
 94:2275-2283, 2005.  doi:10.1152/jn.01250.2004 JN
Dean V. Buonomano 
Dynamics and Timing in Recurrent Networks 
A Learning Rule for the Emergence of Stable

 You might find this additional information useful...

for this article can be found at: Supplemental material 
 http://jn.physiology.org/cgi/content/full/94/4/2275/DC1

54 articles, 26 of which you can access free at: This article cites 
 http://jn.physiology.org/cgi/content/full/94/4/2275#BIBL

including high-resolution figures, can be found at: Updated information and services 
 http://jn.physiology.org/cgi/content/full/94/4/2275

 can be found at: Journal of Neurophysiologyabout Additional material and information 
 http://www.the-aps.org/publications/jn

This information is current as of November 18, 2005 . 
  

 http://www.the-aps.org/.American Physiological Society. ISSN: 0022-3077, ESSN: 1522-1598. Visit our website at 
(monthly) by the American Physiological Society, 9650 Rockville Pike, Bethesda MD 20814-3991. Copyright © 2005 by the 

 publishes original articles on the function of the nervous system. It is published 12 times a yearJournal of Neurophysiology

 on N
ovem

ber 18, 2005 
jn.physiology.org

D
ow

nloaded from
 

http://jn.physiology.org/cgi/content/full/94/4/2275/DC1
http://jn.physiology.org/cgi/content/full/94/4/2275#BIBL
http://jn.physiology.org/cgi/content/full/94/4/2275
http://www.the-aps.org/publications/jn
http://www.the-aps.org/
http://jn.physiology.org


A Learning Rule for the Emergence of Stable Dynamics and Timing
in Recurrent Networks

Dean V. Buonomano
Departments of Neurobiology and Psychology and Brain Research Institute, University of California, Los Angeles, Los Angeles, California

Submitted 6 December 2004; accepted in final form 18 May 2005

Buonomano, Dean V. A learning rule for the emergence of stable
dynamics and timing in recurrent networks. J Neurophysiol 94:
2275–2283, 2005; doi:10.1152/jn.01250.2004. Neural dynamics
within recurrent cortical networks is an important component of
neural processing. However, the learning rules that allow networks
composed of hundreds or thousands of recurrently connected neurons
to develop stable dynamical states are poorly understood. Here I use
a neural network model to examine the emergence of stable dynamical
states within recurrent networks. I describe a learning rule that can
account both for the development of stable dynamics and guide
networks to states that have been observed experimentally, specifi-
cally, states that instantiate a sparse code for time. Across trials, each
neuron fires during a specific time window; by connecting the neurons
to a hypothetical set of output units, it is possible to generate arbitrary
spatial-temporal output patterns. Intertrial jitter of the spike time of a
given neuron increases as a direct function of the delay at which it
fires. These results establish a learning rule by which cortical net-
works can potentially process temporal information in a self-organiz-
ing manner, in the absence of specialized timing mechanisms.

I N T R O D U C T I O N

Local dynamics within cortical networks play a fundamental
role in neural computations (Koch and Fuster 1989; Ringach et
al. 1997; Somers et al. 1995). Dynamics in the form of
complex spatial-temporal patterns of neuronal firing have been
observed in vitro (Beggs and Plenz 2004; Buonomano 2003;
Ikegaya et al. 2004; Jimbo et al. 1999) and in vivo and been
shown to contain information about sensory stimuli (Gawne et
al. 1996; Laurent et al. 1996) and motor behavior (Hahnloser et
al. 2002; Weesberg et al. 2000). While it has been established
that networks exhibit complex spatial-temporal dynamics, the
synaptic learning rules that allow recurrent networks to de-
velop functional and stable dynamics are not known. Indeed,
conventional coincident-based learning rules are unstable
(Miller and MacKay 1994; Turrigiano and Nelson 2004) and
can lead to runaway excitation in recurrent networks.

A potential computational function of spatial-temporal pat-
terns of activity is temporal processing and motor control.
Decoding temporal information, or generating timed responses
on the order of tens to hundreds of milliseconds, is a funda-
mental component of many sensory and motor tasks (Mauk and
Buonomano 2004). Indeed the precise sequential generation of
motor responses is a virtually ubiquitous component of behav-
ior. One of the most studied forms of complex sensory-motor
processing is the birdsong system (Bottjer and Arnold 1997;
Doupe and Kuhl 1999). Song generation relies on precisely

timed sequential generation of motor patterns over both the
time scale of individual syllable features and sequences of
syllables (Fee et al. 2004). While relatively little is known
about the neural mechanisms underling the generation of pre-
cisely timed motor sequences, it has recently been shown that
there is a sparse code for time in the premotor area HVc, which
may control song production (Hahnloser et al. 2002). Dynam-
ically changing patterns of activity have also been proposed to
code for time in the cerebellum and underlie certain motor
patterns (Medina et al. 2000). Sparse long-lasting responses
have also been observed in vitro. As shown in Fig. 1 in cortical
organotypic cultures, a single stimulus can elicit single spikes
at latencies of a few hundred milliseconds (Buonomano 2003).
These slices contain thousands of recurrently connected neu-
rons and initially exhibit weak synaptic connections (Echevar-
rı́a and Albus 2000; Muller et al. 1993). In this study, I
examined how dynamics may emerge in this general class of
networks.

It has been shown that a modified form of synaptic scaling
can guide networks to a stable dynamical state. Interestingly,
the dynamical states that emerge from this learning rule allow
the network to generate a sparse temporal code for time.
Qualitatively the architecture of the model and dynamical
states observed are consistent with experimental data from
cortical organotypic slices (Fig. 1) (Buonomano 2003).

M E T H O D S

All simulations were performed with NEURON (Hines and
Carnevale 1997). Each neuron was simulated as a single compartment
integrate-and-fire unit, with dynamic synapses. The ratio of excitatory
(Ex) to inhibitory (Inh) neurons and connectivity probability was
based on experimental data (Beaulieu et al. 1992). Specifically, 80%
of the units were excitatory and 20% inhibitory. In our default
simulations, there were 320 Ex and 80 Inh units (each Ex unit received
20 excitatory and 5 inhibitory synapses, and each Inh unit received 5
excitatory synapses). Connectivity was uniformly random.

Integrate-and-fire units

The resting membrane potential of all units was –60 mV. Thresh-
olds were set from a normal distribution (� 2 � 5% of mean
threshold); the mean thresholds for the Ex and Inh units were –40 and
–45 mV, respectively. After a spike, the voltage was reset to –60 and
–65 for the Ex and Inh units, respectively. Membrane time constants
were 30 ms for the Ex units and 10 ms for the Inh units. Input
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resistance was 300 M�. See supplementary information1 for further
details.

Synapses

�-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA),
N-methyl-D-aspartate (NMDA), and GABAA synaptic currents were
simulated using a kinetic model (Buonomano 2000; Destexhe et al.
1994; Karmarkar and Buonomano 2002) (supplemental information).
Short-term plasticity was incorporated in all the synapses based on
experimental data and implemented according to Markram et al.
(1998). Specifically the Ex 3 Ex synapses exhibited depression—U
(use of synaptic efficacy parameter) � 0.5; �rec � 700 ms—Ex3 Inh
synapses exhibited facilitation: U � 0.2; �rec � 125 ms; �fac � 500
ms. Inh 3 Ex dynamics were based on basket cell synapses: U �
0.25; �rec � 700 ms; �fac � 25 ms (Gupta et al. 2000). The presence
of short-term plasticity was not essential to the behavior of the
networks described below. Initial synaptic strengths were chosen from
a normal distribution. For the Ex 3 Ex, Ex 3 Inh, and Inh 3 Ex
synapses, the mean initial synaptic strength was 0.5, 2, and 8 �S,
respectively. To insure that plasticity did not result in an unphysio-
logical state in which a single presynaptic neuron could fire a postsyn-
aptic neuron, the maximal synaptic weight for the Ex3 Ex and Ex3
Inh connections was set at 10 and 30 �S, respectively. The NMDA
current contributed to long latency responses but was not essential for
the stability or dynamics of the network. The strength of the NMDA
component was a fixed ratio of the AMPA strength (0.3). The strength
of the inhibitory synapses was fixed throughout the simulations.
Results were robust to large changes in initial parameters. Changes in
an order of magnitude in the Inh 3 Ex did not alter the final
homeostatic state. The learning rate � was set to 0.05 in the simula-
tions presented here.

Synaptic scaling

The variable Ai measures the average activity of neuron i and is
defined as

�
dAi(t)

dt
� Si�t� � Ai�t� (1)

where Si(t) represents the presence (1) or absence (0) of a spike at time

t. I arbitrarily used � � 10 s and a stimulus presentation rate (intertrial
interval) of 10 s (see DISCUSSION)

The synaptic scaling learning rule is generally represented as (van
Rossum et al. 2000)

�Wpre,post � � � �Agoal � Apost�t�� � Wpre,post (2)

Wpre,post represents the synaptic strength between a presynaptic and
postsynaptic neuron and is updated at the end of each trial. Unless
stated otherwise, Agoal was set at 1 and 2 for the Ex and Inh units,
respectively. Agoal was set higher for the Inh units, because inhibitory
neurons have higher evoked and spontaneous firing rates (Swadlow
1989).

Information measure of timing accuracy

We quantified the information present in the spatial pattern of
spikes of the Ex units by determining the information content of the
current time bin (Borst and Theunissen 1999). In essence, we can
think of each time bin as a stimulus, and ask what is the mutual
information between the spike patterns (in time bin n) and time bin n.
However, it was of interest to know not only the mutual information
of the system over all time bins but in relation to each time bin, to
determine if there is more information available at certain intervals.
Thus I asked what is the information about time bin n in relation to all
time bins � n. The mutual information about time bin n was equal to

I�n� � H�S� � H�n� � H�S,n� (3)

where H(S) is the conventional entropy measure of all spike patterns,
H(n) reflects the entropy of being in time been n versus all other time
bins, and thus is the same for all time bins and based on p(1/N) and
p(1 	 1/N), where N is the total number of time bins. H(S,n) is the
joint entropy. Because the occurrence of time bin n and all other time
bins are not equiprobable, the maximal mutual information at all time
steps is equal to

Imax � � �1

N
� log2 �1

N
�� �N � 1

N
� log2 �N � 1

N
� (4)

Realistic measures of timing accuracy

To obtain an estimate of the timing ability of the network as a
whole that would be available to an output neuron that was trained to
fire at a specific time, I incorporated five output units to the network.
Each output unit received synapses from all the Ex units. On training
trials, the weight between Exi and outputj (where j is the target
interval) was increased if i was active at time j. Testing was performed
over a separate set of trials.

R E S U L T S

To address the emergence of stable dynamical states in
recurrent networks, I first examined a previously described
learning rule–synaptic scaling (Eq. 2; Turrigiano et al. 1998),
which has been shown to guide neurons in feed-forward
networks to a stable homeostatic state (Turrigiano and Nelson
2004; van Rossum et al. 2000). This experimentally derived
learning rule was proposed in the context of maintaining
approximately constant levels of activity over the course of
days. Here I will examine if synaptic scaling can generalize to
a different condition, specifically a condition in which activity
is stimulus-driven over a shorter time course and the desired
activity patterns are sparse (Hahnloser et al. 2002).

Unless otherwise stated, the artificial neural network was
composed of 400 recurrently connected integrate-and-fire neu-
rons, and synapses were initially weak. These general assump-

1 The Supplementary Material for this article (two movies and a figure) is
available online at http://jn.physiology.org/cgi/content/full/01250.2004/DC1.

FIG. 1. Long-latency sparse responses in cortical networks in vitro. Late
responses in cortical organotypic slices in response to a single electrical
stimulus at time 0. Top and bottom panels represent 12 traces from 2 cells.
Calibration bar, 20 mV. Modified from Buonomano 2003.
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tions are meant to loosely reflect those observed in dissociated
or organotypic cultures (Muller et al. 1993). The target level of
activity was initially set to one spike per trial for the Ex
neurons. This assumption was meant to capture the sparse
activity often observed in response to a single stimulus in
organotypic cultures (Fig. 1) (Buonomano 2003), as well as
data from primary sensory areas indicating that neurons gen-
erally respond to a single transient stimuli with one spike (e.g.,
Armstrong-James et al. 1994; Kilgard and Merzenich 1998).
Each trial consisted of activating a subset of neurons (input
neurons), which again is comparable with extracellular stimu-
lation in an in vitro slice, where a random subset of neurons
close to the electrode will function as an input source. The
network evolved under the guidance of synaptic scaling over
1,000 trials. Synaptic scaling essentially states that the conduc-
tances of all synapses onto a postsynaptic neuron are increased
(multiplicatively) if the average activity level (Ai) of the cell is
below a predetermined setpoint and decreased if the cell is
hyperactive. Figure 2 shows the results from simulations in
which the setpoint of the Ex neurons was set to 1 spike/trial
(see Movie 1). In the initial trials, activation of the input

neurons did not result in any suprathreshold activity in the
other neurons. With training, the learning rule was effective in
generating network activity. However, it did not converge to a
steady state in which neurons stabilized at their target activity
level. Instead, oscillatory behavior was observed. This behav-
ior was observed in dozens of stimulations with different initial
conditions and independent of the learning rate (see also Fig.
4). Because synaptic scaling is known to be stable in feed-
forward networks (Turrigiano and Nelson 2004), I hypothe-
sized the instability arises as a result of the recurrent architec-
ture. As shown in Fig. 3A, using a simplified implementation of
the above network, I examined the effects of recurrency. If all
postsynaptic Ex neurons received only a single synapse (thus
effectively implementing a feed-forward network), each neu-
ron reached it’s target level of activity and the network con-
verged. If a minimal degree of recurrency was introduced, by
assigning two or four synapses to each neuron, convergence
was not observed.

An inherent limitation of synaptic scaling when incorporated
into recurrent networks can be schematized in a toy model
(Fig. 3B). Consider two reciprocally connected neurons (A and
B), one of which (A) receives a synapse from an input neuron.
If the synapses onto A from the input (w1) and B (w2) start in
an initial condition such that w1 
 w2, then because w1 and w2

will always be scaled by the same factor, w1 will always be
smaller than w2. However, if the network is to converge to a
stable state in which each neuron is active once per trial,
clearly w1 must be larger than w2. Although this is simply a toy
model, one can see a potential limitation with synaptic scaling.
The ratio of all synapses onto a cell will always remain the
same because �w is a function only of postsynaptic activity. In
essence, although a cell may have 1,000 synapses, it only has
one degree of freedom. The network cannot converge because
there is no solution that maintains the synaptic ratios onto a
postsynaptic neuron. Thus the lack of convergence is indepen-
dent of the parameters of the model. While the learning rates
and time window over which activity is calculated can alter the

FIG. 2. Synaptic scaling leads to an unstable dynamical state. A: sample
raster plot of the network at the end of training. Each row represents a single
unit in the network. The top 320 rows represent excitatory (Ex) units and the
bottom 80 rows represent inhibitory (Inh) units. A single dot represents a spike
in the neuron corresponding to the unit on the y-axis. Small box represents
subset of input neurons. B: network dynamics did not stabilize. Although target
activity level of all Ex units was 1, the network did not achieve a homeostatic
state in which neurons fired at their target rate. Rather, overall activity (Mean
Ai) oscillated over 1,000 trials.

FIG. 3. Recurrency and fixed synaptic ratios contribute to the lack of convergence. A: average number of spikes per cell (not Ai) over 2,000 training trials,
in networks in which each neurons received 1 (black), 2 (red), or 4 (blue) from other excitatory neurons. With nEx 3 Ex � 1, synaptic scaling converges to
a state in which each neuron achieves it’s target level of activity. Note that this represents a feed-forward network. Small degrees of recurrency (nEx 3 Ex �
2 or 4) progressively result in increasing instability. Learning rates were smaller than those in used in Fig. 2 to attempt to facilitate convergence. Note black line
activity does not converge to 1, because not every neuron fired. This is because if each neuron only receives 1 synapse, some neurons will be permanently “out
of the loop,” e.g., neurons Y and Z could be mutually connected. In these simulations synaptic strengths were allowed to reach a strength in which a single neuron
could fire another. B: toy model providing an example of a condition in which synaptic scaling cannot converge. If we stipulate that, in a network composed
of 2 neurons, only 1 neuron receives an input, the 2nd neuron must be driven polysynaptically. If the target level of activity is 1 in both neurons, and initial weights
are such that w1 
 w2, homeostasis cannot be achieved with synaptic scaling. This is the case because if w1/w2 begins at 
1, it will always be 
1. By definition,
synaptic scaling does not change the ratio. However, the solution clearly requires that w1 and w3 be above threshold and w2 be below threshold. (Note that even
if one resorts to a refractory period in cell A, the same principle holds true in a larger network chain).
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magnitude and period of the oscillations, the synaptic ratios
remain unchanged; thus a solution cannot be reached.

Presynaptic-dependent scaling

To allow a neuron to change the relative synaptic strength
ratios during training, the synaptic scaling rule was modified to
include a presynaptic component

�Wpre,post � � � Apre�t��Agoal � Apost�t)] � Wpre,post (5)

Under this rule, a postsynaptic neuron will preferentially po-
tentiate synapses from neurons that are more active (indepen-
dent of when it was active within a trial), I will refer to Eq. 4
as presynaptic-dependent scaling.

Figure 4, A and B, shows the results from a simulation using
the same initial parameters used in the simulations shown in
Fig. 2. With training, both the neurons and global network
activity converge to a stable state (Movie 2). Each Ex neuron
fired once per trial, and the rate of change of synaptic weights
approached zero (data not shown). Figure 2A also shows that
there is complex spatial-temporal structure to the network
dynamics. By plotting the same data sorted by latency (Fig. 4B;
Movie 3), it is possible to observe a synfire-like pattern, in
which activity propagates throughout the network. However,
propagation is not based on the spatial arrangement of the
neurons, because there is no topography in the network.

To compare the ability of this learning rule to drive the
neurons in a recurrent network to their target level of activity

with synaptic scaling, I performed simulations using different
setpoints. To ensure that a true steady state was reached, 6,000
trials were performed, and the mean level of activity and
stability of the last 1,000 were quantified. Figure 4C shows that
both learning rules were effective in bringing mean activity
(averaged over all Ex units over 1,000 trials) to near the
setpoint. Figure 4D shows the SD of the mean activity level.
The high SD in the synaptic scaling simulations reflects the
lack of convergence. In contrast, the low SD observed using
Eq. 4 reflects the convergence to a stable dynamical state.

Timing

As shown in Fig. 4B, presynaptic-dependent scaling pro-
duced a spatial-temporal pattern of activity, in which different
neurons fired at specific time windows from stimulus onset.
This pattern could potentially function as a population code for
time. Figure 5A shows a poststimulus time histogram (PSTH)
raster of all the neurons in the network after training over 25
trials. Note that across trials spike jitter is a function of latency.
This is expected in a system in which spike latency variance is
amplified within a trial and has been recently observed in
neural networks in vitro (Buonomano 2003). The ability of the
network to code for time was quantified in two ways. First, the
information available in the spatial pattern of activity was
calculated. Three different temporal binnings were used: 1, 4,
and 8 ms. Maximal information at a given time step implies
that there are spatial patterns that can be used with 100%
certainty to determine the time within the accuracy of the bin
used. As shown in Fig. 5B, at 8-ms resolution, the network can
with certainty determine the time �100 ms. However, at 1-ms
resolution, there are gaps. The biggest one is at �10 ms, in
which no neurons are active due to fast inhibition. Thus the
network cannot time with millisecond resolution. To quantify
the ability of the network to tell time in a physiologically
plausible manner, it was assumed that the Ex units provided
input to a set of output units. Each of the output units receives
inputs from all Ex units and represents an interval from 25 to
125 ms. The synaptic weights from the Ex to the output units
were adjusted by training over 25 trials. Performance was
subsequently tested using a distinct set of 25 trials. Figure 5C
shows the average response of the output units during a single
trial. These results show that a network without any specialized
timing mechanisms can process temporal information.

Convergence time and propagation speed

The above simulations were performed with a network
composed of 400 units. To determine if performance was
independent of network size, I examined the performance of
the presynaptic-dependent scaling learning rule with networks
composed of 200, 400, 800, and 1,200 units (Fig. 6A). All the
networks were scaled; that is, the ratio of Ex to Inh units
remained constant, as did the probability of connectivity (thus
the total number of synapses per neuron increased). Interest-
ingly, the larger network converged faster. This is because,
since each neuron has more synapses, the average synaptic
strength for a neuron to fire is decreased. Thus fewer trials are
required to allow synapses to grow sufficiently to fire a neuron.
However, larger networks also tend to overshoot and thus do
not converge in a monotonic fashion (for � of 0.05). Again,

FIG. 4. Presynaptic-dependent scaling produces stable dynamics. A: raster
plot of a network trained with presynaptic-dependent scaling. Each of the Ex
units fired once and only once. B: same data as in A, with the order of Ex units
determined by their latency. There is a clear spatial-temporal structure to the
dynamics. Inset: evolution of the network through training. The y-axis shows
average activity trace (Ai) of all neurons in the network. C: mean activity levels
calculated over the last 1,000 of 6,000 training trials, using either synaptic
scaling (empty bars) or presynaptic-dependent scaling (filled bars). Setpoint for
all Ex neurons was set to either 1 or 2. Both rules produced a mean level of
activity close to the setpoint. D: SD activity level from the same simula-
tions shown in C. High SD in the synaptic scaling simulations reflects the
instability of network dynamics (Fig. 1B), whereas low SD observed using
presynaptic-dependent scaling reflects convergence of a network to a stable
dynamical state (B).
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this is because the total synaptic input grows at a faster rate
because of the increased number of synapses.

We also examined the effect of changing the connection
probabilities within the network. These simulations were per-
formed in the large network with 1,200 units. The final state of
three sets of simulations with three different connection prob-
abilities are shown in Fig. 6B. As expected, the sparser the
connectivity, the longer it takes activity to propagate through-
out the network, thus extending the intervals the network could
code for. However, there is a trade-off in that the intertrial
variability also increases as the total duration increases (data
not shown).

Lesions

To examine the effects of any single neuron on overall
dynamics of the network, I performed ablation experiments
(Fig. 7)—simulations in which 1% of the neurons lesioned
revealed little change in the overall spatial-temporal pattern of
activity. Lesioning 5% of the cells did not change the mean
level of activity but did dramatically change the dynamics.
Whereas most cells exhibited a longer latency, some exhibited
no shift or a decrease in latency. The shift toward longer
latencies is the result of decreased spatial summation, because
most cells receive fewer active inputs, thus taking more time to
reach threshold. This increased latency can be amplified as
activity propagates throughout the network. As shown in Fig.
7A, some neurons can fire earlier. This can occur as a result of
disinhibition: for the same reason the Ex neurons may fire later,
the Inh neurons will also, allowing a few Ex neurons to fire
earlier.

Coding for longer durations

In the preceding simulations, there was no spatial topogra-
phy; that is, all neurons had equiprobable connection proba-
bilities. To examine the effects of presynaptic-dependent scal-
ing in a more realistic network, I examined the effect of

topography. In these simulations, there were 1,200 units. Each
Ex unit received inputs from 80 other Ex units. Connection
probability was normally distributed around each neuron
placed on a one-dimensional array. Figure 8 shows a raster
from a single trial after training. As in the previous simulations,
presynaptic-dependent scaling produced a homeostatic state in
which each Ex neuron fired once during a trial. As a result of
the topography, the total propagation time increased to �350
ms. To examine the readout of a network with later responses,
I trained five output units to respond to intervals of 50, 100,
150, 200, and 250 ms. Consistent with in vitro (Buonomano
2003) and psychophysical data (Karmarkar and Buonomano
2003), the across-trial jitter increased as a function of latency.
These results confirm that, with or without spatial topography,
presynaptic-dependent scaling produces a stable network state.
Additionally, this simulation shows that the time range the
network can encode is extended by using larger networks with
topography. The maximal latency is extended in the topo-
graphic network because of the presence of spatial propaga-
tion: neurons distant from the input signal can only begin to fire
once their neighbors have begun to fire.

D I S C U S S I O N

The above results establish a learning rule that can lead a
naı̈ve recurrent network to achieve a stable dynamical state that
implements a sparse code for time. Qualitatively, the results
account for the sparse long-latency responses observed in
cortical organotypic slices (Buonomano 2003).

It is well known that the control of activity in spiking
recurrent networks is much more difficult then in feed-forward
networks (e.g., Maass and Sontag 1999; Pearlmutter 1995).
Because synaptic scaling has been shown to lead to stability in
feed-forward networks (van Rossum et al. 2000) or contribute
to stabilization in recurrent networks (Renart et al. 2003), our
first approach was to determine if synaptic scaling could
generate stable stimulus-driven dynamics. It should be noted
that the conditions examined here differ from those of the

FIG. 5. Network can encode time. A: peri-
stimulus time histogram (PSTH) rasters from
25 trials in the network shown in Fig. 2 after
training. Color in each line represents PSTH
of that cell (white corresponds to 25 spikes).
Note formation of the diagonal band and in-
creased jitter for longer latencies. B: informa-
tion contained in the spatial pattern of Ex
units about the current time bin. Three differ-
ent bin sizes were examined: 1, 4, and 8 ms.
A maximal value at time t indicates that, on
all trials, there were patterns that would allow
an observer to determine t with certainty. C:
response of output units. All the Ex units
shown in A were connected to 5 output units,
each 1 trained to respond to 1 of 5 intervals:
25, 50, 75, 100, or 125 ms. Each trace repre-
sents response of 5 output units averaged over
25 trials. In this stimulation, output units were
nonspiking, which allows for a linear measure
of the structure of input.
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original framework of synaptic scaling. Our simulations per-
tain to a special case of homeostasis in which the target level
of activity is very low (1 or 2 spikes per stimulus). Further-
more, the time frame I examined is on the scale of minutes and
hours, whereas synaptic scaling is generally assumed to take
place over days (Turrigiano and Nelson 2004). Under the
specific conditions examined here, I observed that synaptic
scaling by itself did not generate a stable dynamical state (Fig.
2). Note, however, that the oscillations might be considered
irrelevant from the perspective of homeostatic plasticity, be-
cause averaged over a longer time period, the mean target
activity level was achieved (Fig. 4). In the current simulations,
instabilities arise for two reasons. First, as schematized in Fig.
3B, the ratio of the synaptic weights onto a neuron do not
change as a result of synaptic scaling, thus preventing conver-
gence if the solution requires a change in the synaptic ratios
(Fig. 3B). Second, in a recurrent network, the input to a given
neuron is nonstationary, a neuron i may find a steady-state by
trial 20, and at trial 30, neuron j, which synapses onto i, may

begin to fire, thus altering the behavior of i, which in turn can
alter j and the network as a whole, contributing to oscillations.
As shown in the toy model in Fig. 3B, these instabilities are not
an issue of gain control. Specifically, the use of simulated
annealing or an integral controller (van Rossum et al. 2000)
will not change the ratio of the synaptic strengths.

Mechanisms

The learning rule described in Eq. 4 takes the general form
of an anti-Hebbian covariance rule in which average activity,
as opposed to firing rate, is used (Dayan and Abbott 2001). By
averaging long time windows, the associative flavor of the
traditional covariance rules that is captured by NMDA-depen-
dent mechanisms (Brown et al. 1990), is not present. In

FIG. 6. Convergence as a function of network size. A: convergence of the
presynaptic-dependent scaling rule for networks of 200, 400, 800, and 1,200
units. All networks were scaled versions of the ones presented above. Specif-
ically, ratio of Ex to Inh units, connection probabilities, and ratio of input units
were the same for all 4 simulations. B: speed of propagation and overall timing
window is a function of connectivity density. Three simulations of 3 different
networks of size 1,200 (960 Ex units), were run with 10, 15, and 30 excitatory
synapses per neuron. The denser the connectivity, the quicker activity propa-
gated throughout the network. Note that with a very sparse connectivity, not all
cells could fire (see Fig. 3).

FIG. 7. Effects of cell ablation on network dynamics. A: raster of all the Ex
units from 3 simulations from a single trial (after training) in which 0, 1, and
5% of neurons were ablated (red, green, and blue, respectively). Units were
inactivated at random. White represents overlap between all 3 simulations,
meaning that a neuron spiked at the same time in each simulation. With 1% of
the neurons ablated, there was relatively little effect on dynamics (overlap
between red and green � yellow). With 5% of cell lesioned, there was a
significant change in the spatial-temporal structure of activity, generally
representing increased latencies. In these stimulations, noise was removed to
provide direct cross-condition comparisons. Pixel size was also increased to
allow visualization of each unit, making it difficult to visually detect the
inactivated units. B: voltage traces of 3 cells in the control and 1% lesion
simulations. Traces show that different cells can exhibit different degrees of
shifts in their latency. While most cells exhibit an increased latency, decreased
latencies could also be observed because of disinhibition.
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contrast, the induction of synaptic-scaling is not dependent on
NMDA receptors (Turrigiano et al. 1998) and is viewed as a
different class of learning rules (Turrigiano and Nelson 2004).
Thus mechanistically, the rule presented here is likely more
similar to homeostatic plasticity.

The induction mechanisms of homeostatic plasticity are
poorly understood (Turrigiano and Nelson 2004). However, it
is clear that presynaptic-dependent scaling would require an
additional mechanism to allow for the interaction between the
long-term activity levels of both the pre- and postsynaptic
terminals. Such a requirement could be implemented by retro-
grade or orthograde messengers implicated in other forms of
plasticity (e.g., Chevaleyre and Castillo 2003; Sjöström et al.
2003). Alternatively, biochemical mechanisms could be
present in the postsynaptic terminal that tracks the activity
levels of the presynaptic terminal by integrating glutamate
signals over the course of hours/days. Under this scenario, the
implementation of the rule would still be local in relation to the
postsynaptic neuron.

While presynaptic-dependent scaling has not been examined
experimentally, it is consistent with experiments to date, be-
cause most studies that have characterized synaptic scaling
were performed with global manipulations in which all pre-
synaptic cells would be expected to have similar Apre values.
One clear prediction of the proposed learning rule is that, if
only a subset of cells within a network are inactivated, postsyn-
aptic cells would preferentially modify synapses from presyn-
aptic cells that were not manipulated. In other words, neurons
would preferentially strengthen synapses that would be more
likely to increase the cell’s activity level. While this type of
experiment has not been explicitly examined, recent work has

shown that local manipulation of postsynaptic activity does
result in homeostatic synaptic plasticity (Burrone et al. 2002).

Synfire chains

The spatial-temporal pattern of activity produced by the
network is similar to that of a synfire chain (Abeles 1991;
Diesmann et al. 1999). Synfire chains have been proposed as a
mode of activity propagation in neural networks; however, no
learning rules have described how they may emerge in a
recurrent network in a self-organizing manner. While presyn-
aptic-dependent scaling does address this issue, it is important
to note that the data presented here does not account for the
hypothetical millisecond precision in synfire chains (Fig. 8).
Indeed, consistent with recent experimental data (Buonomano
2003), the spike variability across trials increases as a function
of time.

Spike-timing–dependent plasticity

Spike-timing–dependent plasticity (STDP) (Bi and Poo
1998; Feldman 2000; Markram et al. 1997) does not produce
the type of dynamics observed here. Indeed, if STDP by itself
is implemented in the preceding networks, the temporal pattern
is abolished. For example, in Fig. 4B, STDP will produce a
leftward shift of the spatial-temporal pattern as a result of
long-term potentiation (LTP) of all the pre 3 post patterns.
The leftward shift removes much of the temporal information
and favors global synchronization, which leads to instability.
However, it should be emphasized that STDP implemented
together with presynaptic-dependent scaling can play a role in
increasing the robustness and reliability of the responses in the

FIG. 8. Emergence of dynamics in a network
with spatial topography. Dynamics in a network
composed of 1,200 neurons after training with
presynaptic-dependent scaling. Top: single trial
raster after training. Bottom: behavior of 5 out-
put units trained to target intervals. Training of
weights onto output units was performed using a
training set of 50 rasters. Output traces show
response of these units to 50 separate test trials.
Note increased jitter as latency increases.
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presence of noise (Supplemental Fig. 1). Specifically, by
strengthening the synapses in the direction of propagation (pre
3 post), the trajectory can become more robust in response to
perturbations. The problem is that STDP must be carefully
balanced with presynaptic-dependent scaling. Thus future
work will have to determine if this is a biologically plausible
scenario.

Calculating the average activity level

All forms of homeostatic plasticity, including the one pre-
sented here, and some models of associative plasticity (Bienen-
stock et al. 1982) rely on the estimation of Ai(t), which
represents the average firing rate over a long time window.
How neurons calculate Ai(t) is not a trivial matter. For sim-
plicity sake, let’s assume a neuron has a target activity rate of
0.1 Hz: if a stimulus is presented every 10 s, a neuron must fire
once per stimulus to achieve its setpoint (as in the preceding
simulations). If a stimulus is presented every 5 s, it would have
to fire 0.5 times per stimulus, whereas if the intertrial interval
was 60 s, it would have to fire 6 times per stimulus (even if we
allow for spontaneous activity similar problems arise). Clearly
such a strong dependence on the ITI is not likely to be
physiological.

While there is good evidence that cells do keep track of their
average level of activity (Turrigiano and Nelson 2004; Turri-
giano et al. 1998), the mechanisms remain unknown. Thus it is
too early to rigorously address how the dependence on inter-
trial interval may be solved. However, the assumption that Ai
would represent activity, not over absolute time, but over states
in which the animal or network is attentive or behaving, as
opposed to in rest or sleep states. Specifically, the presence of
a salient stimulus would result in the beginning of an integra-
tion period that would last for some predetermined period of
time.

How could such selective integration work? It has been
proposed that cells may track their average activity through
Ca2� sensors with long integration times (Liu et al. 1998). In
vivo selective integration over some states but not others could
be achieved through the same ascending neuromodulatory
mechanisms that gate plasticity (e.g., Bear and Singer 1982;
Kilgard 2003; Kirkwood et al. 1999). Indeed, cortical levels of
acetylcholine are different during sleep, quiet wakefulness, and
active wakefulness (Marrosu et al. 1995). Thus a modulator
such as acetylcholine could regulate either Ca2� influx or the
downstream integration of Ca2� signals.

Weaknesses

One potential shortcoming of the model presented here is in
relation to when more than one input is presented to the
network during development. For example, what happens if on
alternating trials two distinct groups of neurons are used as the
input drive, and the target value of each cell remains at one? In
contrast to the above simulations, there is not a unique solution
to this scenario: a given neuron could fire twice on alternating
trials or once on each trial. Simulations revealed that the
network generally converges to one of these two solutions, and
which solution was reached was dependent on initial parame-
ters, including network connectivity and the magnitude of
inhibition. However, I propose that cortical networks used for

timing would indeed be triggered by a primary input and thus
code time from the onset of the event whether it represented a
single well-defined stimulus or a global multi-modal signal
(Karmarkar and Buonomano 2003).

Timing

This model establishes how a recurrent network can imple-
ment a population clock in a self-organizing manner. While it
is well established that temporal processing is a fundamental
component of sensory and motor function, the neural mecha-
nisms underlying temporal processing are not known (Ivry
1996; Mauk and Buonomano 2004). As mentioned above, it
has recently been shown that subset of neurons in area HVc of
the songbird implement a sparse code for time (Hahnloser et al.
2002). While the neural mechanisms by which this code is
generated are not understood, this model provides a hypothesis
as to how a sparse temporal code can emerge from a recurrent
network.
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