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We postulate that a simple, three-state synaptic switch governs changes
in synaptic strength at individual synapses. Under this switch rule, we
show that a variety of experimental results on timing-dependent plasticity
can emerge from temporal and spatial averaging over multiple synapses
and multiple spike pairings. In particular, we show that a critical win-
dow for the interaction of pre- and postsynaptic spikes emerges as an
ensemble property of the collective system, with individual synapses
exhibiting only a minimal form of spike coincidence detection. In addi-
tion, we show that a Bienenstock-Cooper-Munro–like, rate-based plastic-
ity rule emerges directly from such a model. This demonstrates that two
apparently separate forms of neuronal plasticity can emerge from a much
simpler rule governing the plasticity of individual synapses.

1 Introduction

In addition to standard, rate-based long term potentiation (rLTP) (Bliss &
Lømo, 1973; Gustafsson, Wigström, Abraham, & Huang, 1987; Dudek &
Bear, 1992), a second form of activity-dependent synaptic plasticity gov-
erned by the exact timing of pre- and postsynaptic stimulation has recently
been shown to operate in the nervous system (for review, see Roberts & Bell,
2002). This form of plasticity is widespread, appearing in the hippocam-
pus (Bi & Poo, 1998; Debanne, Gähwiler, & Thompson, 1998), visual path-
way (Zhang, Tao, Holt, Harris, & Poo, 1998), neocortex (Markram, Lübke,
Frotscher, & Sakmann, 1997; Egger, Feldmeyer, & Sakmann, 1999; Feldman,
2000; Froemke & Dan, 2002), and even the electric fish electrosensory lobe
(Bell, Han, Sugawara, & Grant, 1997). A critical window for the interaction
of the pre- and postsynaptic events is seen, with separations greater than
around 50 ms failing to evoke any change. Within this window, the degree
of modification is a function of the spike timing, and the phenomenon has
become known as timing-dependent LTP (tLTP). In most cases, presynap-
tic spiking followed by postsynaptic spiking (positively correlated spiking)
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leads to potentiation, while reversing the order of spiking (negatively cor-
related spiking) leads to depression (but see Bell et al., 1997). Several vari-
ations have been observed in vivo and in vitro, with marked differences in
the width of the critical window (Debanne et al., 1998), degree of potenti-
ation and depression (Egger et al., 1999), or polarity of change (Bell et al.,
1997).

In theoretical studies, the potentiation and depression phases of the tLTP
modification curve have mainly been approximated by two exponential
functions with different amplitudes, polarities, and decay constants, and
then applied directly as a rule to determine changes in synaptic strength.
This carries with it the implicit assumptions that the tLTP curve is valid at
each individual synapse and that all the synapses making up the overall con-
nection evolve similarly. In conjunction with certain constraints, this method
can give rise to stable distributions of synaptic efficacies with competitive
dynamics either emerging directly or introduced by synaptic scaling (Song,
Miller, & Abbott, 2000; van Rossum, Bi, & Turrigiano, 2000; Izhikevich &
Desai, 2003). If the tLTP rule really is implemented at individual synapses,
then each synapse must possess machinery capable of resolving pre- and
postsynaptic spike timing with millisecond accuracy. Although mechanisms
capable of operating as coincidence detectors may be present at the synapse,
it is not clear that they can resolve spike timing with the level of accuracy
needed by these models. Other models of tLTP have been built using a more
biophysical approach, employing the idea that the NMDA receptor may
serve as the required molecular coincidence detector (Castellani, Quinlan,
Cooper, & Shouval, 2001; Karmarkar & Buonomano, 2002; Shouval, Bear, &
Cooper, 2002). However, these models can be rather sensitive to the choice
of parameters and sometimes predict a rarely observed, extra depressive
phase at large spike timings (but see Nishiyama, Hong, Mikoshiba, Poo, &
Kato, 2000). Experimental results based on spike triplet and quadruplet in-
teractions (Froemke & Dan, 2002) instead of spike pair interactions demon-
strate, moreover, that such interactions evoke changes in overall synaptic
strength that are inconsistent with a simple, additive model employing the
tLTP rule on the embedded spike pair sequences. Modifying the simple tLTP
model to include constraints on spike interactions such as spike suppression
does, however, allow the triplet and quadruplet results to be accommodated
(Froemke & Dan, 2002).

These various approaches to tLTP, although widely adopted, should be
viewed with some caution. The experimental evidence for tLTP involves
measuring the change in the overall connection strength between pre- and
postsynaptic cells after many spike pairings. However, this overall change
could arise, for example, from some simpler plasticity rule operating at
individual synapses, and only when the change in the overall strength
is viewed as a spatial and temporal average over these many individual
changes might the overall change appear to follow a tLTP-like rule. That
is, the tLTP curve may be an emergent, ensemble property of synapses but
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not actually instantiated at any individual synapse. Here we postulate such
a rule governing individual synaptic changes and show that the observed
tLTP curve can indeed emerge as a temporal and spatial average over mul-
tiple synapses and multiple spike pairings. The rule is robust under highly
variable spike timings and eliminates the need for synapses to exhibit mil-
lisecond resolution coincidence detection. An explanation of spike triplet in-
teractions emerges as a natural consequence of its structure, with no need to
introduce additional constraints. We also show that a Bienenstock-Cooper-
Munro (BCM)–like (Bienenstock, Cooper, & Munro, 1982), rate-based plas-
ticity rule emerges directly from such a model.

2 Formulation of Model

We now construct an activity-dependent synaptic plasticity rule that gov-
erns changes at individual synapses in response to pre- and postsynaptic
spiking. We propose that a positively correlated spike pair will potentiate a
given synapse by a fixed amount A+, subject only to the requirement that
the postsynaptic spike occurs within a finite time window relative to the
presynaptic spike. Outside this time window, the postsynaptic spike does
not evoke any change in synaptic strength. The duration of this time win-
dow is not fixed, but is taken to be a stochastic quantity governed by some
probability distribution. This simple modification rule could be embodied
by some biological, synaptic switch mechanism. The arrival of a presynap-
tic spike activates some process that elevates the synapse into a different
functional state. The arrival of a postsynaptic spike while this process is still
active, and the synapse is still in the elevated state, induces potentiation
of the synapse by a fixed amount A+. The postsynaptic spike is also taken
to deactivate the process. In the absence of postsynaptic firing, the process
will naturally deactivate in a stochastic, random manner, and subsequent
postsynaptic spiking will not evoke a change in synaptic strength unless
preceded by further presynaptic spiking.

We label the resting state of the synapse as the OFF state. The elevation
of the synapse into a different functional state, due to the arrival of a presy-
naptic spike, is represented by a transition to a different state that we label
the POT state. While in the POT state, additional presynaptic spiking has
no further effect. If, on the other hand, a postsynaptic spike occurs while
the switch is in the POT state, then the switch is immediately returned to the
OFF state via the transition POT → OFF. This transition is defined to induce
an associated potentiation of synaptic strength of A+. In the absence of fur-
ther spiking, the switch will move from the POT state back to the OFF state
in a stochastic manner, governed by some probability distribution. We refer
to transitions triggered by pre- or postsynaptic spiking as active transitions,
while those that occur stochastically are referred to as passive transitions.
This abstracted rule is represented in Figure 1A, with semicircles repre-
senting active transitions and wavy lines representing passive transitions.
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Figure 1: The simplest, self-consistent forms that the proposed synaptic switch
can take, and its resulting plasticity rule. (A) The states and transitions that must
exist in a switch accommodating the timing-dependent induction of LTP due
to pre- and postsynaptic spiking. (B) Same as A but for the induction of LTD.
(C) A unified three-state synaptic switch that can exhibit both LTP and LTD. (D)
Change in synaptic strength evoked under the unified three-state switch for a
representative spike pair at various spike timings. The arrows ⇑ and ⇓ indicate
the induction of potentiation and depression, respectively.

The active transition POT → OFF is the only transition capable of inducing
potentiation of synaptic strength.

To account for depression of synaptic strength under negatively corre-
lated spiking, a second synaptic switch is postulated (see Figure 1B). This
switch behaves in a similar manner to the one just described, except here,
postsynaptic spiking triggers the initial active transition to a different func-
tional state OFF → DEP. When in the DEP state, further postsynaptic spik-
ing has no effect, but a presynaptic spike will trigger the active transition
DEP → OFF with an associated decrease in synaptic strength, by an amount
A−. The stochastic, passive transition DEP → OFF returns the switch to the
OFF state in the absence of further spiking.

These two switch mechanisms adequately describe a step change in syn-
aptic strength in response to positively or negatively correlated spiking. The
two switches could exist independently, but we can unify them into a single,
three-state synaptic switch (see Figure 1C). The parameters of this three-state
switch are not necessarily symmetric, which in biological terms reflects the
possible independence of the processes activated by pre- or postsynaptic
firing when the synapse is in the OFF state. The modification induced by
a representative spike pairing at various spike time differences is plotted
in Figure 1D. The switch rule gives rise to a modification in accordance
with a two-step function of fixed step heights, A±. The two random step
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widths, t±, are governed by the probability distributions that describe the
passive transitions POT → OFF and DEP → OFF. If this hypothetical spike
pairing were repeated, then the widths t± would likely take different values,
giving rise to a different “critical window.” It is important for our model
that the magnitude of synaptic plasticity, represented by the heights of the
two step functions, is not dependent on the difference in spike times. The
level of coincidence detection required is therefore minimal, as the synapse
is required only to record the occurrence of a pre- or postsynaptic spike, not
the precise time of occurrence. Although additional states and transitions
may freely be added, we find that this simple, self-consistent, three-state
switch is all that is required to reproduce a variety of tLTP results.

We assume that an afferent makes multiple synapses onto a target cell.
The overall strength of the connection between the two cells is defined, for
simplicity and according to the usual convention, to be the linear sum of
each individual synaptic strength. The synapses are treated independently,
which, due to the stochastic nature of the synaptic modification rule, means
that the synapses comprising a connection will often be in different states.
It is therefore the spatial average over synapses, and the temporal average
over spike pairs, that determines the overall change in connection strength.

3 Analysis of Model

For notational convenience, we denote a presynaptic spike by the symbol π

and a postsynaptic spike by the symbol p. Pre- and postsynaptic firing are
assumed to be independent Poisson processes with rates λπ and λp, respec-
tively, and we set β = λπ + λp. Because they are independent, the combined
pre- and postsynaptic spike sequences form a single Poisson process of over-
all rate β. For a Poisson process of rate λ, the inter-event time (the “waiting
time”) is an exponentially distributed random variable with parameter λ,
and thus, in particular, the waiting time between any two spikes is exponen-
tially distributed with parameter β and has the probability density function
fT (t) = βe−βt . For any given spike in the combined train, the probability that
it is presynaptic is λπ/β, and the probability that it is postsynaptic is λp/β.

Here we restrict our analysis to spike trains consisting of two spikes only,
so that a two-spike train can manifest itself as one of four possible sequences:
ππ , πp, pπ , or pp. The probability of observing a particular spike pattern i j ,
where i, j ∈ {π, p}, is then just pi j = λiλ j/β

2. Longer spike trains are inves-
tigated numerically in section 4. Despite the more complicated nature of the
higher-order interactions between multiple spikes, our results for longer
spike trains share characteristics similar to those for the two-spike case.

Under a specific spike pattern, modification of synaptic strength may or
may not occur, depending on the state of the switch when the second spike
arrives. We therefore seek an expression for the expected change in synaptic
efficacy induced by a single spike pair under our switch rule. The spike
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patterns ππ and pp cannot cause a change in synaptic strength under our
switch rule, so we need only to consider the πp and pπ patterns. Consider
the πp pattern. The initial presynaptic spike triggers the active transition
OFF → POT. The switch remains in the POT state until either the arrival of
the postsynaptic spike or the occurrence of a stochastic, passive transition.
In either case, the switch will be returned to the OFF state, but the active
transition triggered by the postsynaptic spike will also induce a change in
synaptic strength. We therefore require the probability that the switch is still
ON when the postsynaptic spike arrives. We assume that the probability
density function f�(t) for the passive transition POT → OFF is given by a
gamma probability density function of integer order n+,

f�(t) = (t/τ+)n+−1

(n+ − 1)!
1
τ+

exp(−t/τ+), (3.1)

where τ+ is the characteristic timescale associated with this switching pro-
cess. As n+ is an integer, this is equivalent to requiring the deactivation
of n+ independent exponential decay processes. These processes could, for
example, represent the activation of n+ independent signaling pathways in
response to presynaptic spiking, all of which must deactivate for the switch
to be considered OFF. The probability that the transition POT → OFF has
occurred after a time t is then

P+
OF F (t) =

∫ t

0
dt′ f�(t′) = 1 − e−t/τ+ en+ (t/τ+), (3.2)

where en(t/τ ) = ∑n−1
i=0 (t/τ )i/ i !. The probability that the switch is ON after a

time t is then P+
ON(t) = e−t/τ+ en+ (t/τ+). The mean change in synaptic efficacy

triggered by theπp spike pair of time difference t is the amplitude of synaptic
plasticity, A+, multiplied by the chance that the switch is still ON at time t
after the first spike, P+

ON(t). Thus, the conditional expectation value for the
change in synaptic efficacy, �Sπp(t), given a πp spike time interval t, is just

�Sπp(t) = +A+ P+
ON(t). (3.3)

Similarly, an identical argument for the pπ sequence gives us

�Spπ (t) = −A− P−
ON(t), (3.4)

where P−
ON is identical to P+

ON, except that n+ and τ+ are replaced by n−
and τ−, these being the parameters specifying the gamma distribution for
the DEP → OFF stochastic transition. A representative plot of �Sπp(t) +
�Spπ (−t) as a function of spike time difference, t, is shown in Figure 2, with
negative t corresponding to a pπ sequence and positive t corresponding
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Figure 2: The expected change in synaptic strength as a function of the spike
time difference t, from equations 3.3 and 3.4.

to πp sequence. Motivated by simplicity, and for approximate agreement
with experimental data (Bi & Poo, 1998), we show the case where A+ =
A− = 1, n+ = n− = 3 and τ− = τ+ = 20 ms. The form illustrated is relatively
insensitive to the exact choice of parameters.

We may now obtain the unconditional expectation value for the synaptic
modification arising from any pattern of two spikes, regardless of the spike
time interval and the particular spike pattern. For the pattern i j , we weight
its conditional expected synaptic change �Si j by the probability of the pat-
tern, pi j , and we integrate out the spike times according to their probability
density functions. The unconditional expection is given by the sum over all
such patterns, so that

E[�S] =
∑

i, j∈{π,p}
pi j

∫ ∞

0
dt1 fT (t1)

∫ ∞

0
dt2 fT (t2)�Si j (t2), (3.5)

where, of course, �Sππ (t) = �Spp(t) = 0. Defining

J±(λ) = 1 − 1
(1 + λτ±)n±

, (3.6)

we finally obtain

E[�S] = λπλp

β2 [A+ J+(β) − A− J−(β)] (3.7)

as the expected synaptic change arising from any two-spike sequence.
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This equation is an analytical expression for the expected change in syn-
aptic efficacy induced by a two-spike train at given pre- and postsynaptic
firing rates, λπ and λp. In the limit of large λπ and λp in equation 3.7, we have
that E[�S] ∝ (A+ − A−). The sign of this expression indicates whether po-
tentiation or depression of synaptic strengths is expected for high pre- and
postsynaptic firing rates. Experimental work on rLTP shows that high pre-
and postsynaptic firing rates generally lead to LTP (Sjöström, Turrigiano,
& Nelson, 2001). This requires that E[�S] > 0 for large λπ and λp, that
is, A+ > A−. However, to be able to generate competitive dynamics, we
also require a depressive phase where E[�S] < 0; otherwise, synapses can
never weaken on average. Putting λp = λπ , and maintaining the require-
ment that A+ > A−, a sufficient condition is that ∂E[�S]/∂λπ |λπ ,λp=0 < 0.
As E[�S]|λπ ,λp=0 = 0, this guarantees the presence of a depressive region.
This produces a second constraint,

γ = A+n+τ+
A−n−τ−

< 1, (3.8)

which we interpret as depression dominating over potentiation. An identi-
cal condition has been observed, but not mathematically derived, for simu-
lations of exponential-like tLTP plasticity rules in the context of generating
dynamics that give rise to bimodal synaptic distributions (Song et al., 2000).
Empirical work has also shown it to be a requirement for a BCM-like learn-
ing rule to emerge on average from such rules (Izhikevich & Desai, 2003).
Here, we have shown that requiring our switch rule to maintain, on aver-
age, a BCM-like learning rule leads to mathematically derivable constraints.
Whether the presence of a depressive regime, for which γ < 1, guarantees
the presence of competitive dynamics in our switch rule, is an issue that we
shall explore elsewhere.

We set A+ = 1 and A− = 0.95, in accordance with the condition that
A+ > A−, and choose n+ = n− = 3, as before. Setting τ− = 20 ms and choos-
ing γ determines the remaining parameter τ+. We also assume that the post-
synaptic firing rate λp is linearly related to the presynaptic rate λπ once it
exceeds a value η, so that

λp =
{

λπ − η for λπ ≥ η

0 for λπ < η
, (3.9)

and we set η = 5 Hz. Varying the presynaptic firing rate λπ produces the
family of curves shown in Figure 3 for different values of γ . When γ < 1,
we observe that the behavior is qualitatively BCM-like, with a depressive
phase at low presynaptic firing rates followed by a transition to potentiation
as a threshold is passed. We find exact agreement, presented in section 4,
between this analytical result and numerical simulation of two-spike trains.
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Figure 3: The expected change in synaptic strength due to a single pair of spikes,
for values of γ shown attached to each curve. The pre- and postsynaptic cells
fire according to a Poisson process.

For longer spike trains, equation 3.7 represents the expected change induced
by any pair of spikes, not the expected change induced by all spike inter-
actions in these processes. Nevertheless, for longer spike trains, the total
change induced by multiple spike interactions is of a qualitatively similar
character, as we will show in section 4. An important feature of the BCM
model (Bienenstock et al., 1982) is the sliding of the potentiation threshold
in response to changes in the postsynaptic firing rate (Kirkwood, Rioult,
& Bear, 1996; Philpot, Espinosa, & Bear, 2003). As the analytical expression
shows, a threshold emerges from our model that is a function of various,
easily modifiable parameters. Allowing some of these parameters to de-
pend on the recent time average of postsynaptic firing, in a manner similar
to other modeling approaches, would capture the sliding threshold of the
BCM rule in a satisfactory way.

4 Results

We now turn to numerical simulation to study the behavior of a single affer-
ent innervating a single target cell. The connection between the afferent and
target cells is assumed to comprise multiple synapses, which individually
obey the stochastic switch rule set out above. The tLTP curve governing
changes in overall connection strength emerges from the averaged effect
of our synaptic switching rule. This averaging process can take place over
multiple synapses or, equivalently, multiple spike pairings. We choose to
simulate 10 synapses per afferent. This is partly so that an averaging pro-
cess can be observed even with single spike pairs, but also to show that
the synapses comprising a connection can often be in different states and
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undergo different modifications while still giving rise to the tLTP curve
when viewed as an ensemble. As the stimulation protocols used involve
many spike pairings, the simulations can, in fact, be repeated with just one
synapse. The averaging process then occurs at this one synapse over many
events, and the results are qualitatively similar.

A typical tLTP or rLTP experimental protocol relies on evoking pre- and
postsynaptic action potentials in synaptically coupled cells. In both cases,
the normal function of a synapse as a propagator of neuronal activity is sup-
pressed, with external current injections typically used to achieve spiking
on demand. In our simulations, as in the experimental procedures, afferent
and target cell spiking is assumed to be driven by an external force. Presy-
naptic spiking does not contribute to postsynaptic spiking in any way, and
simulation of any kind of integrate-and-fire target cell is not required.

Due to a high level of variability, the majority of experimental data on
tLTP describes relative changes in connection strength. Multiple spike pair-
ings are needed to evoke a statistically significant change in overall con-
nection strength. We adopt a similar approach by defining the combined
initial synaptic strength of the input afferent to be equal to 1, and then
scaling the magnitudes of synaptic plasticity, A+ and A−, to reproduce the
measured relative change in overall connection strength under a particular
experimental protocol.

4.1 Spike-Based Results. In order to examine the timing dependence
of our rule, we implement a particular experimental protocol that has been
shown to evoke tLTP-like changes in embryonic rat hippocampal cultures
(Bi & Poo, 1998). This protocol is typical of timing-based LTP experiments,
and our parameters are chosen to reflect the main features of these data. As
described above, we set n+ = n− = 3, A+ = 1.00, A− = 0.95, and τ− = 20 ms.
Choosingγ = 0.70 generates a value for τ+ = γ A−τ−/A+ 	 13 ms. The mag-
nitudes of synaptic plasticity, A+ and A−, set the overall scale for synaptic
modifications. To match the experimental data, we require that the maxi-
mum possible relative change in overall connection strength evoked by 60
spike pairings is approximately ±1. We therefore require a scaling factor
of 60 to be applied to the magnitudes of synaptic modification, and we set
A+ = 1.00/60 and A− = 0.95/60 accordingly. This scaling has no other effect
beyond producing a simulated change in overall connection strength equal
to the experimentally observed value, and the dynamics of the synaptic
switch are unchanged. Noise in the timing of spikes, reflecting both ex-
perimental error and variable transmission times, is drawn from a gaussian
distribution with standard deviation of 1 ms. The spike pairing protocol con-
sists of 60 pairings at 1 Hz applied at time differences ranging from −80 ms
to +80 ms (Bi & Poo, 1998). The averaging of the synaptic modification rule
over multiple synapses and pairings gives an overall change in connec-
tion strength that has two exponential-like phases, plotted in Figure 4. This
change is consistent with experimental data (Bi & Poo, 1998), with polarity
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Figure 4: Simulated total change in overall connection strength as spike timing
varies.

depending only on the signs of A±. These simulation results agree with
the analytical expressions and are qualitatively unchanged for any realis-
tic level of temporal gaussian noise with a standard deviation σ ≤ 10 ms.
The parameters τ± determine the width of the temporal window—as τ±
increase, spike pairings at greater time differences begin to evoke a signif-
icant change in synaptic efficacy. As discussed above, A± determine the
maximum amplitude of plasticity, evoked when the time difference is very
small. Adjustment of these parameters produces a family of tLTP curves
that can reproduce a variety of experimental results without altering the
basic characteristics, such as the exponential-like slopes, of the curve.

A number of more complicated spike patterns, including triplets and
quadruplets, have been explored in experimental preparations (Froemke &
Dan, 2002). In the case of spike triplets, the experimental protocols are very
similar to that of spike pairings, but instead of one pre- and one postsynaptic
spike, an additional third spike (either pre- or postsynaptic) is introduced.
We reproduce the experimental protocol exactly, repeating a particular stim-
ulation pattern 60 times at 0.2 Hz. The parameters are the same as for the
spike pairing simulations, and the results are set out in Table 1. The simu-
lated results for the spike-triplet protocols are in close agreement with ex-
periment (Froemke & Dan, 2002), a result that cannot be reproduced under
other modification rules without additional constraints on spike interaction
such as spike suppression (Froemke & Dan, 2002). Under earlier models of
tLTP, spike triplets were treated as two separate spike pairings that individ-
ually obeyed a tLTP-like modification curve. Their linear addition gives a
predicted change that is not in agreement with experimental data. Here, the
switch provides a mechanism, in the form of the passive transitions to the
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Table 1: Experimental and Simulated Effect of Spike Triplets and Quadruplet.

Pattern Timing (ms) Experiment Simulation

πpπ 2.6/6.0 ↑ +1.00
pπp 6.5/0.5 ↓ −0.94
πppπ 8.8/10.6/9.6 ↑ +0.03
pππp 7.9/9.6/9.0 ↓ +0.03

Notes: The first column gives the spiking patterns (a presynaptic spike is
denoted by π and a postsynaptic spike by p). The second column gives
the spike time differences for the patterns. The third column gives an indi-
cation of the experimental measurement (Froemke & Dan, 2002); upward
arrows indicate potentiation, and downward arrows indicate depression.
The fourth column gives our simulated results.

OFF state, under which a triplet can evoke a change with a sign opposite
to that predicted by such linear addition of pairings respecting the tLTP
curve. With two presynaptic spikes and one postsynaptic spike, the first
presynaptic spike moves the switch into the POT state. If the postsynaptic
event occurs in a timely fashion, it will move the switch back to the OFF
state and trigger an increase in synaptic strength. In this case, the second
presynaptic event will move the switch to only the POT state, and this does
not trigger any change in synaptic strength. If, however, the postsynaptic
event occurs too late and the switch has already returned to the OFF state via
a passive transition, then the switch will instead be moved to the DEP state.
In this case, the second presynaptic event moves the switch back to OFF
and triggers a depression of synaptic efficacy. It is the choice of parameters
describing the switch, A±, n±, and τ±, that determines the average outcome
for a given protocol. In fact, the parameters chosen roughly to reflect sim-
ple spike pairing results are sufficient to accommodate spike triplets. This
explanation of triplet interactions emerges as a natural consequence of the
switch rule, with no need for modifications or additional constraints.

In the case of spike quadruplets, comprising of two pre- and two post-
synaptic spikes, the switch rule leads to potentiation under both of the
protocols set out in Table 1. This is not in agreement with the experimen-
tal results, where the second quadruplet protocol leads to depression. It
is possible to accommodate the quadruplet results, leaving the pair and
triplet results unchanged, by replacing the active transitions POT → OFF
and DEP → OFF with active POT → POT and DEP → DEP transitions, re-
spectively. However, such a modification of our switch rule destroys the
stability of the rate-based limit (unpublished results), and this seems to be
a high price to pay to account for results whose significance is currently
unclear.

4.2 Rate-Based Results. Induction of LTP using a rate-based protocol
was simulated by driving the presynaptic cell at a fixed frequency (ranging
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Figure 5: Change in overall connection strength, per pair of spikes, for simulated
two-spike trains, as a function of presynaptic firing rate. The solid line shows
the corresponding analytical result.

from 0–200 Hz) governed by a Poisson process, as set out above. The post-
synaptic cell fires in a similar, Poisson manner, with frequency given by
equation 3.9. This suppresses postsynaptic firing at very low presynaptic
rates, as would be expected in a real system with many inputs. The cells
are decoupled in the sense that presynaptic firing does not influence the
postsynaptic cell membrane potential in any way, thus reproducing a typi-
cal experimental protocol in which two cells are held in current clamps and
current injections are used to induce spiking (Bi & Poo, 1998). The param-
eters are identical to the spike-pairing simulations. In order to verify our
analytical results, we first simulate the effect of pairs of spikes by truncating
the simulation after the first pair of events. Each pair of events can therefore
consist of two presynaptic spikes, two postsynaptic spikes, or one of each.
The average, overall connection change after a total of 106 total spikes is
shown in Figure 5, as a function of the presynaptic firing rate. We see exact
agreement between the simulated two-spike interaction and the analytically
derived result, equation 3.7.

The two-spike results consider spike trains containing exactly two events,
the interactions of which give rise to a BCM-like change in the overall con-
nection strength. An identical change will arise from the interaction of any
pair of spikes in a train provided that the synapse is in the OFF state. How-
ever, when longer pre- and postsynaptic spike trains are considered, further
spike interactions may occur, and it is important to show that the qualitative
form of the two-spike learning rule is unchanged by these higher-order cor-
rections. We therefore simulate longer spike trains, of 50 and 100 spikes. The
total change in overall connection strength then arises from a summation
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Figure 6: Change in overall connection strength, per pair of spikes, for simu-
lated trains of 50 spikes (vertical crosses) and 100 spikes (diagonal crosses), as
a function of presynaptic firing rate. The change per pair of spikes for a 50-
spike train is almost identical to that for the 100-spike train. Also shown for
comparison is the analytical two-spike result, represented by the solid line.

of the many individual transitions that occur. The simulated overall con-
nection change per spike pair, averaged over many such trains, is shown in
Figure 6, allowing a direct comparison to the two-spike train result, which
is also shown. An averaged, BCM-like plasticity rule emerges in all cases.
The 50- and 100-spike trains give an average change per spike pair that
is different from that calculated for simple two-spike trains, reflecting the
influence of higher-order interactions between the spikes, but the results
are nevertheless qualitatively similar. The higher-order interactions are of
smaller and smaller significance, with the average change in connection
strength per pair of spikes converging to a limiting value as the number of
spikes in a train grows large. Thus, as intuitively expected, if we were to
plot the total change after the 100-spike train, it would simply be twice the
total change after the 50-spike train.

5 Discussion

Spike-timing-dependent plasticity has received considerable attention in
recent years. From a modeling perspective, two broad approaches to this
novel form of synaptic plasticity have been adopted. The first approach
assumes that the observed tLTP curves are an accurate description of the
synaptic plasticity rule operating at each individual synapse between an
afferent and its target (Song et al., 2000; van Rossum et al., 2000). The com-
putational consequences of such an assumption are then determined. The
second approach does not take the rules over directly, but rather attempts



2330 P. Appleby and T. Elliott

to derive them from a more detailed, biophysically plausible analysis of the
molecular machinery present in synapses (Castellani et al., 2001; Karmarkar
& Buonomano, 2002; Shouval et al., 2002). Although the second approach
promises a deeper and more general understanding, models of this type are
commonly beset by a variety of problems, including sensitivity to parame-
ter choices and the prediction of an extra depression window for large spike
time differences. Common to both approaches is the view that tLTP must be
valid, at some level, at individual synapses for a single spike pair. Hence,
individual synapses in such models are required to represent in some form
the spike timing difference and adjust their strengths accordingly.

In contrast, we consider that the experimental data for tLTP cannot be
divorced from the experimental protocols used to obtain them. Rarely are
monosynaptically coupled pairs of neurons studied, so that the changes
in synaptic efficacy that are observed are mostly the results of the many
changes in the strengths of the individual synapses that constitute the over-
all synaptic connection between afferent and target. Furthermore, the data
are always obtained from a protocol in which multiple spike pairings are
employed (Bi & Poo, 1998). Although it is entirely possible that the ob-
served tLTP curves are, in fact, respected by individual synapses during
a single spike pairing, so that the experimental averaging procedure over
both multiple synapses and multiple spike pairings does faithfully report
the underlying plasticity rule, we have instead sought to determine whether
the observed tLTP rule can, in fact, arise from the synaptic and temporal av-
erage of individual synaptic changes respecting a much simpler plasticity
rule.

In this letter, we have indeed shown that such an alternative view is
viable. The resulting model is susceptible to some degree of understanding
and analysis, and very much reduces the computational demands placed
on synapses. We have postulated that an individual synapse, when pre-
sented with a pre- and postsynaptic spike pair, adjusts its synaptic strength
by a constant positive or negative jump or does not change its strength at
all. Our hypothetical synapse is therefore required only to record the oc-
currence of a pre- or postsynaptic event and adjust its strength by a fixed
amount if an appropriate spike is generated in a timely fashion. Provided
that the synapse destroys this record in some stochastic manner, so that the
trace is short-lived, we have shown that we can derive the tLTP rule directly.
Thus, a simple synaptic modification rule can indeed give rise directly to a
much more complex tLTP rule. The tLTP rule can thus be viewed as an av-
erage, ensemble, emergent property of neurons, where the average is over
either multiple synapses or multiple spike pairings (or both). Such a view is
analogous, for example, to the relationship between thermodynamics and
statistical mechanics in physics. The gas laws, such as Boyle’s law, are not
followed by individual gas molecules, but rather emerge, statistically, from
the underlying motions of molecules following Newton’s laws. Tempera-
ture and pressure are not intrinsic properties of individual gas molecules,
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but emerge as properties of the collective system. Just so, we propose that
tLTP is not an intrinsic property of individual synapses, but emerges as
an ensemble property when much simpler rules are averaged over many
synapses and over many spike pairs.

Our switch rule also provides a mechanism by which spike triplets may
naturally give rise to an overall change in connection strength similar to
that observed in experiment. Under typical tLTP models (Song et al., 2000)
this result can be achieved by introducing additional nonlinearities, such
as spike suppression (Froemke & Dan, 2002). In our model, once a synapse
is in, say, the POT state, this state cannot be changed by further presynap-
tic spikes until the synapse returns to the OFF state. In a strict sense, the
synapse suppresses the effect of these subsequent presynaptic spikes, but
this nonlinearity is of a rather different form from that proposed by Froemke
and Dan (2002), in which the values of A+ and A− are scaled depending on
the spike history.

A biophysical implementation of a simple tTLP rule based around
NMDA receptor dynamics has also been proposed (Senn, Markram, &
Tsodyks, 2001). It is hypothesized that a fixed population of NMDA recep-
tors undergoes transitions between three different functional states depen-
dent on pre- and postsynaptic spiking. Spike times are encoded by allowing
activated NMDA receptors individually to decay back to the unactivated
state. The proportion of the population of the NMDA receptors remaining
in the activated state determines the adjustment to the synaptic strength in
a graded, continous manner. Such a model can reproduce a variety of tLTP
results. Under our switch rule, we propose a superficially similar three-state
switch mechanism, but it is the entire synapse that enters different functional
states rather than individual NMDA receptors. Moreover, the synapse ad-
justs its strength in a fixed, all-or-none manner. The observed tLTP rule in
our model is therefore an emergent property of the whole set of synapses,
with single synapses obeying a much simpler rule.

We have deliberately presented our switch rule in the simplest form pos-
sible that is consistent with a variety of spike-timing data. This permits a
degree of analytical understanding of the rule, enabling us to determine the
properties of the model without resorting to a purely numerical approach.
Although our switch rule does indeed accommodate a wide range of exper-
imental results, it is unrealistic to expect our model to be comprehensive at
this stage. We note, in particular, that the frequency dependence of the tLTP
observed in neocortical pyramidal cells (Markram & Tsodyks, 1996) is not
captured by our model in its present form. We will explore this, and similar
issues, in future work.

Here we have referred to spatial (and temporal) averaging and have
used standard probability theory to calculate, in an exact rather than ap-
proximate manner, the average change in synaptic efficacy either over time
or over a large number of synapses, where the averaging arises due to the
probabilitistic nature of our proposed switch mechanism and the intrinsic
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stochasticity of Poisson spike trains. In mean field approaches (Kistler & van
Hemmen, 2000; Gerstner, 2001; Kempter, Leibold, Wagner, & van Hemmen,
2001; Senn, 2002), quantities are replaced by their local spatial averages so
that the resulting approximate equations are more analytically tractable.
However, the averaging in our model is exact and real, in the sense that
we are proposing that real experiments actually measure these average,
emergent properties of neurons.

We have also shown that a BCM-like rate-based rule (rather than spike-
based rule) can be formally derived from our model. This derivation requires
no further assumptions and produces two explicit constraints on the choice
of parameters. First, in order to generate LTP when both pre- and postsy-
naptic firing rates are high, we require that A+ > A−. That is, the level of
potentiation induced under our switch rule by a presynaptic spike followed
by a postsynaptic spike must be greater than the level of depression induced
when the spike order is reversed. Second, in order to generate LTD at low
firing rates, we require that γ = (A+n+τ+)/(A−n−τ−) < 1. This may be inter-
preted as depression dominating over potentiation. An identical condition
has been observed to be a requirement for generating bimodal synaptic dis-
tributions under a simple, additive tLTP rule (Song et al., 2000) and in other
models too (Gerstner, 2001; Kempter et al., 2001). The conditions for the
derivation of BCM-like rules from tLTP rules have also been studied (Senn
et al., 2001; Izhikevich & Desai, 2003; Burkitt, Meffin, & Grayden, 2004), it
being found that by restricting spike interactions, BCM-like rules may be
derived from a variety of tLTP models.

Again, BCM implementations have usually been considered at the level
of individual synapses, with the synapse required to perform complex com-
putations, possibly represented at some abstract level, to determine the mag-
nitude and direction of change of synaptic strength. However, the BCM-like
rule we see arising from our switch rule is an emergent property that does
not place such burdens on each synapse. In fact, the BCM-like rule in our
model is “doubly” emergent, requiring first the emergence of the tLTP rule.
Mathematically, this tLTP rule takes the form of a conditional expectation
value for synaptic change, conditional, that is, on a given spike time dif-
ference. Second, to turn this conditional expectation value into an uncon-
ditional value, we must weight it by some probability density function for
the spike time difference and the probabilities of each possible spike pair.
Thus, in order to obtain the BCM-like rule, we assumed that the spike time
difference distribution originated from Poisson spike trains. Had we chosen
to drive the afferents in some other, non-Poisson manner, a different rate-
based synaptic plasticity rule may have emerged. In this sense, the BCM rule
emerges from an interaction between the tLTP rule, which is itself emergent,
and how we have decided to drive the afferents. This suggests the possibility
that apparently different rate-based rules may in fact merely reflect differ-
ent choices available to the experimenter in how he decides to probe his
experimental system, or indeed that as synaptic patterns change and hence
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neuronal firing patterns change, the nervous system may slowly change its
own rate-based learning rule. We shall pursue this idea in future work.

The most direct test of our synaptic switch hypothesis would be to ob-
serve the change in efficacy at an individual synapse induced by a pre- and
postsynaptic spike pair. We predict that the changes in synaptic efficacy
would be seen to occur in jumps of fixed magnitude, not as a smoothly
varying function of the pre- and postsynaptic spike timing difference. Such
a result would provide strong evidence that the observed tLTP window is
not instantiated at the level of individual synapses and support our hypoth-
esis that the window emerges only as an ensemble property of neurons.
Indeed, in measuring LTP at putatively monosynaptically coupled pairs
of hippocampal neurons, Peterson, Malenka, Nicoll, and Hopfield (1998)
found all-or-none potentiation rather than a continuous change, possibly
consistent with our approach. Such “binary” synapses have also been stud-
ied in other contexts and have been shown to reproduce various tLTP results
(Fusi, Annunziato, Badoni, Salamon, & Amit, 2000; Fusi, 2002).

We have proposed that single synapses implement something akin to a
three-state switch, and from this have derived a tLTP rule and a BCM-like
rule. Where might the machinery that implements this switch reside? The
switch moves from the OFF state to the DEP state following a postsynaptic
spike. All of a target’s input synapses might thus be expected to move into
the DEP state, and this suggests that the natural locus for the DEP state of
the switch may be the postsynaptic aspect of the synapse. An active transi-
tion back to the OFF state caused by a presynaptic spike may then cause a
postsynaptic change in the synapse, resulting, for example, in the removal of
some neurotransmitter receptors from the postsynaptic membrane, leading
to a decrease in synaptic strength. Similarly, when the switch moves from
the OFF state into the POT state following a presynaptic spike, all of the
afferent’s output synapses might be expected to move into the POT state, and
so this perhaps suggests a presynaptic locus for the POT state of the switch.
An active transition to the OFF state caused by a postsynaptic spike may,
this time, change the presynaptic aspect of the synapse, perhaps enhanc-
ing neurotransmitter release or even inducing terminal synaptic sprouting,
so that synaptic strength is increased. Thus, the switch may actually be
distributed across the entire synapse rather than confined exclusively to
the pre- or postsynaptic side of the synapse. However, given the ubiquity
of both anterograde and retrograde messengers in the nervous system, we
should be cautious in using such arguments: the mathematical details of the
switch do not commit us to any particular view concerning its exact locus or
to the precise molecular machinery involved in its implementation. Regard-
ing this latter issue of molecular implementation, we can certainly imagine
many different scenarios and appeal to many different candidate molecules
known to be involved in synaptic plasticity. Indeed, it is entirely possible
that while the switch may be implemented broadly across the nervous sys-
tem, the machinery implementing it may also vary broadly from system to
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system. To this extent, our proposal for a synaptic plasticity switch, within
the framework of which we have shown that a broad range of experimental
results on synaptic plasticity can be understood, does not stand or fall or any
given mechanism, but to some extent stands above although is consistent
with many different possible implementation details.
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