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ABSTRACT Fluctuations in biochemical processes can provide insights into the underlying kinetics beyond what can be
gleaned from studies of average rates alone. Historically, analysis of fluctuating transmembrane currents supplied information
about ion channel conductance states and lifetimes before single-channel recording techniques emerged. More recently,
fluctuation analysis has helped to define mechanochemical pathways and coupling ratios for the motor protein kinesin as well
as to probe the contributions of static and dynamic disorder to the kinetics of single enzymes. As growing numbers of assays
are developed for enzymatic or folding behaviors of single macromolecules, the range of applications for fluctuation analysis
increases. To evaluate specific biochemical models against experimental data, one needs to predict analytically the distribution
of times required for completion of each reaction pathway. Unfortunately, using traditional methods, such calculations can be
challenging for pathways of even modest complexity. Here, we derive an exact expression for the distribution of completion
times for an arbitrary pathway with a finite number of states, using a recursive method to solve algebraically for the appropriate
moment-generating function. To facilitate comparisons with experiments on processive motor proteins, we develop a theoretical
formalism for the randomness parameter, a dimensionless measure of the variance in motor output. We derive the randomness
for motors that take steps of variable sizes or that move on heterogeneous substrates, and then discuss possible applications to
enzymes such as RNA polymerase, which transcribes varying DNA sequences, and to myosin V and cytoplasmic dynein, which
may advance by variable increments.

INTRODUCTION

Stochastic fluctuations in biochemical processes reflect

the kinetic structure of the underlying reaction pathways.

For example, two processes with identical average rates may

nevertheless display widely different variances in the time to

completion. The variance in completion time depends on the

numbers and lifetimes of intermediate states in the pathway.

Studies of biochemical kinetics commonly seek to compare

distributions of completion times to theoretical predictions

from model pathways. Such comparisons can help to deter-

mine the rates for intermediate steps and to exclude incom-

patible models. However, for bulk solution studies, inferring

the distribution of completion times requires some experi-

mental means to initiate the reaction synchronously, and

thereafter to monitor continual progress toward completion.

As a practical matter, it is not always feasible to meet both of

these requirements using traditional biochemical approaches.

In contrast, modern studies of single molecules (or small

numbers of molecules) offer convenient experimental access

to reaction time distributions. When individual turnovers can

be resolved with adequate time resolution and in sufficient

numbers, the distribution of times can be constructed directly.

The advent of methods for observing single-molecule be-

havior in increasing detail has facilitated this direct approach.

For example, single-channel recordings enable measurements

of ionic conductance states with impressive precision ((1) and

references therein). Advanced fluorescence techniques have

enabled studies of folding in individual nucleic acids and

proteins (2–6), of static and dynamic disorder in single

enzyme kinetics (7,8), and of single chaperone function (9).

For single-molecule studies of motor proteins, nanometric

measurements have enabled the direct detection of enzyme

translations of,1 nm and rotations of,10� (10,11) with ex-

cellent temporal resolution, out to bandwidths exceeding 10

kHz (12). Experiments with optical and magnetic tweezers

have shown that motor proteins move in discrete increments:

linear motors, such as kinesin (13), dynein (14), and myosin

(15,16), all take nanometer-sized steps, whereas rotary motors,

such as the F1-ATPase, are driven in distinct angular steps by

ATP hydrolysis (17). For some of these mechanoenzymes,

step-time distributions can be constructed directly from single-

molecule records, then compared to predictions from kinetic

models (11,18,19).

Even when individual events are obscured by noise

and cannot be observed directly, stochastic fluctuations in

molecular behavior can nevertheless supply information

about the structure of the underlying kinetic pathways and

intermediate reaction rates. This capacity to address kinetic

issues without resolving single events provided the key to

early estimates of ion channel conductance values and state

lifetimes, based on statistical properties of the electrical noise

in recordings from nerve cells (20). Likewise, under con-

ditions where the steps taken by single-motor proteins cannot

be detected reliably (e.g., at lower loads, or under large com-

pliance), variance measurements have been used to evaluate

candidate kinetic models (19,21–23).

Although fluctuation analysis is a valuable tool for

experimental characterization of kinetics, analytical calcula-

tion of the distribution of completion times for a modelSubmitted April 8, 2005, and accepted for publication July 5, 2005.
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pathway with a complex reaction scheme can be an arduous

task. Nonetheless, analytical solutions are often more valu-

able than answers achieved by numerical or Monte Carlo

approaches because of the insight that analytical methods

can provide into the dependence of kinetic quantities on input

parameters. For example, analytical solutions can be especially

good for examination of limiting cases.

To date, several mathematical approaches have been

developed to find the distribution of reaction times. The

first, a classical master-equation approach, involves solving

the full set of coupled differential equations that describe

the time-varying changes in concentration of each state in the

pathway (this is an eigenvalue problem). An extensive

literature on the formal solution of such equations has been

developed for the study of reaction kinetics (7,24,26). In

many cases, these must be solved numerically (26). A second

approach involves finding the moment-generating function

for the completion time distribution by forming a weighted

sum of all possible trajectories between states in the kinetic

pathway (27). For all but simple, unidirectional pathways,

the generating-function method requires the evaluation of

infinite sums over trajectories. Unfortunately, such sums

are often nested, hindering the development of simple, di-

agrammatic rules for their separate computation. Here, we

introduce a third approach that improves upon the previous

methodology. We show that the desired moment-generating

function can be calculated exactly, using a recursive defi-

nition that avoids infinite sums. This method yields a set of

coupled algebraic equations that can be solved analytically

for pathways containing finite numbers of states with arbi-

trarily complex reaction schemes. The ability to calculate the

distribution of completion times analytically for specific models

should facilitate quantitative comparisons with experimental

data for a variety of biological processes, including ion chan-

nel dynamics, macromolecular folding, and enzymatic reactions.

A convenient variable characterizing fluctuations in enzy-

matic behavior is the randomness parameter, r, a dimension-

less measure of the variance in kinetic output. For processive

mechanoenzymes, the randomness parameter supplies a mea-

sure of the variance in the motor position about its average

trajectory, which depends upon both the distribution of times

required to complete each stepping cycle and on the dis-

tribution of displacements of the individual steps. However,

previous theoretical work on the randomness parameter treated

only a few comparatively simple cases analytically, involving

kinetic pathways for motors moving along periodic substrates

with mechanical displacements that are low multiples of an

invariant step size, or else resorted to numerical solutions of

the kinetics (27,28–31). Based on a growing body of experi-

mental evidence, certain motor proteins seem poorly described

by the simplest models, and may therefore require a more

complex description of the relationship between mechanical

step size and biochemical cycle time. Here, we develop a

general expression for the randomness parameter for the case

of both nonuniform step times and step sizes, and we discuss

the implications for motors that move with variable-sized dis-

placements. We also treat the case of motors that move along

a heterogeneous substrate. Unlike kinesin or myosin motors,

processive nucleic acid enzymes travel along a continuously

varying DNA or RNA substrate. For such enzymes, which

include polymerases, nucleases, and helicases, the step-time

distributions are governed by reaction pathways that presum-

ably depend upon details of the local nucleic acid sequence.

Wemodel the simplest scenario for substrate heterogeneity, by

assuming that for each stepwise displacement, the enzyme

traverses one of four distinct biochemical pathways corre-

sponding to each of the four possible DNA bases encountered,

and we explore the consequences of substrate heterogeneity on

the step-time distribution and the randomness parameter.

THEORETICAL RESULTS

Recursive calculation of the step-time distribution

Consider the simple pathway shown in Fig. 1 A, where the

system begins in State 1 and a cycle is completed when State

3 is reached. The cycle-time distribution is equivalent to

the distribution of first-passage times to State 3. When the

system is in State 2, kinetic partitioning governs whether the

following transition will be forward to State 3 or backward to

State 1. Assuming that all transitions are Markovian, each

visit is independent of any previous visits. This lack of

FIGURE 1 Unfolding a biochemical pathway. (A) A biochemical

pathway with a single reversible transition between State 1 to State 2. (B)
The unfolded representation of this pathway yields an infinite diagram

containing only irreversible transitions.
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memory allows us to unfold the reversible transition 142;
by rewriting it as an infinite, branched pathway containing

only irreversible transitions (Fig. 1 B). Because of the repeat-
ing character of Fig. 1 B, we can define the total cycle-time

distribution recursively, given the branching probabilities at

each vertex and the passage time for each transition.

This method can be generalized for an arbitrary bio-

chemical pathway consisting of N states using a first-step

analysis (32), in which the time taken to complete a cycle is

related to the amount of time taken for the first step plus the

time taken to complete the remainder of all other steps. We

define the finishing-time distribution, piðtÞ, as the probabil-
ity density that the system goes from State i to the final State
N in time t: Let kij be the transition rate constant for going

from State i to State j, such that the probability that the

system makes this transition in a brief time, Dt, equals kijDt:
The probability of finishing the cycle in a time t1Dt from
State i equals the probability that the system remains in State

i during the interval [0, Dt], times the probability that it takes

a further time t to complete the cycle from State i, plus the
probability of the system making a transition to State j (not
equal to i) during the interval [0, Dt], times the probability it

takes a further time t to complete the cycle from State j, plus
a residual term of order Dt2:

piðt1DtÞ ¼ 1� +
j:j 6¼i

kijDt

 !
3piðtÞ

1 +
j:j 6¼i

ðkijDt3pjðtÞÞ1OðDt2Þ: (1)

In the limit Dt/0; Eq. 1 reduces to

dpiðtÞ
dt

¼ +
j:j6¼i

kij3ðpjðtÞ � piðtÞÞ: (2)

Taking the Laplace transform of Eq. 2 yields

s~ppiðsÞ � pið0Þ ¼ +
j:j 6¼i

kij3ð~ppjðsÞ � ~ppiðsÞÞ; (3)

where the tilde indicates the Laplace transform. Equation

3 will allow us to solve for the set of ~ppiðsÞ; which serve as

moment-generating functions for the corresponding distri-

butions, piðtÞ: By definition, the probability of finishing the

cycle from any State i 6¼ N in time t ¼ 0 is zero, so that

piðt ¼ 0Þ ¼ 0: Solving for the first N � 1 generating func-

tions, ~ppiðsÞ; we find

~ppiðsÞ ¼ +
j:j 6¼i

kij~ppjðsÞ
+

m:m 6¼i

kim 1 s
; where i ¼ 1; 2; . . . ; N � 1: (4)

State N is defined to be the end of the cycle, hence

pNðtÞ ¼ dðtÞ; which has Laplace transform ~ppNðsÞ ¼ 1:
Equation 4 describes a system of of N � 1 coupled, linear

algebraic equations for the moment-generating functions

of the completion-time distributions. Such a system of equa-

tions can be solved algebraically by direct elimination or

iterative methods. An expression similar to Eq. 4 was derived

by Harrison and Knottenbelt (32) for modeling response

times in computer communication systems, using an integral

representation. In general, the total step-time distribution for

a motor will be given by ptotalðtÞ ¼ +N

i¼1
p0i piðtÞ; where p0i

is the probability that the motor starts in State i at the

beginning of each step. In this treatment, we consider the

simplest case where the motor always starts the pathway in

State 1, and therefore the step-time distribution is given by

ptotalðtÞ ¼ p1ðtÞ:
Because Eq. 4 gives the solution to the generating func-

tions, ~ppiðsÞ; all of the moments of piðtÞ can easily be found

through differentiation

Ætnæ ¼ ð�1Þndn
~ppiðsÞ

ds
n

����
s¼0

; (5)

where the angle brackets,Æ æ, indicate the average. For many

applications, having the moments of piðtÞsuffices. In some

cases, it may be preferable to work with piðtÞ directly, and
the inverse Laplace transform of Eq. 4 can be found by fac-

toring the denominator and using the Bromwich integral

f ðtÞ ¼ ð1Þ=2pi
R g1iN
g�iN est f̃ðsÞds:

The randomness parameter

The mechanical output of a molecular motor is governed

by both the time taken to complete a full enzymatic cycle,

referred to here as the cycle time, t, and the distance moved

during each cycle, the step size, d. The randomness param-

eter is derived from records of overall motor displacement,

x(t), and defined by the following limit (33):

r ¼ Lim
t/N

Æx2ðtÞæ� ÆxðtÞæ2

dÆxðtÞæ : (6)

Below, we derive general expressions for the first and sec-

ond moments of the displacement xðtÞ; and thereby for the

randomness, for motor mechanisms where the cycle times

or step sizes are not constant.

Randomness for the case of nonuniform
step sizes

To evaluate Eq. 6, we need to consider the result of a

sequence of stochastic events where the step size and cycle

time for each successive event are independent of each other,

variable and uncorrelated. We define two probability dis-

tributions: rðxÞ for the step sizes and pðtÞ for the cycle times.

The mean and variance in displacement from Eq. 6 can be

found from the joint probability distribution, P(x,t), that the
system will be found at position x after time t:

Pðx; tÞ ¼ +
N

N¼0

PxðN; xÞ 3 PtðN; tÞ: (7)
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PxðN; xÞ describes the probability that N consecutive steps

sum to a distance, x, and is therefore given by the N-fold
convolution of rðxÞ with itself. The probability of complet-

ing exactly N steps in time t, PtðN; tÞ; comprises N 1 1

events: N steps are taken before t, and no more steps occur

during the remaining time (27). When dealing with con-

volutions of probabilities, it is again convenient to work with

the moment-generating function obtained using the Laplace

transform. We can then write ~PPxðN; qÞ and ~PPtðN; sÞ in terms

of ~rrðqÞand ~ppðsÞ; where (t, s) and (x, q) are Laplace transform
pairs. By the convolution theorem for Laplace transforms,

we have

~PPxðN; qÞ ¼ ~rr
NðqÞ

~PPtðN; sÞ ¼ ~pp
NðsÞ 1� ~ppðsÞ

s

� �
: (8a; b)

From the Laplace transform of Eq. 7, it follows that

~PPðq; sÞ ¼ 1� ~ppðsÞ
s

� �
3 +

N

N¼0

½~rrðqÞ~ppðsÞ�N: (9)

Equation 9 follows from the composition theorem of

generating functions (34), which governs the probability dis-

tribution for the sum of a stochastic number of variables that

are each distributed according to a random distribution.

Constructing this probability distribution using the com-

position theorem is formally analogous to the construction

of the grand partition function in statistical physics using the

chemical potential and the partition function. Here, the total

distance, x, traveled in time, t, results from the sum of

a variable number of steps of variable size. To find the

moment-generating function for x, one composes the

generating function for the number of steps, N, taken in

time t (constructed using Eq. 8b) with the moment-

generating function for the distribution of step sizes, ~rrðqÞ;
yielding Eq. 9. Completing the geometric sum in Eq. 9 yields

~PPðq; sÞ ¼ 1

s
3

1� ~ppðsÞ
½1� ~rrðqÞ~ppðsÞ�: (10)

Computing the randomness according to Eq. 6 requires the

calculation of ÆxðsÞæ and ÆxðsÞ2æ: These can be found from

Eq. 10 using the following relation:

Æ~xxnðsÞæ ¼ ð�1Þn@
n~PPðq; sÞ
@q

n

����
q¼0

: (11)

The first and second derivatives of ~PPðq; sÞ with respect to q
are given by

@~PPðq; sÞ
@q

¼ ~ppðsÞ½1� ~ppðsÞ�
s½1� ~rrðqÞ~ppðsÞ�2

3
d~rrðqÞ
dq

(12)

and

@
2~PPðq; sÞ
@q

2 ¼ ~ppðsÞ½1� ~ppðsÞ�
s½1� ~rrðqÞ~ppðsÞ�2

3
d2~rrðqÞ
dq

2

� �

1
2~pp2ðsÞ½1� ~ppðsÞ�
s½1� ~rrðqÞ~ppðsÞ�3

3
d~rrðqÞ
dq

� �2

: (13)

~rrð0Þ ¼
RN
0

rðtÞdt ¼ 1; because rðxÞ is a normalized prob-

ability distribution. Solving for ÆxðsÞæ in Eq. 11 yields

Æ~xxðsÞæ ¼ ~ppðsÞ
s½1� ~ppðsÞ�3 �13

d~rrðqÞ
dq

����
q¼0

 !

¼ Æ~NNðsÞæ3 Ædæ; (14)

where Æ~NNðsÞæ is the Laplace transform of the average number

of steps taken after time t (33) and Ædæ is the average step size
derived from the distribution rðxÞ: Similarly,

Æ~xx2ðsÞæ ¼ ~ppðsÞ
s½1� ~ppðsÞ�3

d
2
~rrðqÞ
dq

2

����
q¼0

 !

1
2~pp

2ðsÞ
s½1� ~ppðsÞ�2

3
d~rrðqÞ
dq

����
q¼0

 !2

¼ Æ~NNðsÞæ3 Æd2æ

1 ½Æ~NN2ðsÞæ� Æ~NNðsÞæ�3 Ædæ2: (15)

Taking the inverse Laplace transform of Eqs. 14 and 15

yields

ÆxðtÞæ ¼ ÆNðtÞæ 3 Ædæ

Æx2ðtÞæ ¼ ÆNðtÞæ 3 Æd2æ1 ½ÆN2ðtÞæ� ÆNðtÞæ� 3 Ædæ2: (16)

Taking d to be the average step size, the randomness, as

defined in Eq. 6, is

which reduces to

r ¼ Æd2æ� Ædæ2

Ædæ2
1 Lim

t/N

ÆN2ðtÞæ� ÆNðtÞæ2

ÆNðtÞæ : (18)

Schnitzer and Block (27) showed that Limt/NðÆN2ðtÞæ�
ÆNðtÞæ2Þ=ÆNðtÞæ ¼ ðÆt2æ� Ætæ2Þ=Ætæ2; where Ætæ and Æt2æ are

r ¼ Lim
t/N

ÆNðtÞæ3 Æd2æ1 ½ÆN2ðtÞæ� ÆNðtÞæ�3 Ædæ2 � ÆNðtÞæ2 3 Ædæ2

ÆNðtÞæ3 Ædæ2
; (17)
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the first and second moments of the step-time distribution

pðtÞ: Therefore, Eq. 18 becomes

r ¼ Æd2æ� Ædæ2

Ædæ2
1

Æt2æ� Ætæ2

Ætæ2
: (19)

We can now define two contributions to the overall random-

ness: one derived from the variability in the step size and one

from the variability in step time,

rstep sizes ¼
Æd2æ� Ædæ2

Ædæ2
(20)

and

rstep times ¼
Æt2æ� Ætæ2

Ætæ2
: (21)

Equation 19 can then be rewritten as r ¼ rstep sizes1rstep times:
In an experiment, the measured step size may not equal

the average step size, Ædæ; as calculated from rðxÞ: This can
be seen by considering a distribution that includes, with finite

probability, steps with sizes below the resolution limit of the

apparatus. Any experimental measurements of motor steps

would, by definition, miss these steps. Hence, the measured

step size would be higher than Ædæ: This experimental bias

can be corrected by scaling the calculated randomness by the

ratio of the predicted to the measured step size,

rmeasured ¼
Ædæ

dmeasured

ðrstep sizes 1 rstep timesÞ: (22)

Randomness for the case of a
heterogeneous substrate

When a motor moves along a heterogeneous substrate, such

as DNA, the total step-time distribution is governed by a

set of biochemical pathways related to details of the local

sequence. We define M different step-time distributions,

piðtÞ; corresponding to each of the M particular sequence

motifs in the substrate, and probabilities, fi; of encountering
the ith motif. To model the sequence-specific behavior of

RNA (or DNA) polymerase, for example, we might begin by

supposing that there are four such distributions, one for each

possible base: pAðtÞ; pTðtÞ; pCðtÞ; andpGðtÞ; where fA

represents the local fraction of A values in the DNA template

(this simplest case ignores any longer-range sequence effects

due to adjacent bases). The total step-time distribution is then

ptotalðtÞ ¼ +
M

i¼1

fi � p
iðtÞ: (23)

To calculate the step-time randomness as defined by Eq.

21, we solve for the moments of the ith step-time distri-

bution. Averaging over all paths, Eq. 23 leads to

Ætæ ¼ +
M

i¼1

fiÆtiæ; Æt2æ ¼ +
M

i¼1

fiÆt
2

i æ: (24)

Inserting Eq. 24 into Eq. 21 yields the total randomness

r ¼ +
M

i¼1

fi

Æt2i æ
Ætæ2

� �
� 1; (25)

assuming the step size is the same for each pathway.

Rearrangement of Eq. 21 reveals that

Æt2i æ ¼ Ætiæ
2
1 riÆtiæ

2
; (26)

which can be used to rewrite the total randomness in terms of

the randomness from each pathway alone, ri:

r ¼ +
M

i¼1

fi

Ætiæ
Ætæ

� �2

ri

" #
1 +

M

i¼1

fi

Ætiæ
Ætæ

� �2

�1

" #
: (27)

The first term on the right is a weighted sum of the

randomness values from each distribution. The weighting

function includes terms for the probability of following

a particular pathway as well as for the average step time from

that path relative to the total average step time. The second

term represents the randomness in step times generated by

stochastically choosing pathways with different mean step

times. If the mean step times are all equal, the total random-

ness, r; becomes simply the sum of the individual randomness

values, ri; weighted by the probability of choosing each path,

fi: Conversely, even if each path is perfectly clocklike, i.e.,

ri ¼ 0 for all i, the total randomness will be .0 due to the

variation in step times from each path.

WORKED EXAMPLES

Step-time calculations

Consider the enzymatic pathway described by Fig. 1 A,
where the first of two transitions is reversible. The finishing-

time distributions can be found using Eq. 4:

~pp1ðsÞ ¼
k12~pp2ðsÞ
k12 1 s

~pp2ðsÞ ¼
k21~pp1ðsÞ1 k23~pp3ðsÞ

k21 1 k23 1 s

~pp3ðsÞ ¼ 1: (28)

Solving for the step-time distribution ~pptotalðsÞ ¼ p1ðsÞ yields

~pptotalðsÞ ¼
k12k23

s
2
1 sðk12 1 k21 1 k23Þ1 k12k23

; (29)

which is identical to the result derived by Schnitzer and

Block (27) using the previous sum-of-all-paths method. Note

that the recursive derivation introduced here does not require

the evaluation of any infinite sums; the infinite number of paths

that the system can take is embodied instead in the recursive

nature of Eq. 28.

The example shown in Fig. 2 A describes a more com-

plex pathway that consists of one reversible transition,

between States 2 and 3, plus a loop, cycling between States 1

through 3. The sum-of-all-paths method would involve two

interrelated infinite sums counting the number of times the
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system went back and forth from State 3 to 2, and the number

of times the system went around the loop, as well as a term

relating to whether the system arrived at State 4 from State 2

or from State 3. The recursive method is much simpler, and

the set of equations defined by Eq. 4 reduces to

~pp1ðsÞ ¼
k12~pp2ðsÞ
k12 1 s

~pp2ðsÞ ¼
k23~pp3ðsÞ1 k24~pp4ðsÞ

k23 1 k24 1 s

~pp3ðsÞ ¼
k31~pp1ðsÞ1 k32~pp2ðsÞ1 k34~pp4ðsÞ

k31 1 k32 1 k34 1 s

~pp4ðsÞ ¼
k45~pp5ðsÞ
k45 1 s

~pp5ðsÞ ¼ 1: (30)

Solving for the total step-time distribution yields

For illustrative purposes, we consider the case when all

transition rates happen to equal k. Then, ~pptotalðsÞ reduces to

~pptotalðsÞ ¼
k
3ð4k1 sÞ

ðk1 sÞð2k1 sÞð2k2 1 4ks1 s
2Þ
: (32)

The inverse Laplace transform reduces to

p1ðtÞ ¼
kð4 coshð

ffiffiffi
2

p
ktÞ � 6e

kt
1 3

ffiffiffi
2

p
sinhð

ffiffiffi
2

p
ktÞ1 2Þ

2e
2kt :

(33)

Fig. 2 B shows the histogram resulting from of a Monte

Carlo simulation of the figure-eight pathway of Fig. 2 A. The
solid curve matching this histogram is supplied by Eq. 33.

Futile hydrolysis I: the step-time method

The recursive dwell-time method can be used to predict the

effect of futile hydrolysis on randomness. If we define e as
the probability that the system does not finish the cycle when

State N is reached, but instead must repeat the cycle again,

beginning at State 1, then the completion-time distribution

from State N becomes

pNðtÞ ¼ ð1� eÞdðtÞ1 e3p1ðtÞ; (34)

or equivalently

~ppNðsÞ ¼ ð1� eÞ1 e3 ~pp1ðsÞ: (35)

Solving for the total cycle-time distribution using Eqs. 4 and

35 yields

~pptotalðsÞ ¼
ð1� eÞ~pp0ðsÞ
1� e~pp0ðsÞ

; (36)

where ~pp0ðsÞ[ ~pptotalðsÞ for the case e ¼ 0: Themoments of the

cycle-time distribution can be found by differentiating ~pptotalðsÞ:

Ætæ ¼ ð�1Þd~pptotalðsÞ
ds

����
s¼0

¼ ð1� eÞ
½1� e~pp0ðsÞ�2

d~pp
0ðsÞ
ds

����
s¼0

¼ Æt0æ
1� e

(37)

and

Æt2æ ¼ d
2
~pptotalðsÞ
ds

2

����
s¼0

¼ 2eð1� eÞ
½1� e~pp0ðsÞ�3

d~pp
0ðsÞ
ds

� �2����
s¼0

1
ð1� eÞ

½1� e~pp0ðsÞ�2
d
2
~pp
0ðsÞ

ds
2

����
s¼0

¼ 2e

ð1� eÞ2
Æt0æ2 1

Æt02æ
1� e

; (38)

where Æt0æ and Æt02æ are the first and second moments of the

cycle-time distribution for e ¼ 0: Inserting Eqs. 37 and 38

into Eq. 21 yields a randomness of r ¼ e1ð1� eÞr0; where

r
0
[

Æt02æ� Æt0æ2

Æt0æ2
(39)

FIGURE 2 Analysis of a figure-eight-shaped biochemical pathway with

five states, one loop, and both reversible and irreversible transitions. (A) A

biochemical pathway with a single reversible transition between State 2

and State 3 and a loop from States 1–3. In this simplified example, each of

the transitions is governed by the identical rate constant, k. (B) Probability

density for the completion of the pathway described in A. The calculated

probability (solid curve, from Eq. 33) is in excellent agreement (histogram,

shaded bars) with the results of a Monte Carlo simulation (N ¼ 100,000

trials).

~pptotalðsÞ ¼
k12k45ðk23k34 1 k24ðk31 1 k32 1 k34 1 sÞÞ

ðk45 1 sÞðk12ðk23ðk34 1 sÞ1 ðk24 1 sÞðk31 1 k32 1 k34 1 sÞÞ1 sðk23ðk31 1 k34 1 sÞ1 ðk24 1 sÞðk31 1 k32 1 k34 1 sÞÞÞ:

(31)
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is the randomness of the pathway for e ¼ 0; in agreement

with the findings of Svoboda et al. (33).

Futile hydrolysis II: the step-size method

The identical result can be obtained using Eq. 19 and a

judicious choice of step-size distribution. We define a step-

size distribution such that with probability e, the motor takes

a step of size zero, andwith probability (1� e), the motor takes

a step of size d0:

rðxÞ ¼ ð1� eÞ3 dðx � d0Þ1 e3 dðxÞ: (40)

The moments of this distribution are given by

Ædæ ¼ ð1� eÞd0 Æd2æ ¼ ð1� eÞd2

0 : (41)

We then calculate the randomness due to the variation in step

sizes, defined in Eq. 20,

rstep sizes ¼
e

1� e
: (42)

Taking into account that the measured step size, d0; differs
from the average step size Ædæ ¼ ð1� eÞd0; we find, using

Eq. 22, that

rmeasured ¼
ð1� eÞd0

d0

e
1� e

1 r
0

� �
¼ e1 ð1� eÞr0; (43)

where (again) r0 represents the randomness of the pathway

for e ¼ 0; in agreement with the recursive derivation above.

A similar analysis leads to the value for randomness in the

presence of backward steps. If the motor takes a step back-

ward with probability, P�; the step-size distribution takes the
form

rðxÞ ¼ ð1� P�Þ3 dðx � d0Þ1P� 3 dðx1 d0Þ: (44)

Equation 22 then yields a measured randomness of

rmeasured ¼ ðr0 � 1Þð1� 2P�Þ1
1

1� 2P�
; (45)

in agreement with Schnitzer and Block (19).

A heterogeneous substrate

Now consider the progress of a motor that, at each step,

chooses between one of two distinct pathways. This might

correspond, in a highly simplified model, to a polymerase

enzyme moving along a DNA template consisting of a

random distribution of just two of the four bases. For illus-

trative purposes, we further suppose that each pathway has

a biochemical randomness of zero, i.e., that the step times are

fixed (nonstochastic) but may be different from one another,

and that the probability of taking either pathway is identical,

i.e., f1 ¼ f2 ¼ 1=2: For such a case, Eq. 27 reduces to

r ¼ 1

2

Æt1æ
Ætæ

� �2

1
1

2

Æt2æ
Ætæ

� �2

�1: (46)

If we define N as the ratio between the two step times,

then Æt2æ ¼ NÆt1æ and Ætæ ¼ Æt1æðN11Þ=2: Solving for the

randomness, we find

r ¼ 1

2

2

N1 1

� �2

1
1

2

2N

N1 1

� �2

�1; (47)

which simplifies to

r ¼ N � 1

N1 1

� �2

: (48)

If one type of step takes twice the time as the other, then

the measured randomness will have a value of only 1/9, due

solely to the variability in choosing between the different

pathways.

In the limit that one step is much faster than the other, i.e.,

N � 1; then the randomness reduces to a value of 1. This

result is readily understood, since this scenario is analogous

to taking a composite step comprised of a variable number of

short fast steps taken before one long slow step. The prob-

ability of taking a composite step of size d ¼ n3 d0; where
d0 is the short step size, is given by

Pðstep size of dÞ ¼ Pðn� 1 ‘‘fast’’ stepsÞ
3Pðone ‘‘slow’’ stepÞ

¼ 1

2

� �d=d0

:

(49)

Because the biochemical randomness for the slow path is

equal to zero, we can solve for the total randomness by solv-

ing for the first and second moments of Eq. 49

Ædæ ¼ 2d0 (50)

Æd2æ ¼ 6d
2

0 ; (51)

which yields a randomness of 1 using Eq. 22.

DISCUSSION

Recent advances in biophysics have led to the ability to

measure completion time distributions for enzymatic reac-

tions and folding pathways. Comparisons of such distribu-

tions with theory can reveal intermediate biochemical states

that might otherwise remain hidden in an analysis based on

traditional, bulk solution studies. However, analytical calcu-

lation of completion time distributions for all but the simplest

pathways remains a difficult proposition. The recursive

method derived here extends kinetic analysis to include

reversible, branched, and other, more complicated kinetic

schemes. This formalism has potential applications in studies

of molecular motor mechanochemistry, enzyme dynamics,

protein and nucleic-acid folding, and ion channel conduc-

tance.
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The ability to measure every step that an individual pro-

tein takes has led to a number of discoveries in the field of

molecular motors. For example, Rief et al. (18) found that the

step-time distribution for myosin V could be described by

a convolution of two exponentials with different time

constants, where just one time constant varied with the

ATP concentration. This finding allowed them to distinguish

both ATP-dependent and ATP-independent rates in the

mechanochemical cycle. A comparable analysis was per-

formed for rotational stepping data on the F1-ATPase

motor (35). In general, to learn about enzymatic behavior,

one studies the influence of control parameters thought to

affect specific rates in the biochemical pathway. Traditionally,

this might involve changing the concentrations of substrates,

inhibitors, or end products and measuring their influence in

a biochemical assay. More recently, with the development of

instruments that can manipulate single molecules, such as

optical and magnetic traps, force and torque have also been

established as useful control parameters that can selectively

modify rates of biochemical transitions, particularly those

involving physical motions (22). The ability to predict the

velocity and randomness for an arbitrary model pathway

allows one to perform global fits to an entire series of exper-

imental measurements to judge the goodness-of-fit along with

the most likely rate parameters (22).

Optical trapping studies of processive nucleic acid-based

motors are now approaching single basepair resolution (10),

and enzymes such as RNA polymerase and phage l exo-

nuclease have been shown to enter into long-lived, sequence-

dependent pause states as they travel along DNA (8,36–38).

As the experimental measurements become more precise,

kinetic modeling will need to take into account sequence-

dependent variations in enzyme behavior. Further informa-

tion about the elongation cycle of RNA polymerase can be

gained by measuring its randomness in the presence of limit-

ing amounts of free nucleotide, or by using a template with

a reduced representation of the four bases. The expression

derived here for the effect of sequence on the randomness

may have applicability to such studies.

Recent experiments on myosin V and cytoplasmic dy-

nein suggest that these mechanoenzymes may take steps of

a variable size. During stepping, the heads of myosin V are

thought to be able to bind to a variety of alternative, nearby

sites along an actin filament, yielding a broad step-size

distribution with an average displacement of 36 nm ((39) and

references therein). The intrinsic width of the step size dis-

tribution is currently uncertain, however, because exper-

imental measurements thus far have been dominated by

various types of noise. This width could be determined, in

principle, by measuring the overall randomness for myosin

V motors under limiting ATP conditions (40), where the

biochemical contribution to the randomness takes on a

value of 1. Under such conditions, any deviations from unity

would be correlated to the width of the step-size distribution

using Eq. 22. Dynein, on the other hand, has recently been

reported to take steps (up to 32 nm) that are always in-

tegral multiples of 8 nm, in a load-dependent manner (14).

The effect of this step-size distribution on the randomness

can be calculated, and a statistical analysis can be used, in

principle, to characterize the step size distribution without

the need to identify every individual step.

As experimental methods advance, the questions one can

usefully ask about the events driving enzyme function, or

about the processes involved in macromolecular folding and

unfolding, become increasingly sophisticated. The formal-

ism developed here may prove useful in untangling ques-

tions about the potentially complex mechanisms underlying

these systems, particularly those described by nontrivial

kinetic schemes.

Note added in proof: Dr. Hongyun Wang (University of

California, Santa Cruz, Dept. Applied Mathematics and

Statistics) has furnished an elegant alternative derivation of

our Eq. 18 using conditional probabilities (unpublished).

REFERENCES

1. Sakmann, B., and E. Neher. 1984. Patch clamp techniques for study-
ing ionic channels in excitable membranes. Annu. Rev. Physiol. 46:
455–472.

2. Rueda, D., G. Bokinsky, M. M. Rhodes, M. J. Rust, X. W. Zhuang, and
N. G. Walter. 2004. Single-molecule enzymology of RNA: Essential
functional groups impact catalysis from a distance. Proc. Natl. Acad.
Sci. USA. 101:10066–10071.

3. Lipman, E. A., B. Schuler, O. Bakajin, and W. A. Eaton. 2003. Single-
molecule measurement of protein folding kinetics. Science. 301:1233–
1235.

4. Bokinsky, G., D. Rueda, V. K. Misra, M. M. Rhodes, A. Gordus, H. P.
Babcock, N. G. Walter, and X. Zhuang. 2003. Single-molecule transi-
tion-state analysis of RNA folding. Proc. Natl. Acad. Sci. USA. 100:
9302–9307.

5. Schuler, B., E. A. Lipman, and W. A. Eaton. 2002. Probing the free-
energy surface for protein folding with single-molecule fluorescence
spectroscopy. Nature. 419:743–747.

6. Zhuang, X., L. E. Bartley, H. P. Babcock, R. Russell, T. Ha, D.
Herschlag, and S. Chu. 2000. A single-molecule study of RNA catal-
ysis and folding. Science. 288:2048–2051.

7. Xie, X. S. 2002. Single-molecule approach to dispersed kinetics and
dynamic disorder: Probing conformational fluctuation and enzymatic
dynamics. J. Chem. Phys. 117:11024–11032.

8. van Oijen, A. M., P. C. Blainey, D. J. Crampton, C. C. Richardson, T.
Ellenberger, and X. S. Xie. 2003. Single-molecule kinetics of lambda
exonuclease reveal base dependence and dynamic disorder. Science.
301:1235–1238.

9. Ueno, T., H. Taguchi, H. Tadakuma, M. Yoshida, and T. Funatsu.
2004. GroEL mediates protein folding with a two successive timer
mechanism. Mol. Cell. 14:423–434.

10. Shaevitz, J. W., E. A. Abbondanzieri, R. Landick, and S. M. Block.
2003. Backtracking by single RNA polymerase molecules observed at
near-base-pair resolution. Nature. 426:684–687.

11. Yasuda, R., H. Noji, M. Yoshida, K. Kinosita Jr., and H. Itoh. 2001.
Resolution of distinct rotational substeps by submillisecond kinetic
analysis of F1-ATPase. Nature. 410:898–904.

12. Nishiyama, M., E. Muto, Y. Inoue, T. Yanagida, and H. Higuchi. 2001.
Substeps within the 8-nm step of the ATPase cycle of single kinesin
molecules. Nat. Cell Biol. 3:425–428.

2284 Shaevitz et al.

Biophysical Journal 89(4) 2277–2285



13. Svoboda, K., C. F. Schmidt, B. J. Schnapp, and S. M. Block. 1993.
Direct observation of kinesin stepping by optical trapping interferom-
etry. Nature. 365:721–727.

14. Mallik, R., B. C. Carter, S. A. Lex, S. J. King, and S. P. Gross. 2004.
Cytoplasmic dynein functions as a gear in response to load. Nature.
427:649–652.

15. Mehta, A. D., R. S. Rock, M. Rief, J. A. Spudich, M. S. Mooseker, and
R. E. Cheney. 1999. Myosin-V is a processive actin-based motor.
Nature. 400:590–593.

16. Rock, R. S., S. E. Rice, A. L. Wells, T. J. Purcell, J. A. Spudich, and
H. L. Sweeney. 2001. Myosin VI is a processive motor with a large
step size. Proc. Natl. Acad. Sci. USA. 98:13655–13659.

17. Yasuda, R., H. Noji, K. Kinosita Jr., and M. Yoshida. 1998. F1-
ATPase is a highly efficient molecular motor that rotates with discrete
120 degree steps. Cell. 93:1117–1124.

18. Rief, M., R. S. Rock, A. D. Mehta, M. S. Mooseker, R. E. Cheney, and
J. A. Spudich. 2000. Myosin-V stepping kinetics: a molecular model
for processivity. Proc. Natl. Acad. Sci. USA. 97:9482–9486.

19. Schnitzer, M. J., and S. M. Block. 1997. Kinesin hydrolyses one ATP
per 8-nm step. Nature. 388:386–390.

20. Neher, E., and C. F. Stevens. 1977. Conductance fluctuations and ionic
pores in membranes. Annu. Rev. Biophys. Bioeng. 6:345–381.

21. Visscher, K., M. J. Schnitzer, and S. M. Block. 1999. Single kinesin
molecules studied with a molecular force clamp. Nature. 400:184–189.

22. Block, S. M., C. L. Asbury, J. W. Shaevitz, and M. J. Lang. 2003.
Probing the kinesin reaction cycle with a 2D optical force clamp. Proc.
Natl. Acad. Sci. USA. 100:2351–2356.

23. Samuel, A. D., and H. C. Berg. 1995. Fluctuation analysis of rotational
speeds of the bacterial flagellar motor. Proc. Natl. Acad. Sci. USA. 92:
3502–3506.

24. Colquhoun, D., and F. J. Sigworth. 1983. Fitting and statistical analysis
of single-channel records. In Single-Channel Recordings. B. Sakmann
and E. Neher, editors. Plenum, New York. 191–263.

25. Hill, T. 1989. Free Energy Transduction and Biochemical Cycle
Kinetics. Springer-Verlag, New York.

26. Milescu, L. S., G. Akk, and F. Sachs. 2005. Maximum likelihood estima-
tion of ion channel kinetics from macroscopic currents. Biophys. J. 88:
2494–2515.

27. Schnitzer, M. J., and S. M. Block. 1995. Statistical kinetics of processive

enzymes. Cold Spring Harb. Symp. Quant. Biol. 60:793–802.

28. Derrida, B. 1983. Velocity and diffusion of a periodic one-dimensional

hopping model. J. Stat. Phys. 31:433–450.

29. Wang, H., C. S. Peskin, and T. C. Elston. 2003. A robust numerical

algorithm for studying biomolecular transport processes. J. Theor. Biol.
221:491–511.

30. Elston, T. C. 2000. A macroscopic description of biomolecular trans-

port. J. Math. Biol. 41:189–206.

31. Fisher, M. E., and A. B. Kolomeisky. 2001. Simple mechanochemistry

describes the dynamics of kinesin molecules. Proc. Natl. Acad. Sci.
USA. 98:7748–7753.

32. Harrison, P. G., and W. J. Knottenbelt. 2002. Passage time distri-

butions in large Markov models. ACM SIGMETRICS Performance
Evaluation Review. 30:77–85.

33. Svoboda, K., P. P. Mitra, and S. M. Block. 1994. Fluctuation analysis

of motor protein movement and single enzyme kinetics. Proc. Natl.
Acad. Sci. USA. 91:11782–11786.

34. Feller, W. 1971. An Introduction to Probability Theory and Its Appli-

cations, 2nd ed. J. Wiley and Sons, New York.

35. Shimabukuro, K., R. Yasuda, E. Muneyuki, K. Y. Hara, K. Kinosita

Jr., and M. Yoshida. 2003. Catalysis and rotation of F1 motor: cleavage

of ATP at the catalytic site occurs in 1 ms before 40 degree substep

rotation. Proc. Natl. Acad. Sci. USA. 100:14731–14736.

36. Perkins, T. T., R. V. Dalal, P. G. Mitsis, and S. M. Block. 2003.

Sequence-dependent pausing of single lambda exonuclease molecules.

Science. 301:1914–1918.

37. Artsimovitch, I., and R. Landick. 2000. Pausing by bacterial RNA

polymerase is mediated by mechanistically distinct classes of signals.

Proc. Natl. Acad. Sci. USA. 97:7090–7095.

38. Shundrovsky, A., T. J. Santangelo, J. W. Roberts, and M. D. Wang.

2004. A single-molecule technique to study sequence-dependent tran-

scription pausing. Biophys. J. 87:3945–3953.

39. Mehta, A. 2001. Myosin learns to walk. J. Cell Sci. 114:1981–1998.

40. Kolomeisky, A. B., and M. E. Fisher. 2003. A simple kinetic

model describes the processivity of myosin-V. Biophys. J. 84:1642–
1650.

Statistical Kinetics 2285

Biophysical Journal 89(4) 2277–2285


