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This paper treats support vectormachine (SVM) classification applied to

block design fMRI, extending our previous work with linear discrim-

inant analysis [LaConte, S., Anderson, J., Muley, S., Ashe, J., Frutiger,

S., Rehm,K., Hansen, L.K., Yacoub, E., Hu, X., Rottenberg, D., Strother,

S., 2003a. The evaluation of preprocessing choices in single-subject

BOLD fMRI using NPAIRS performance metrics. NeuroImage 18, 10–

27; Strother, S.C., Anderson, J., Hansen, L.K., Kjems, U., Kustra, R.,

Siditis, J., Frutiger, S., Muley, S., LaConte, S., Rottenberg, D., 2002. The

quantitative evaluation of functional neuroimaging experiments: the

NPAIRS data analysis framework. NeuroImage 15, 747–771]. We

compare SVM to canonical variates analysis (CVA) by examining the

relative sensitivity of each method to ten combinations of preprocessing

choices consisting of spatial smoothing, temporal detrending, and

motion correction. Important to the discussion are the issues of

classification performance, model interpretation, and validation in the

context of fMRI. As the SVM has many unique properties, we examine

the interpretation of support vectormodelswith respect to neuroimaging

data. We propose four methods for extracting activation maps from

SVM models, and we examine one of these in detail. For both CVA and

SVM, we have classified individual time samples of whole brain data,

with TRs of roughly 4 s, thirty slices, and nearly 30,000 brain voxels, with

no averaging of scans or prior feature selection.
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Introduction

The advent of functional magnetic resonance imaging (fMRI) in

the early 1990s has provided a revolutionary means for non-

invasively probing spatiotemporal variations of brain function. For

whole brain studies, the number of acquired brain voxels can be in
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the tens of thousands, which are sampled in time to acquire hundreds

of measurements. The flexibility of this technique in terms of

experimental design and data analysis is virtually limitless. As has

been stated in a variety of ways by several researchers, neuroimaging

data are extremely rich in signal information and poorly charac-

terized in terms of signal and noise structure (Cox and Savoy, 2003;

Hansen et al., 2001; LaConte et al., 2003a; Lange et al., 1999;

Skudlarski et al., 1999; Strother et al., 2002).

During this same period of fMRI development, advances in the

interrelated fields of machine learning, data mining, and statistics

have enhanced our capabilities to extract and characterize subtle

features in data sets from a wide variety of scientific fields

(Cherkassky and Mulier, 1998; Hastie et al., 2001; Mjolsness and

DeCoste, 2001). Among these developments, support vector

machines (SVMs) have been an active area of research and have

been applied to a broad range of problems. SVMs arise from the

Statistical Learning Theory of Vapnik (Vapnik, 1995) and possess

several unique properties appropriate for real world applications,

including fMRI. Among these is the fact that the formulation of

SVMs was motivated to deal with small sample sizes and high

dimensional inputs, which match the situation involved for

temporally predictive modeling of fMRI data.

There are several reasons to consider temporal predictive

modeling1 for fMRI data analysis. First, as argued by Strother

and Hansen (Strother et al., 2002) and mentioned in Morch et al.

(1997), from a Bayesian perspective, there is no obvious

mathematical advantage for choosing to estimate a spatial

summary map from our knowledge of the experiment (e.g. general

linear model approaches (Friston et al., 1995)) over trying to

estimate these experimental parameters from our input patterns.

Second, as demonstrated in LaConte et al. (2003a), Shaw et al.

(2003), and Strother et al. (2002), prediction accuracy along with

other model performance metrics such as spatial pattern reprodu-

cibility can be used as a data-dependent means of methodological
1 Predictive modeling in this article generically refers to classification

(detection) or regression (estimation) models. In most cases, however, we

focus on the classification problem.
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validation. Currently, the most common tool for such validation is

the receiver operating characteristic (ROC) analysis (Constable et

al., 1995; Hansen et al., 2001; Le and Hu, 1997; Metz, 1978;

Skudlarski et al., 1999; Xiong et al., 1996), measuring a method’s

accuracy by comparing the true positive fraction of activated pixels

against the false positive fraction varied over some modeling

parameter. Unlike standard ROC analysis in neuroimaging, the

approach of LaConte et al. (2003a), Shaw et al. (2003), and Strother

et al. (2002) need not rely on simulations. Third, predictive

modeling explicitly uses the assumption that we have more reliable

knowledge about the temporal aspects of the data than the spatial

activation patterns. This is the same assumption implicitly used for

generating SPMs, interpreting ‘‘data-driven’’ results, and modeling

the hemodynamic response, which follows from the fact that we

designed the temporal nature of the experiment and/or simulta-

neously measure behavioral performance. Finally, temporal pre-

dictive modeling is a much more natural way to examine the recent

interest in using fMRI for brain computer interface (BCI) and

biofeedback studies (LaConte et al., 2004).

The work in predictive modeling has primarily been developed

by Strother and Hansen (Hansen et al., 1999; Kjems et al., 2002;

Kustra and Strother, 2001; LaConte et al., 2003a; Lautrup et al.,

1994; Morch et al., 1997; Shaw et al., 2003; Strother et al., 2002)

with recent explicit testing of distributed brain systems by Haxby

et al. (Haxby et al., 2001) and Cox and Savoy (Cox and Savoy,

2003). The implication of the classification setting is that fMRI can

be used for predicting brain states to enhance our understanding of

brain systems, rather than the standard emphasis on spatial

mapping.2 Recently, Strother has introduced a formal framework

in which predictive modeling plays a prominent role. This

framework, termed NPAIRS for Nonparametric Prediction Activa-

tion Influence and Reproduciblity reSampling (Strother et al.,

2002), provides a disciplined approach for exploring multivariate

signal and noise spaces and the impact of various factors such as

experimental and data analysis parameters as well as the influence

of outliers on these subspaces.

The use of SVM has recently been reported in the fMRI

literature (Cox and Savoy, 2003; LaConte et al., 2003b). In

LaConte et al. (2003b), we dealt with the efficacy of SVM

compared to CVA and discussed SVM model interpretation. Here,

we greatly expand that initial study. The work of Cox and Savoy

(Cox and Savoy, 2003) differs from our approach on several points.

First, we are classifying individual scans, with TRs of roughly 4 s,

rather than 20-s blocks. Whereas Cox and Savoy used ten classes

of visual objects, we focus on the two-class problem to illustrate

the important issue of visualization and interpretation of SVM

models applied to fMRI. Finally, we build our SVM models based

on whole brain data, without selectively choosing voxels through

an initial statistical parametric mapping.

In the context of BCI-type studies such as LaConte et al. (2004)

or analyses of distributed representations of sensory information

(Cox and Savoy, 2003), predictive modeling may be the ultimate

goal. A major impetus for performing MRI-based experiments in

the first place, however, is to obtain spatially localized information.

With this experimental data, one advantage of predictive modeling

is that it allows for spatially distributed patterns of activation while
2 Here, we alternatively refer to statistical parametric maps (SPMs),

activation maps, and summary images as the spatial pattern that summarizes

the interaction between the fMRI experiment, data acquisition, and data

analysis.
also incorporating the temporal structure of the experiment. In

other words, we are dealing with multivariate approaches. These

spatial summary maps provide aid in model interpretation as well

as a tangible means of comparing different models (e.g. (Hansen et

al., 2001)). For the SVM, generation of these summary maps

requires special consideration, and we outline four methods for

doing this, demonstrating one as an example.

This article has the explicit aim of formally describing SVM

classification in the application domain of fMRI analysis and to

propose interpretation (mapping) strategies for this application.

We give a careful description of SVM classifiers and examine

more closely the selection and tuning of SVM model parameters.

We then illustrate SVM classification through comparisons to

CVA, a previously published technique. We do not attempt a

definitive verdict on CVA vs. SVM, but rather highlight some

currently known merits of both approaches within the fMRI

application domain.
Theory

Here, we summarize only the salient concepts for SVM-based

classification that are essential for describing its application to

fMRI. For a more general treatment, please refer to Burges (1998),

Cherkassky and Mulier (1998), and Muller et al. (2001). See

Kjems et al. (2002), LaConte et al. (2003a), and Strother et al.

(2002) for a description of CVA. In particular, we discuss the

classification setting and its relevance to fMRI data analysis, the

use of SVM classifiers, and interpretation of SVM results in the

context of fMRI. Fig. 1 provides a graphical depiction of these

topics using simulated data. The primary new contribution of this

section is the discussion of SVM interpretation and activation map

generation in the context of fMRI.

The classification problem

The classification problem is one of determining a scalar class

label, yt, from a measurement vector, Yxt For temporal classifica-

tion of fMRI data, each Yxt represents all brain voxels at a given

time, t of the total scan time T ð1 � t � T Þ, and yt is the

experimental design value for that time (see Figs. 1A and B). For

example, at each sampled repetition time (TR), we know the

subject was performing task A (class = 1) or performing a control

task (class = �1). Thus, an fMRI experiment consists of a series of

brain images being collected while class labels are changed. In this

situation, we have labeled data. For simplicity, we examine the

binary classification problem ( yt = T1).
In the general SVM formulation, the input vectors are mapped

to a high dimensional feature space, Yz, via a non-linear trans-

formation function, g Ið Þ: Yz ¼ g Yx Þ�
. In practice, g is often

expressed in its dual form, termed the inner product kernel

HðYx ;Yx TÞ ¼ gðYx ÞgðYx TÞ. For linear SVM, the feature space

is the original input space ðYz ¼ Yx Þ. The SVM algorithm attempts

to find a linear decision boundary (separating hyperplane) in the

feature space, formalized by the decision function

DðYz Þ ¼ ðYw I
Yz Þ þ w0; ð1Þ

where Yw defines the linear decision boundaries. Since the kernel

can be non-linear, the decision boundaries in the original data

space may also be non-linear (Fig. 1C). The solution of Yw satisfies



Fig. 1. Representation of fMRI data for predictive modeling: As shown in panel (A), each set of measured time images is represented as an N-dimensional

vector, where N is the number of brain voxels. Panel (B) depicts the time evolution of an experiment in the first two dimensions of the input space (or for a

brain consisting solely of two voxels). Panel (C) illustrates the effect of polynomial kernels of 1st, 3rd, and 5th order in the original input space. Circled data

time points are support vectors. The center boundary represents a decision value D = 0, while the two outer lines are the margin of D = +/� 1.
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yt½ðYwIYzt Þ þ w0� 	 1 and is optimal when ‹Yw ‹
2
is minimized

under this constraint. It is also possible to introduce a soft margin

formulation (see also next paragraph) to allow for data that cannot

be separated without error and/or to permit a degree of training

error to improve generalization (classification accuracy on test data

that is independent of the training data) (Cortes and Vapnik, 1995).

For a soft margin, slack variables, n, are the distance from the

correct margin boundary for data points within the margin or on the

wrong side of the margin. That is, their values are the error

(subtraction) between the true class labels and the decision funcQ

tion in Eq. (1). In this case, the hyperplane is defined by

yt½ðYwIYztÞ þ w0� 	 1� nt and is optimal under this constraint

when C
T
~T

t ¼ 1nt þ 1
2 ‹
Yw‹

2
is minimized. The free parameter, C,

affects the tradeoff between complexity and number of non-

separable samples. It does this by controlling the degree of

compromise between having zero training error (which is only

possible in the separable case) and increased flexibility permitted

by the slack variables. An important result (see (Cherkassky and

Mulier, 1998)) is that the solution of the optimal Yw is a linear

combination of a subset of the training vectors, Yxt , termed support

vectors. Moreover, a dual form of Eq. (1) exists (Cherkassky and

Mulier, 1998; Vapnik, 1995):

DðYz Þ ¼ ~
T

t ¼ 1

atytðYz IYz t Þ þ w0 ¼ ~
T

t ¼ 1

atytHðYx ;YxtÞ þ w0 ð2Þ

where those at > 0 specify this linear combination of the training

(support) vectors. Thus, the trained model consists of the
predefined non-linear function g(I), the weighted support vectors,

and the support vector class labels.

The minimization of ‹Yw ‹
2

translates to maximization of

what is termed the margin, whose boundaries are defined as

ðYwIYz tÞ þ w0 ¼ 1 and ðYwIYzt Þ þ w0 ¼ � 1. The minimization of
C
T
~T

t ¼ 1nt þ 1
2 ‹
Yw ‹

2
permits a larger margin by allowing (penali-

zed) errors, leading to margin boundaries ðYwIYz tÞ þ w0 ¼ 1� ntð Þ
and ðYwIYztÞ þ w0 ¼ � 1 1� ntð Þ. In general, maximization of the

margin is desirable for better accuracy on test data, but the soft

margin allows for a tradeoff between complexity and the number of

training errors as described above. For the soft margin case,

observations with n > 0 fall on the wrong side of the margin

boundary. Any data points falling within the margin or on the

wrong side of the margin are the support vectors and correspond to

an a > 0 in Eq. (2). See Fig. 1C for simulated examples of SVM

models using polynomial kernels of different order with support

vectors circled.

Model interpretation

Even though the development of the SVM was motivated

purely by the predictive learning problem, general work in

interpretation has been done by several researchers, including

Smola (Smola et al., 1998) and Kwok (Kwok, 1999; Kwok, 2000)

to integrate SVM into a Bayesian framework. In addition,

Scholkopf has studied the general relationship between arbitrary

locations in the feature space and the original input space. One

important point from that work is that mapping from a general
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point in the feature space to the original input space is an ill-posed

problem (Scholkopf et al., 1999).

For fMRI, Fig. 1 summarizes the idea of representing a single

time volume as a point in a vector space and the distribution of the

time volumes for an experiment in that space. For convenience of

illustration, we use a toy example and display only two dimensions

(which would correspond to voxels) of the input space in Figs. 1B

and C. For our application, it is important to remember that each

data point in the input space (and therefore the feature space)

represents a spatial pattern (the fMRI image at a certain time). Also

important is that the SVM model we wish to interpret is the subset

of data that defines the margin. In fact, removing non-support

vector images from the training exercise would result in an

identical model. From an interpretation perspective, the support

vectors, including those data with n > 0, are the observations that

are the most difficult to classify as they are least distinct in the

feature space from members of the other class (they are at the

boundaries of the classes).

With these considerations in mind, we propose four methods for

obtaining summary maps from fMRI data using SVMs. The first is

the direct visualization of the SVM training weight vector, Yw,
directly. This is possible when a linear kernel is used. In this case,

the dimensionality of Yw corresponds to that of the original input

data, Yx .

The second is the use of sensitivity maps as proposed by Kjems

et al. (2002). Defined as

s ið Þ ¼b½ flpðyAx
YÞ

flx ið Þ �2�p x;yð Þ

ð3Þ

and approximated over the finite number of time observations, T, as

s ið Þ , 1

T
~
T

t ¼ 1

½ flpðytAYxt Þ
flx ið Þ �2; ð4Þ

where s(i) is estimated at each pixel location i. Crucial to

estimating these sensitivities is an estimate of the conditional

distribution. The work of Kwok (Kwok, 1999) provides the

approximation

phðytAYxtÞ , exp � ntð Þ; ð5Þ

where h represents the model parameterization, and the slack

variables are the nts. For multiple slice data sets, sensitivity maps

become computationally expensive to generate. In addition, actual

sensitivity depends on the accuracy of the density estimation and

its partial derivative. As stated by Kjems, however, sensitivity

maps have an advantage in the fact that the approach is general

enough to be applied to any model, allowing for direct comparison

across methods.

We term the third method for visualizing SVM results ‘‘feature

space weighting’’ (FSW). This approach derives from the intuition

of distance from the margin being related to ease of discrimination.

The simplest approach (and the one that we will demonstrate—see

Methods and Results) is to perform a correlation test for every

pixel time series with the reference experimental design as

proposed by Bandettini (Bandettini et al., 1993). Instead of using

every time point in the reference and image set, however, we

exclude those times corresponding to support vectors. More

generally, this approach could be adapted to use a distance
measure with respect to the margin, leading to a weighted average

contrast function. That is, rather than using a reference waveform

with just two on/off levels, the values at each time could be

weighted by some distance measure from the margin and this

continuous valued waveform used for pixel-wise correlation.

We also propose a fourth approach for obtaining summary

images, called decision weighting. Similar to FSW, a refined

contrast function is obtained for the validation data based on model

results. Variations of this approach would be to use DðYz tÞ from Eq.

(1) directly, or fix positive and negative values to +1 and �1,

respectively.

The tradeoffs and subtle differences in comparing these

methods are beyond the scope of the current work. It is also quite

likely that these approaches are not exhaustive. We limit our

exploration of this topic to the simplified FSW compared with

standard cross correlation analysis.
Methods

The SVM implementation used was SVMlight (Joachims,

1999). For I/O speed considerations, we modified this C-based

software to read binary image files. CVA along with NPAIRS was

implemented in IDL (RSI, Boulder, CO) and is part of the VAST

software library (http://neurovia.umn.edu/incweb/npairs_info.html)

at the VA Medical Center, Minneapolis, Minnesota. Visualization

of SVM models was accomplished with Matlab (MathWorks,

Natick, MA) and AFNI (Cox, 1996; Cox and Hyde, 1997).

Comparison of SVM with CVA

Data and CVA results reported in LaConte et al. (2003a) were

used for comparison with the SVM. Sixteen right-handed

volunteers performed two repeated runs of a static force task

alternating between six rest and five force periods/run (45 s/

period; {200, 400, 600, 800, 1000} g randomized forces with

thumb and forefinger). Data were collected on a Siemens 1.5 T

scanner (EPI BOLD: TR/TE = 3986/60 ms, slices = 30, voxel =

3.44 
 3.44 
 5 mm).

In LaConte et al. (2003a), we examined modeling performance

with respect to ten preprocessing combinations. These were

generated by (1) aligning each fMRI volume and resampling it

into a Talairach reference space (Talairach and Tournoux, 1988),

(2) smoothing each axial slice with a 2D Gaussian kernel at one of

three levels {0, 1.5, 6.0 pixels full-width at half-maximum}, and

(3) detrending and removing confounds by performing volume

mean normalization and then removing temporal trends and

experimental block effects within a GLM framework as suggested

by Holmes et al. (Holmes et al., 1997); constant terms and cosine

terms at one of three levels {0, 0.5, 2.0 cycles} constituted the

covariates within a design matrix and the residuals of the GLM

model were retained as the detrended data. In all detrending cases,

the run mean was also subtracted from each time course. For both

CVA and SVM, only scans acquired entirely within the 45-s

control and 45-s force states were considered. Scans occurring at

transitions between force or rest periods were excluded from the

modeling exercise (LaConte et al., 2003a). From this approach,

the ten preprocessing combinations studied included no prepro-

cessing (run mean subtraction, no smoothing, no alignment—

unaligned mean volumes for each run were used to obtain a

resampling transformation matrix) and the nine (aligned) combi-
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Fig. 2. Kernel parameter selection: for each subject and preprocessing, the

kernel parameter (polynomial order) was varied (C was fixed to SVMlight’s

default). The winning model, based on prediction accuracy estimates, is

reported here as one of three gray values representing 1st, 2nd, and 3rd

order polynomials.
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nations derived from the three detrending and three smoothing

levels. See Table 1 for the preprocessing abbreviations used with

many of the figures.

For CVA/PCA, model complexity can be controlled through the

number of principal components used. For SVM, the choice of

kernel and the parameter C control model complexity. We used

resampling techniques for model selection (Cherkassky and

Mulier, 1998; Efron and Tibshirani, 1993; Hastie et al., 2001;

Ripley, 1998). This is done by dividing a given data set into two

disjoint samples—a learning set and a validation set. For

comparison with LaConte et al. (2003a), we use two repeated

fMRI experimental runs as our independent splits, resulting in only

one possible split, generating two prediction accuracy estimates.

That is, training with run 1 and estimating prediction accuracy on

run 2 and vice versa. For each preprocessing combination, CVA/

PCA was performed for several levels of model complexity (using

10, 25, 50, 75, and 100 components). These same data were

analyzed with SVM using a polynomial kernel of the form

HðYx ;Yx TÞ ¼ ½ðYx I
Yx TÞ þ 1�q (using degree 1, 2, and 3) to vary

complexity for SVMlight’s default C value 1
T
~T

t ¼ 1N
YxtN

��1
�

.

With this approach, we found very little benefit in using the more

flexible 2nd and 3rd degree kernels (see Fig. 2). We therefore

focused our model tuning resampling on the C parameter, which

controls the tradeoff between training error and the margin. To

investigate the sensitivity of this parameter, we used several values

around C = 1, which is close to the default for our data, and also

included extreme high and low values. Specifically, we used the

following C values: (0.0001, 0.4, 0.6, 0.8, 1, 1.2 1.4, 1.6, and

10000). For both CVA and SVM, two-class (force-baseline)

classification was compared, using run 1 for training and run 2

for validation (and vice versa) to generate two sets of classification

results per subject. Considering each subject, with two functional

runs and ten preprocessing levels at each level of model complex-

ity, 1600 CVA models (16 
 2 
 10 
 5) and 2880 SVM models

(16 
 2 
 10 
 9) were generated. For each model, percent

prediction accuracy was calculated on the validation set, calculat-

ing
number correctly classified scans½ �

total number of scans½ � 
 100. The best CVA and SVM

model for each preprocessing combination and each subject were

selected by choosing the most accurate test result for each level of

complexity and each run. As noted by Cherkassky and Mulier

(1998) and Friedman (1994), this approach has limitations for

comparing prediction accuracy estimates since a single resampling

for both complexity control (the model selection we have just

described) and methodological comparisons (CVA vs. SVM and

even one preprocessing to another) results in optimistic prediction

accuracy estimates that may not be consistent across classification
Table 1

Preprocessing abbreviations

Abbreviation Description

hh High detrending, high smoothing

hl High detrending, low smoothing

hn High detrending, no smoothing

lh Low detrending, high smoothing

ll Low detrending, low smoothing

ln Low detrending, no smoothing

nh No detrending, high smoothing

nl No detrending, low smoothing

nn No detrending, no smoothing

xx No detrending, no smoothing, (no alignment)
methods. We have not followed the prescribed double resampling

here because of constraints in the amount of data and because our

aim is to demonstrate the ability to evaluate relative performance

for different methodologies rather than focus on the true predictive

ability of our models.

FSW maps were generated by excluding support vector time

points from a pixel-wise correlation test. These were compared

with conventional correlation maps (using the original, on/off,

experimental reference function). Beyond graphical descriptions,

we consider the minimum and maximum correlation coefficients

obtained between the two methods. Intuitively, it is more likely to

obtain larger correlation values from FSW, which has fewer

observations. To interpret the significance of these differences (see

Press et al., 1992), we convert the extreme correlation values to z

scores using Fisher’s z transformation,

z ¼ 1

2
ln

1þ r

1� r

�
;

�
ð6Þ

where r is Pearson’s correlation coefficient. Significance between

two correlation values (e.g. max reference vs. max FSW) is

obtained by

s ¼ erfc
jz1 � z2jffiffiffi

2
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
T1�3

þ 1
T2�3

q
1
CA;

0
B@ ð7Þ

where T1 and T2 are not NMR relaxation times, but the number of

time observations used to obtain the corresponding correlation

coefficients. The function erfc is the complementary error function.



Fig. 4. Percent prediction accuracy vs. C for all subjects, preprocessing, and

runs: Here, log(C) is plotted for the values chosen (.0001, 0.4, 0.6, 0.8, 1.0,

0.2, 0.4, 0.6, 100,000). Error bars represent +/� 1 standard deviation.
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Results

Our initial exploration of polynomial kernels convinced us to

focus on linear kernels (where the input space is equivalent to the

feature space). Fig. 2 shows our justification for this. It also

represents the first of many result ‘‘images,’’ where gray scale

represents the value of a result (in this case polynomial order), with

one row per subject and one column per preprocessing. Readers are

again referred to Table 1 for the preprocessing abbreviations used

for these figures.

From our resampling of C, we observed several things. One

was that, across a set of C values (fixing subject and preprocess-

ing), one run tended to dominate. That is, using one run as training

data would consistently lead to better prediction results for the

other run. Interestingly, for CVA, this effect was consistent while

for SVM no obvious pattern emerged across subject and

preprocessing (Fig. 3). In both cases, the performance gap between

training with run 1 and training with run 2 as well as the mean

performance from both runs varied across both subject and

preprocessing, again with no obvious pattern. Focusing on SVM

models, we observed that prediction accuracy was typically only

degraded with very small C values (Fig. 4). The subset of the data

used in the winning SVM model varied from roughly 30% to 100%

of the total training data, varying mostly with subject, but also

tending to do better (fewer SVs) with high detrending, and to some

extent with high smoothing (Fig. 5).

In Fig. 6, we show the SVM %PA for the winning model of

both runs and nine C-value models for each subject and

preprocessing. For comparison, we also show our previous CVA

results across five model complexity levels (LaConte et al., 2003a)

in the same format. Figs. 6A and B are summary images, showing
Fig. 3. Training run providing highest prediction accuracy for the pair of splits: O

subject, preprocessing, and model complexity value (C for SVM and number of PC

versa. Here, we show the run that provided the best model for predicting the opp
%PA of the winning models. Figs. 6C and D allow a side-by-side

comparison of Figs. 6A and B for both preprocessing and subject.

We again must point out that we do not have enough data for a

robust estimate of true prediction accuracy. There is, however,

much information in Fig. 6 in terms of the number of subjects and

preprocessing combinations. Perhaps the most striking observation

is that SVM appears to be less sensitive to preprocessing decisions,

while CVA prediction tends to be affected by detrending, as was

also noted in LaConte et al. (2003a). From Fig. 6C, it appears that
ur resampling exercise provided two prediction accuracy estimates for each

s for CVA). That is, the model from run 1 predicted labels of run 2 and vice

osite run for the winning complexity values of Fig. 6.



Fig. 5. Number of support vectors used in winning models: The subset of

the data used in the winning SVM model varied from roughly 30% to 100%

of the total training data.

S. LaConte et al. / NeuroImage 26 (2005) 317–329 323
SVM is also primarily affected by detrending. Looking at the mean

and spread of results, low detrending may be optimal for SVM,

while CVA appears to improve with increased detrending. Fig. 6D

supports our impression from A and B that, for a given subject,

SVM classification is less variable.

In terms of SVM activation maps, FSW is compared to

conventional cross-correlation for subjects 4 and 14 in Figs. 7

and 8 respectively, and quantified in Table 2. In this case, FSW was

implemented by simply discarding observations corresponding to

support vector images (weight = 0) and retaining non-support

vector times (weight = 1). From Fig. 6A, subject 4 provided

consistently good models, while subject 14 performed well except

for cases of low detrending. For these two subjects, we show FSW

results for training models using the first experimental run, linear

kernel and C = 1.0 with preprocessing combinations (A) dc

detrending, no smoothing, no alignment; (B) low detrending, low

smoothing, and alignment; and (C) high detrending, high smooth-

ing, and alignment.

The scatter plots to the left of the summary maps in Figs. 7 and

8 are individual pixel results for conventional cross correlation vs.

FSW for all brain voxels. We chose the top 10% from each test to

choose the activation threshold. Thus, pixels above the horizontal

threshold were the top 10% from the conventional cross-correlation

test (blue and orange). Similarly, pixels to the right of the vertical

threshold line were the top 10% for the FSW method (magenta and

orange). Orange, then, represents the agreement of both methods

for the chosen thresholds. As demonstrated by both the summary

maps and the scatter plots (see also Table 2), there is a high level of

agreement between the two methods. Correlations between the two

methods’ activation maps were larger in subject 4 than subject 14.

For both subjects, the correlation of the activation maps was

consistent with the amount of preprocessing (correlation values

were highest for high detrending and high smoothing, and lowest

for no preprocessing). This is interesting in that such a ranking is

not evident based solely on prediction accuracy. Since the maps

from the two methods largely agree, it is difficult to draw strong

contrasts between them. It does appear, however, that blue pixels

tend to be more isolated and spurious. It is also important to note
that (based on the number of support vectors required) the FSW

maps are derived from only roughly half of the data from the

experimental run.

Table 2 quantifies some of the relationships between the

conventional reference correlation and feature space weighting

maps. The agreement between the maps for both methods is

presented in terms of linear, pixel-wise correlations under the third

column (Map Corr.). Of the 105 time points per run, the number of

support vectors used in the trained model (and thus discarded from

the FSW maps) is SVs. We demonstrate the significance levels of

the differences in correlation values obtained with the FSW method

using the conservative two-sided test described in Eqs. (6) and (7).

Figs. 9 and 10 give an additional perspective on the models

from Table 2 as well as Figs. 7 and 8. Regardless of the kernel

used, it is always possible to examine the relative role of each time

measurement in the training data through the ats. Shown as dots

are atyt. Non-zero ats are support vectors and are emphasized with

red circles. The square waves idealize the experimental paradigm

(representing the training class labels), with x marks indicating

discarded transition scans that were not included in the training

model. As indicated in Table 2, the number of SVs required tends

to decrease with degree of preprocessing. As shown in Figs. 9 and

10, however, the amplitudes of the ats tend to increase

dramatically. They are bounded by C (in this case C = 1). For

these plots, it is difficult to draw generalizations concerning

temporal distributions of the SVs. It does seem, however, that the

final baseline period is important in both subjects. In other data sets

(unpublished results), we have noted that transition scans tend to

become upper-bound support vectors.
Discussion

Focusing primarily on linear (soft margin) SVM classifiers, we

have described many of the issues important to block design fMRI.

To assess performance, prediction accuracy results of tuned SVM

models were compared with our recent CVA work across sixteen

subjects and ten preprocessing combinations. We also discussed

various aspects of interpretation and visualization of SVM models

in the context of fMRI.

Three important issues relevant to this work require further

elaboration. These are classification performance, model interpre-

tation, and validation. A good model, from a classification

perspective, generalizes well (as measured by prediction accuracy),

implying that it has characterized an important aspect (or feature,

or statistical property) of the training data that is consistent for

independent data arising from the same system (sampling

distribution). Typically, good generalization relates not only to

the appropriateness of the chosen model, but also to the selection

of appropriate model parameters and preprocessing operations

(which may also be viewed as model hyper-parameters). Thus,

training a model requires expertise in terms of model selection,

while interpreting the model requires understanding of the model

assumptions as well as the origin and context of the data itself. For

fMRI, we most often assume our a priori knowledge exists in the

temporal characteristics of the data, even though most current

research in this field focuses on spatial detection. One difficulty

with spatial detection in this setting is the issue of validation. This

is one strong argument for multivariate techniques, which

simultaneously consider both temporal and spatial aspects of this

inherently spatiotemporal data. Here, we have only treated model



Fig. 6. Winning prediction accuracy results for SVM and CVA models for each subject and preprocessing combination: Results in panel (A) are for SVM while

results in panel (B) are for CVA. Both panels (A) and (B) use a common color map. Panels (C) and (D) provide a side-by-side comparison of the results in

panels (A) and (B). Panel (C) is each preprocessing across subjects (columns of panels (A) and (B)) and panel (D) is each subject across preprocessings (rows

of panels (A) and (B)). For panels (C) and (D), the box plots on the left are for SVM results and on the right are CVA.
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selection based on prediction accuracy. Our work on prediction vs.

reproducibility plots, however, not only gives a means of

validating results (by optimizing both prediction and reproduci-

bility), but also adds flexibility to the model selection process. As

we have noted, this is a unique approach to model selection, but

one that we argue makes sense for neuroimaging (LaConte et al.,

2003a). In essence, this approach gives an investigator a formal
means for balancing his or her confidence in known temporal

information of the data with the priority of obtaining interpretable

(and reproducible) summary images.

We also observed a preference towards the linear kernel and an

insensitivity of the SVM regarding the parameter C for sufficiently

large values. The kernel often acts to increase the dimensionality of

the feature space, however, our data are already of very high



Fig. 7. Comparison of feature space weighting (FSW) to conventional cross-correlation for subject 4 for three levels of preprocessing: the scatter plots to the left

of the summary maps are individual pixel results for conventional cross-correlation vs. FSW for all brain voxels. We chose the top 10% from each test to

choose the activation threshold. Thus, pixels above the horizontal threshold were the top 10% from the conventional cross-correlation test (blue), pixels to the

right of the vertical threshold line were the top 10% for the FSW method (magenta), and pixels satisfying both thresholds represent the agreement of both

methods (orange).
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dimensionality (note that this is a dramatically different situation

from the Cox and Savoy study, where the classification exercise

was predicated by GLM-based selection of voxels). That small C

values consistently led to poor SVM models indicates that such

values do not adequately penalize data points within the margin or

on the wrong side of the margin. With C large enough, prediction

accuracy was relatively consistent. In practice, then, complexity

resampling may not be crucial if this and the kernel selection

results hold in future studies.

In Fig. 3, we noted sensitivity to experimental run with CVA

that was not apparent with SVM. In that figure, the sampling took

place at each grid coordinate for each C value. Thus, the results for

CVA are an interesting observation and are clearly systematic. For

all but subject 11 (and for subject 4 with low preprocessing),

training with run 1 was preferred. Several explanations for this may

be possible. One is that for the majority of subjects, an assumption
of stationarity (in time) is being violated, which CVA seems to be

more sensitive to than SVM. From this, it is possible that the

observed time effect (learning, fatigue, scanner performance) is

changing the within and/or between covariance of force vs. rest but

preserving the margin or interface between these two states.

Although we believe that classification performance, per se, is a

relevant and important scientific question for fMRI, we have

narrowed our focus to the sensitivity of CVA and SVM to

preprocessing combinations frequently applied to fMRI data.

Results in Fig. 6 suggest that SVM is less sensitive to preprocess-

ing than CVA. Notably, CVA prediction tends to be affected by low

frequency characteristics of the data (altered by detrending). One

possible argument against kernel SVM is that (in our current

approach) fMRI data already occupy high dimensional feature

spaces. We can think of preprocessing as changing the coordinates

of each time observation in this feature space. Dramatic changes in



Fig. 8. Comparison of feature space weighting (FSW) to conventional cross-correlation for subject 14 for three levels of preprocessing. The presentation here is

exactly analogous to Fig. 7.
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an SVM model, however, require that preprocessing change the

relative locations of those observations closest to the margin.

Depending on the scientific emphasis, we believe that both CVA
Table 2

Comparison of conventional cross-correlation and feature space weighting (FSW

Subject pp Map

Corr.

SVs Conventional reference

Minimum value:

r (z)

Maximum value:

r (z)

4 xx 0.97 50 �0.84 (�1.2) 0.91 (1.5)

ll 0.98 44 �0.83 (�1.2) 0.90 (1.5)

hh 0.99 41 �0.78 (�1.1) 0.82 (1.2)

xx 0.87 79 �0.70 (�0.86) 0.80 (1.1)

14 ll 0.90 69 �0.72 (�0.91) 0.77 (1.0)

hh 0.96 62 �0.70 (�0.87) 0.68 (0.83)

This table quantifies information presented in Figs. 7 and 8. The first two columns

per run, SVs are the number of support vectors used in the trained model (and

maximum correlation coefficients (r) and their converted z scores for both methods

values is given in the last two columns.
and SVM have appropriate uses. CVA is formulated based on

variance/covariance concepts, and the fact that it does seem

sensitive to common preprocessing strategies suggest that it is
) activation maps

Feature space weighting Significance

Minimum value:

r (z)

Maximum value:

r (z)

Minimum

values

Maximum

values

�0.94 (�1.8) 0.95 (1.8) 0.002 0.05

�0.91 (�1.5) 0.94 (1.8) 0.04 0.1

�0.89 (�1.4) 0.89 (1.4) 0.03 0.1

�0.88 (�1.4) 0.93 (1.7) 0.02 0.02

�0.92 (�1.6) 0.90 (1.4) 0.001 0.04

�0.83 (�1.2) 0.83 (1.2) 0.09 0.06

define subject number and preprocessing combination. From 105 time points

thus discarded from the FSW maps). The next columns list minimum and

. The significance of the differences between these minimum and maximum



Fig. 9. Temporal occurrence of support vectors for subject 4: Dots in this

figure represent each a tyt (see Eq. (2)) for the models in Fig. 7 and Table 2.

Non-zero a ts are support vectors and are emphasized with red circles. The

square waves idealize the experimental paradigm (representing the training

class labels), with x marks indicating discarded transition scans that were

not included in the training model. The magnitude of a is bounded by C (in

this case C = 1). 

Fig. 10. Temporal occurrence of support vectors for subject 14: As in Fig. 9,

the atyts give the importance of a given scan for the models in Fig. 8 and

Table 2.
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well suited for examining the signal and noise questions we are

currently pursuing (LaConte et al., 2003a; Strother et al., 2002). On

the other hand, the unique formulation of the SVMs necessitates

further study and provides a unique window for studying the

complex structure of fMRI data.

In this paper, we have also begun the important examination of

model interpretation of SVMs in the context of fMRI. As aptly

stated by Mjolsness and DeCoste (2001),

Discriminative models make no attempt to explicitly capture the true

underlying physics of the phenomena. Nevertheless, as many recent

successful applications of methods such as SVMs have shown, such

classifiers can provide strong insights into the nature of the phenomena,

including such aspects as which input dimensions are most useful, which

examples are most likely to be outliers, and what new observations might

be most worthwhile to gather.

We have proposed four methods for generating activation

maps from SVMs. Weight vector maps, sensitivity maps, and

FSW maps are based on the training data, while decision

weighting is based on the validation data. The proposal of these

four techniques illustrates that there are multiple methods for

extracting interpretable information from the SVM framework. In
general, training-based interpretation makes use of the model

generation step and validation-based interpretation addresses

issues of model generalization. Weight vector maps are directly

related to the support vectors. For this reason, they may highlight

data features that tend to be ambiguous between the classes. In

poor models, where all data are support vectors, and all ats are

equal, weight vector maps reduce to subtraction images. Though

it may be possible to develop meaningful intuition from nonlinear

kernel models, direct visualization of Yw is most straightforward

with a linear kernel. Sensitivity maps elucidate the importance of

a particular subspace or set of features (a reduced set of voxels)

on SVM training. FSW looks at the distance of each observation

from the separating hyperplane, using the intuition that observa-

tions closest to this boundary are most difficult to classify.

Decision weighting, through DðYztÞ, also considers distances in

the feature space, but on new data, independent of the training

data. Further work is needed to establish the relative strengths and

weaknesses for these model visualization techniques. In our initial

work with FSW (LaConte et al., 2003b), we looked at the t score

distribution of all brain voxels and observed an enhanced t score

distribution, with a slightly taller peak and slightly longer tails.

This subtle effect is consistent with our significance results in

Table 2.

To demonstrate concepts, we have focused on two-class analysis

for runs within a single scanning session, but this is not a limitation
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of SVM. Indeed Cox and Savoy demonstrated ten categories with

success in data acquired more than 1 week apart (Cox and Savoy,

2003). As SVMs are new to fMRI, we have carefully outlined the

essential concepts for SVM classification. Our hope is that this

description provides a useful reference for other investigators. We

have argued that understanding of both the model and the

application is essential to interpretation and visualization of results.

As further evidence of the capabilities of SVM classification, we

have classified individual time samples of whole brain data, with

TRs of roughly 4 s, thirty slices, and nearly 30,000 brain voxels, with

no averaging of scans or prior voxel selection.

Looking to the future, our work as well as recent work by Cox

and Savoy (2003) illustrate the feasibility and potential of SVM for

fMRI data. We look forward to additional evidence concerning

linear vs. non-linear kernel selection. Further investigations

evaluating map generating strategies and other insights into model

interpretation will greatly enhance the use of SVM classification in

fMRI research. A final issue is that of experimental design. We

have only dealt with block design data, but extensions targeting

predictive modeling of event-related fMRI will be a major

contribution to the field. Going further, there is a growing interest

in real-time fMRI and fMRI-based feedback. In many cases,

multivariate models are a much more natural approach for these

types of studies compared to univariate tests since, in the

multivariate case, feedback can occur for each measurement.

Temporally predictive models provide the capacity for adaptive

feedback of the stimulus paradigm to the subject based on

classified brain state, constituting additional flexibility for exper-

imental design (LaConte et al., 2004).
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