1000 andc=0.1. Equation24) was used for the tuning curves
Jo With o= /4, fa=25, andf,e;=5.
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C. Negative correlations error of the population vector is provided by the Fiofin
Whenc<0, Jis larger thanJ,N becauséN,<O0 [see Eq. our model this quantity is simply the first term in E@4)
(34)]. As mentioned above, the lower boundfEq. (27)]  which is
implies that when the correlations are negative anid of

order of one there is an upper limit on the size of the popu- ) 1|2 cN\ [ 1+e 7P\ ]t

lation. As N increases and approaches this limit the system Jz]=2N—— 1+(— = , (43

reaches an instability that increases its sensitivity to small a m p tp

changes in the stimulus. Consequentlydiverges in this

limit, as shown in Fig. 3, witrc=—0.005. where f;, the first Fourier transform off;(6), equals
_ —igy. Thus, the effect of the correlations dfﬁ] is quali-

D. Weak correlations tatively similar to their effect on the full Fl, which is illus-
When the magnitude afis small there is an intermediate trated in Fig. 3.
regime whereN>1 but nevertheless] increases linearly
with N. In this case, the FI can be approximated as V. THE MUTUAL INFORMATION OF A CORRELATED
J~NJy. (40) POPULATION

o ) i ) In this section we analyze the effect of noise correlations
From Eq.(34) it is readily seen that this behavior occurs for g the Ml of the system, which can be written as

1<N<Njy,, where

1 1 _ P(r|6)
N—“n:<m> ) (41) '(r'a)_fdrfdgp(”a)p(")")%(w]v (44)

This holds for both positive and negative correlations. Thewherep(#6) is the prior density of the stimuli and
dependence oNj, on the correlation length constaptis
shown in Fig. 4.

P(r)=J doP(r|o)p(6). (45)

E. The effect of correlations on the population vector

Equation(30) can be interpreted as the FI of the collective The MI measures the statistical dependencer adnd #.

modes of the system, which in our case are Whenr and ¢ are independent of each other, thatRgr| 6)
N is the same for different values @f the Ml is zero. In the
. :i E indip. case of a statistically independent population coding for a
" Ni& b continuous stimulus, the MI of a large system is related to

the log of the FI([22—24 and see beloy Such a relation

Since these modes are statistically independgiten a  does not exist, in general, in the presence of correlations.
stimulug, the entire Fl is simply the sum of the FI of each of Nevertheless, below we derive useful analytical results re-
them. Each mode contributes a term which is its SNR, whergarding the Ml in a correlated population in special limits.
the signal of thenth mode is|g,|? and its noise, i.e., its ~ The analytical study of the Ml is complicated even in
variance isC,,. According to our analysis above, because ofcases wherd(r[#) has a simple form. The reason is that
the broad tuning of; only a few of these modes contribute evaluating the average over the marginal distributie(r,)
significantly toJ. On the other hand, because of the longin Eq. (45) is difficult to perform in general. The evaluation
range of the correlations, the contributions of these modesf the Ml is facilitated by the use of the replica metH@s].
are of order unity, leading to the saturationsJof As has been shown previougl§4,26,27, the replica method

Of particular interest is the accuracy of an estimation thais useful in analytical calculations of mutual information in
is based on the first mode,. This component can be written model systems. In the present case, it enables us to perform

as a two-dimensional vector the average over in Eq. (44) before the averaging ovet,
which is inherent to the definition oP(r). Using this
.1 - method, we show in Appendix B that
ZZNE @i, (42
(9 n
whereg; is a unit vector along the preferred angle of tte I=—[In 2]*1Iim0 2| 9¢p(o) 1__[1 dé, p(6.)
n— a=

neuron. The vector is the well-known population vector
introduced originally for the decoding of the direction of n

reaching arm movement in two dimensidr&l]. The accu- xexp{ E Gy( Ha,ﬁg)], (46)
racy of the population vector depends on the details of how atp

exactly an angle estimation is constructed from it. Following

Seung and Sompolinsky®], a useful bound on the square where
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1 N broad correlations. In our particular case of a large isotropic
Gy, )= > E 5fi(</;)[C*1]ij ofi(d) (47) system coding for an anglé(#) =J is independent o#, and
hi=1 is given by Eq.(34), hence,

ofi()=1i(0)—fi(¥).

Note thatG, vanishes if the rates are not tuned, namely; if
is independent ob), as expected. Equatiqd7) has the gen-
eral structure of Eq(29). The main difference between the This relation betweehand the log ofl is in agreement with
two is that the FI depends on the local sensitivity of the mearprevious results that have been derived for large indepen-
responses, namely, their derivatives with respect6to dent, as well as for certain weakly correlated, populations
whereas the MI depends on a global sensitivity measurg22-24. Here we have shown that it is valid in the present
which is average obf. However, the effect of correlations is case as long as is small, i.e., that theN,s [Eq. (35)] are
qualitatively the same in both expressions. Thus, it followslarge. Equatior(51) implies that broadly tuned positive cor-
from our previous analysis that in the case of broadly tunedelations saturate the MI so thiatloes not grow logarithmi-
positive correlationsGs, approaches a finite value 8s—«.  cally with N as in the case of independent populations, but
Unfortunately, this means that EGt6) cannot be evaluated reaches a finite level all—«. This value represents the
by a saddle point method. Below we evaluate the Ml in themaximum information abou that a system with this archi-
two separate limits. tecture can carry.

1 |9nl? 1
|=H,+ =log,| >, ——N, | — =log,(27e). (51
2 n a 2

A. The mutual information for weak correlations B. The mutual information for a noisy system

In this se_ction we study the limit in which the strength of  Another useful limit where the MI of a correlated popu-
the correlationsc is small. Formally, we first take th&l  |ation can be calculated is the case where the total amount of
—v° limit and then the limitct—0. In the largeN limit G, s jnformation in the system is small, namely, that the tuning of
proportional to 1¢ [see, e.g., Eqe35) and(36)]. Therefore  the responses to the stimulus is weak. In this case, we can
in the limit of smallc, the integrals ovep, are determined expand the argument of the exponent in Ef) in powers

E)y ;heir saddle point value. The saddle point equations of Eqyf G,. Retaining only the first order term i@, yields
46) are

1
d "9 = (G4, ) o406
_ . — 2In2
aaaeﬂ(ea’aaH,; &aae(aa,aﬁ) 0, (48

1
_ ) -17. 5.
the solution of which is =21z 2 (OTOIC8f(0)),. (52

6o=0 a=1...n. 49 \where (---),=fdop(6)---, and 8F,(6)=(5,())y

=fi(6)—(fi(#)),. Note that Eq(52) is similar in form to
Eq. (29) for the FI. Besides the 1/2 prefactor, the difference
(6) between the two expressions is that the signals in the FI are
Gy 0,,05)= Téaa 80, (500 the derivative off;, f{(6), whereas in the Ml they are their
global modulationséf;(6) . Diagonalization of Eq(52), and
whereJ(6) is the FI[Eq. (29)], and in our case i©(1/c).  taking the largeN limit leads to
Substituting in Eq(46) yields

ExpandingG( 6, ,0;) around this saddle point yields

1 fo|2

J =512 2 | ;I

|:—[|n2]*1|im% dopco) [ ] de, n+0
a=1

n—0

n

Np, (53

20 where we have used the fact that the Fourier transforms of
X exp{ _30) > 86,805+ nInp( 9)] _ ofi(0) are equal to those df(6) for n#0. This result holds
2 a7p as long ad <1, which means tha#f; are small. Note that

Eqg. (563) can be interpreted as a sum of the Ml of the statis-

Evaluating the Gaussian integrals oy} yields tically independent Fourier modes of the population re-
sponses. In general, the MI of an independent variable is
—H . }J’ d0p(0)lo 2me linear with the number of variables in a regime wherel.
v 2 P % J(O)| Comparison of Eq(53) and (36) reveals that the Ml is less

sensitive to the higher modes of the tuning curve, sifice
where H,=—[d6@ p(6)log, p(d), which is the continuum = —ig,/n. This reflects the fact that the Fl is a local mea-
“entropy” of 6. This result extends the log relation betweensure of efficiency but the Ml is not. Our high noise results
the Ml and the Fl in the independent case to the case of wedhold for a general case where the stimulus modulation of the
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responses is weak. A special case in which the low modula-
tion is caused by low firing rates has been studied by Panzeri
et al. [28].

VI. DISCUSSION

A. Summary of the results

In this paper we analyzed the effect of noise correlations
on the performance of neural population codes. We have
shown that whereas negative correlations improve the perfor-
mance of these codes, positive correlations of the noise may
have a drastic detrimental effect on their performance. In
cases where both the mean responses and the correlations are ol . s s
broadly tuned, the noise generates global fluctuations in the = -2 - (8 1 2 3
response profile of the population that may result in a large i
error in the estimation of the stimulus. Because these fluc-
tuations are correlated across the population, increasing tf}g
size of the sampled population may reduce the error somg—2

V_Vhat but not suppress it complgtely even in [arge pOpUIaiions, and(c) p=0 — independent population. Each circle repre-
tions. We feaChe‘?' these Conplusmns by analyzing the FI of 8ents the number of spikes of a single neuron in the population,
correlated Gaussian population. We have shown that undefring a 500 msec time interval. The thick lines shé@y,

the assumptions of broadly tuned system the FI reaches a4 whereg,,, is the maximum likelihood estimate @. The
saturation level given by E¢36). We also studied the Ml of  thin lines are the true mean responses of the neurons. Note that in
this system and showed that it saturates to a finite value a8) and(c) the thick and thin lines overlap. The parameters for the
well. We derived the saturation value of the Ml in the case oftuning curves ard .= 25, f,=5, ando = w/4. The variancea
weak positive correlations, E¢61), and in the limit of high  was taken to be 15.

noise, Eq.53). In addition, we showed that the case of uni-

form positive correlations is special in that the noise is re-though the whole response profile had been shifted to the left
stricted to a single collective modee., the uniform mode  (in this particular noise realizatipmelative to the ideal pro-
whereas the remaining nonuniform modes carry most of théile.

signal. Thus, in this case, the overall performance improves

with increasingN, and can also be enhanced relative to the B. Application to cortical populations

independent case. However, it can be shown that as long as .
In order to assess the relevance of our theoretical results

the correlation lengtp is smaller tharO(VN) [note that we to cortical population codes, we consider the experimental

are using normalization such that the total length of the sys-
tem is O(1)] behavior is similar to the case gi~O(1) values from Zoharet al. [10], who recorded the responses

. of pairs of neurons in the middle temporal visual area in
considered above.

. : monkeys to moving random dot patterns. Neurons in this
To illustrate the effect of correlated noise on the system . o N

X ; area have a substantial degree of selectivity to the direction
we simulated the responses of our model population for three

) . . of movement of visual patterns. Since there were only 100
casegqsee Fig. 5. The first corresponds to decaying correla- __. f d a limited ber of "
tions with p=1.18, and the second to uniform correlations,palrs of neurons and a limited number of repetiti¢h® to

; . 40 timeg, the data were averaged over different stimulus
p—. We also show a typical profile of responses for an

independent lati 0). The data ar nerated ac- conditions. Then the pairs were divided into two groups de-
ependent popula _onc(: ).' € dala are generated ac pending on whether their preferred angles differed by less
cording to Eq.(21) with a stimulus angle#=0°. For the . -

. : . S than 90° or not. The average correlation coefficient of the
purpose of |IIustr_at|or_1, strong gorrelanon coefficient 0.9 roup with the similar preferred angles was 0.18 and the
gas t()jegn tl;]sed n ttth's simulation. To assess the Tflr(ml.rhpr ther was 0.04, with an overall average of 0.12. Although the

uced by _Ifasehpa ehrns, V\;e assume f T/Iali(lmu'm_ 'O; ! foo recise dependence of the correlations on the difference be-
testl_matlon. 0s Oth gzper ormance ot a des_ttlrr??; OFtween the preferred angles was not measured, the above re-
uning curves centere . Were compared wi € I® sults are consistent with smoothly decaying correlations. Fit-
sponse profiles of the populations. As is clear from Fig. 5, i ing our model of exponentially decaying correlations, Eq.

the case of the uniform correlations the overall deviation 0f26) to the average numbers qUoted above yields the follow-
the data from the tuning curve centereddat0° can be very Sing parameter values:

large. However, the deviation of the response profile i

FIG. 5. Typical data generated according to E2{l) for a sys-
m withN= 100 neurons. Exponentially decaying correlations, Eqg.
6), were used with{a) p=1.18, (b) p—o — uniform correla-

mostly in its amplitude. In fact, the deviation along the “im- c=0.38, (54
portant” direction is actually significantly smaller than the
independent case. In contrast, in the case wheré&.18, the p=1. (55)

lateral fluctuation is large due to the rough equality of two
length scales, the correlation decay length and the tuningn addition, we adopt the following values for our model
width. This results in a noisy firing pattern that looks astuning curve parameters, E®4),
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10 ' ' ; 6, the ML error closely follows the Cramé&ao bound. Both
saturate at a value around 5°. For refererce js around 5°

for independent populations witd~30. Thus, we conclude
that the number of effective degrees of freedom in the cor-
related population cannot increase beydng~30. This is
indeed confirmed by evaluating E(R7) with the above pa-

0000,08cnnon

A 6 (deg) rameters. Changing slightly the parameter values, one can
4 obtain slightly larger values dflos, but Ngg=100 seems to
be a reasonable bound for this system. Finally, for compari-
ol son we also show the results for an uncorrelated population,
| which yields an error that decreases agN/as expected.
% 200 400 600 800

N C. Extensions of the present study

In conclusion, we briefly discuss some of the restrictions
FIG. 6. Average error of the ML estimator and the CiaiR@o  of the present model. We have focused here on systems with
bound as a function of the number of neurdhsn the pool. The  proadly tuned correlations. This means that a single neuron
error of the ML estimator is nicely shown to saturate the boundg significantly correlated with a fraction of the population.
The error is represented in degrees. The parameters of_ the tuning the notation of our model, Eq26), we assumed that the
curves arefpq=25, fre=5, ando=/4, for the correlationsa  corrglation lengthp is of order unity[whereas the entire
:15,c=0.$8, andp=1. The lower line corresponds to the error of length of the system is alsB(1), in ourcase, 2r]. Short-
the ML estimator for an independent population. range correlations correspond to the limit@f O(1/N), as
studied by Abbott and Daydri 1] who show that the infor-
mation is still extensive. This is consistent with the results
. shown in Fig. 2 where for fixetN and smallp, the Fisher
frer=5 spikes, (57) information is the same as in the uncorrelated case. Indeed,
o d5° (59) unlike th.e long-range case, in t.hg limit pf= O(1/N) gach
' neuron is correlated with a finite number of neighbors,

These parameters are typical for the cortical mean responsince, the effective number of statistically independent de-
assuming a time window of=500 msec. Similarly, an es- 97€€S of freedom is proportional 4, and the information

timate of the mean variance in the single neuron responsd§Mains extensive. . .
yields We assumed in our study that the shape of the single-unit

tuning curves is identical, but their peaks are displaced along
a~15 spikes. (59 the axis of the preferred angles. Adding inhomogeneity in
the shapes of the tuning curves will not affect the qualitative
Another system of interest is the primary visual cortexbehavior of the system, provided this inhomogeneity varies
(V1). Neurons in V1 are broadly tuned to the orientation of asmoothly, namely, its space constant is of order unity. On the
bar or a grating in their receptive field. A substantial fractionother hand, if the tuning curves of different neurons vary
of these neurons show positive correlations that are strongeandomly across different neurons, the behavior may be quite
in amplitude for neurons with similar preferred orientations.different. The reason is that in such a case, all the modes
The above parameter range also represents a reasonable iesluding those with high Fourier wave numbers carry the
timate for the properties of neuronal ensembles in V1. Manysignal, whereas the correlatiof@ssuming they are not ran-
neurons in motor cortex are sensitive to the direction of arndom) only concentrate in the long wavelength channels. This
movement[14,21]. In this area the tuning curves of many case will be analogous to the example of uniform correla-
cells are well approximated by a cosine function, which cortions with inhomogeneous responses studied in Sec. 1IC
responds tar=90°. However, the degree of dependence ofabove. However, a realistic model should include random-
the correlations on the preferred angles of the neurons is stiless both in the tuning and in the correlations. Investigating
unclear. the information content of such a system and the resources
Using the above parameters, we simulated the perforrequired for reading out this information is beyond the scope
mance of a maximum-likelihoodML) estimator in our of this paper.
model. The responses are generated randomly according to Throughout this paper, multivariate Gaussian statistics
Eqg. (21) with 6=0°. Then the mean squared erré®  was assumed for the neuronal responses. The most common
=9V — ¢ is obtained by averaginfd||? over many repeti- candidate for neuronal responses are spike counts that obvi-
tions with different random realizations of the responses. Theusly cannot be strictly Gaussian. It would be useful to ex-
standard deviation of the ML error is plotted against thetend the current study to other distributions, e.g., Poisson
number of neurond in the pool in Fig. 6. The points rep- neurons. However, it is hard to generalize other single neu-
resent averages over 4000 runs. We also present the’Grameon statistical models to a correlated population, except for
Rao bound of the error, which is simply the square root ofspecial cases, such as uniform positive correlations. This im-
the inverse of the FI calculated in Sec. IV. As shown in Fig.portant issue deserves further study.

fmax—25 spikes, (56)

051904-9



SOMPOLINSKY, YOON, KANG, AND SHAMIR PHYSICAL REVIEW E64 051904

Finally, in this work we have analyzed examples of all APPENDIX A: THE EIGENVALUES OF THE
positive or all negative correlations. In reality, correlations CORRELATION MATRIX
within a population may vary both in magnitude and in sign.
However, reliable estimates of the distribution of correla-
tions in cortical networks are hard to obtain. Another impor-
tant restriction on the present work is our assumption that the
correlations do not depend ah If the correlations depend

We calculate here the eigenvaluesfas defined by Eg.
(26). Denotingw=2x/N, the lattice spacing, we can write

1 .
on the stimulus, one must take into account not only the Ch=v E e'”(¢j—¢k)cjk
modification of the noise statistics by the correlations but N
also the additional information about the stimulus carried by c
them. This topic is investigated elsewh¢gs). =a| 1—c+ N >
ik
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=A%+ cognw)+(—1)"\N(N—1)/2 cog(nw)/2)[ N —1
C.—al1+2c Inw)+(—1)"\( )12 cos(nw)/2)[ 1 ’ A2)
1+\?—2\ cognw)
|
wherex=e"“? andn=—(N—1)/2,...,(N—1)/2. Taking 1 P(r| )
the largeN limit we expand to leading order i@ and obtain T2\ P(r) ' (B2)
r|e
cN 1—(—1)ne~™r __ 1
Ch=ajlt+——"—— == ﬁ«ln(equﬁla))el)er, (B3)
m™p p72+ n?
N Xg.0=INP(r|6)—InP(r|0)
=al 1+ N— 1
n

1
== 5 2 of(6)[CT 1] 8f(6)

) p_2+n2
Ny=—"—""-"7-"—"-+. A — , =1
" 1 (_ 1y (A3) > sfioniCylri=fio)]. (B4

where(- - -),=[dOP(6)--- and(---),y=[dr P(r[6)---.

APPENDIX B: REPLICA CALCULATION OF THE 6fi(64) is fi(a.) —fi(6y). . . . .
MUTUAL INEORMATION f After applying the replica trick, we obtain the following
orm:

The replica trick is to calculate the average of the loga-

rithm of a random variable using the following identity: 1 4
I =—— —({(exp(Xg, )5 Made| (B5)
In2 on 19770 h—o
(Inx)= i<x>” (B1) 1 4 o
J ' -
n n=0 In2 (?nJ' dap(a)!;[l dea p(aa)
The MI defined in Eq(44) can be written in the following X<€‘XF<E X9a0)> : (B6)
“ r1oln=0

way:
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_ 1 9 !
Xo =2, Gy(0,,0,)— Sfi(6)[C 15 - -2
2 Xg,9= =2 Gl 0a,00) = 2 % {(0)[C M 1=~ in39n) dopI1 do,p(o,)
x[ri=fi(0)], (B7)
Xexg X Gylba,09)| (B8)
B a# B _
whereGy(6,,,05) =32 5fi(0,)[C™ 1 6Fi(05). n=0
Note that the average ovey, (- - -)r,in Eq.(B6) iseasy whereX,,. ; stands for summation over=1, ... n and3
to perform becaus& X, , is linear with respect to;. Per- =1 n with the restrictiona# 8. This completes the
forming the average ovar, yields derivation of Eq.(46).
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