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Abstract

We have used simulations to study the learning dynamics of an autonomous, biologically realistic recurrent network of spiking
neurons connected via plastic synapses, subjected to a stream of stimulus–delay trials, in which one of a set of stimuli is presented
followed by a delay. Long-term plasticity, produced by the neural activity experienced during training, structures the network and
endows it with active (working) memory, i.e. enhanced, selective delay activity for every stimulus in the training set. Short-term
plasticity produces transient synaptic depression. Each stimulus used in training excites a selective subset of neurons in the network,
and stimuli can share neurons (overlapping stimuli). Long-term plasticity dynamics are driven by presynaptic spikes and coincident
postsynaptic depolarization; stability is ensured by a refresh mechanism. In the absence of stimulation, the acquired synaptic
structure persists for a very long time. The dependence of long-term plasticity dynamics on the characteristics of the stimulus
response (average emission rates, time course and synchronization), and on the single-cell emission statistics (coefficient of
variation) is studied. The study clarifies the specific roles of short-term synaptic depression, NMDA receptors, stimulus representation
overlaps, selective stimulation of inhibition, and spike asynchrony during stimulation. Patterns of network spiking activity before,
during and after training reproduce most of the in vivo physiological observations in the literature.

1. Introduction

This study is the culmination of a methodological effort to capture,
in a biologically realistic model, the generation of selective delay
activity by repeated presentations of sequences of stimuli (Amit,
1998). The experimental motivations are animal studies which
expose selective, persistent enhanced emission rates within small
neural subpopulations in delayed-response tasks (e.g. Miyashita &
Chang, 1988; Miyashita, 1988; Nakamura & Kubota, 1995;
Erickson & Desimone, 1999). Such activity appears after several
presentations of a stimulus and is not produced by novel stimuli,
despite a strong selective response. The subpopulations sustaining
selective delay activity for different stimuli (as many as 100) share
the same set of synapses.

Modelling is in terms of neurons and synapses, which are chosen to
render direct comparison with physiological experiments. Neurons are
spiking elements and one can record spike rasters and spike emission
statistics. Synaptic dynamics are driven by presynaptic spikes and
postsynaptic depolarization (Fusi et al., 2000), and can be confronted
with in vitro experiments (e.g. see Amit & Mongillo, 2003). The
choice of the plastic synapse model is guided mainly by considerations
of credibility, which are unavoidable given that experimental access to
in vivo interplay between neural and synaptic dynamics is a very
remote possibility.

Models of spiking neural networks (Amit & Brunel, 1997b; Amit,
1998; Amit & Mongillo, 2003; Curti et al., 2004) indicate that the
observed phenomenology is reproduced by modifications of synaptic
efficacies: because each selective delay population overlaps largely
with the population of neurons responsive to the corresponding
stimulus (Erickson & Desimone, 1999; Mongillo et al., 2003), the
synaptic dynamics must strengthen synapses connecting pairs of
neurons responsive to a given stimulus and weaken those connect-
ing responding to nonresponding neurons. Delay activity for stimuli
in the training set emerges automatically, due to repeated presen-
tation.
The model presented in Amit & Mongillo (2003) was limited by the

following factors. (i) The stimuli were exclusive, a cell responding to,
at most, one stimulus. (ii) Synaptic structuring caused an excessive
increase in firing rates during stimulation, which caused instabilities in
the learning process. This defect necessitated manual interventions in
the simulation. (iii) Cells were linear integrate-and-fire neurons (Fusi
& Mattia, 1999; Del Giudice & Mattia, 2001). In the current paper
each stimulus is specified by a randomly selected set of neurons, so
that a neuron can respond to more than one stimulus; see also Curti
et al. (2004). Excessive increase in stimulus response during
structuring is prevented by short-term depression of the synaptic
efficacies upon activation, which is introduced as a phenomenological
model (Tsodyks & Markram, 1997) with experimentally realistic time
constants (S. Romani, D.J. Amit and G. Mongillo, unpublished
results). The neural elements are exponential integrate-and-fire
neurons, which capture experimentally observed neural response
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characteristics (Rauch et al., 2003). Slow NMDA-like currents are
needed to ensure the proper functioning of the network, especially to
offset excessive synaptic depression immediately following the
removal of a stimulus.
The model network, when subjected to repeated presentations of the

stimuli in the training set, in a random sequence, autonomously
develops a synaptic matrix expressing selective delay activity for each
of the stimuli. Synaptic structuring occurs as a consequence of the
patterns of neural activity produced by the stimuli, until a steady state
for both neural activity and synaptic structuring is reached. At

asymptotic synaptic structuring, the robust behaviour of the network
reproduces most of the details observed at the physiological level in
delay experiments.

2. Materials and methods

2.1. The network

Table 1 gives names, symbols and values for the parameters used in
this study. The network is composed of NE excitatory and NI inhibitory

Table 1. Parameters used in the simulations

Parameter

Values

General Excitatory Inhibitory

Single-cell parameters
h Spike emission threshold 20 mV 20 mV
Vr Reset potential 15 mV l0 mV
s Membrane time constant 20 ms 10 ms
sarp Absolute refractory period 2 ms 2 ms

Network parameters
c Probability of synaptic contact 0.2
NE Number of excitatory cells 8000
NI Number of inhibitory cells 2000
CE Average number of recurrent afferent

E synapses ⁄ cell (cNE)
1600

CI Average number of recurrent
afferent I synapses ⁄ cell (cNI)

400

lEext Mean external current on E neurons 22.00 mV
lIext Mean external current on I neurons 18.75 mV
rEext Standard deviation of external current E neurons 1.73 mV
rIext Standard deviation of external current I neurons 1.73 mV

Synaptic parameters
JIE Synaptic efficacy E fi I 0.08 mV
JEI Synaptic efficacy E fi I 0.18 mV
JEI Synaptic efficacy I fi I 0.18 mV
Jd Depressed level of efficacy E fi E synapses 0.03 mV
Jp Potentiated level of efficacy E fi E synapses 0.21 mV
c0 Fraction of potentiated synapses before learning 0.20
xEslow Fraction of slow E currents toward E neurons 0.50
xIslow Fraction of slow I currents toward I neurons 0.10
sslow Decaying time of slow E currents 100 ms
sfast Decaying time of fast E and I currents 0 ms
d Synaptic delay 1–10 ms

Long-term synaptic dynamics parameters
hx Threshold for synaptic transition 0.4
hLTP Threshold for up-regulation of X 17.5 mV
hLTD Threshold for down-regulation of X 15.5 mV
a Drift toward zero 0.0147 ms)1

b Drift toward one 0.0100 ms)1

a Amplitude of up-jump 0.25
b Amplitude of down-jump 0.17

Short-term synaptic dynamics parameters
u Fraction of synaptic resources activated per spike 0.45
sr Recovery time of activated synaptic resources 200 ms

Training parameters
f Coding level 0.15
p Number of stimulus prototypes in training set 7
xnoise Noise level in stimulus presentation 0, 0.1, 0.2
Tstim Duration of stimulus presentation 500 ms
Tdelay Interval between two successive presentations 1000 ms
GE

stim Contrast on E neurons 1.7
GI

stim Contrast on I neurons 1.2

E, excitatory; I, inhibitory. Except for those related to short-term depression, the parameters have been chosen in the range of experimentally realistic values and have
been described previously in Amit & Mongillo (2003) and Mongillo et al. (2003). Small adjustments have been introduced due to the population overlaps; for these
we were guided by the mean-field theory of Curti et al. (2004). The new parameters introduced for short-term depression have been selected in the range indicated by
Tsodyks & Markram (1997), guided by a mean-field theory (Romani et al., 2005).
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point integrate-and-fire spiking neurons, with exponential leak; the
depolarization V evolves according to

_V ðtÞ ¼ � V ðtÞ
sm

þ IðtÞ; ð1Þ

where sm is the membrane time constant and I(t) is the total afferent
current. Whenever the depolarization reaches a threshold h, the cell
emits a spike and remains refractory for a time sarp. Then V is reset to
Vr and normal dynamics resume.

Individual postsynaptic currents obey

ss _I sðtÞ ¼ �IsðtÞ þ xðt � dsÞ � J
X
k

dðt � tk � dsÞ ð2Þ

where ss is the decay time constant of channel type s, x(t) is the
instantaneous fraction of available synaptic resources (see below), J is
the total efficacy of the synapse, tk is the time of synaptic activation
due to the k-th presynaptic spike and ds is a transmission delay. The
dependence on the neurotransmitter involved is handled in a simplified
way: fast currents, associated with AMPA receptors (excitatory) and
GABA receptors (inhibitory), are taken to be instantaneous, i.e.
ss ¼ 0. In this case, Eqn 2 becomes

IsðtÞ ¼ xðt � dsÞ � J
X
k

dðt � tk � dsÞ:

Slow currents, associated with NMDA receptors (excitatory), have
ss ¼ 100 ms. The nonlinear voltage-dependence of NMDA kinetics is
not modelled. Thus, the recurrent excitatory currents have a fraction
xslow of slow-decaying components and the rest are instantaneous
components; the recurrent inhibitory currents are instantaneous. Finite
time constants for the fast receptors were introduced in testing the
robustness of the system.

Each neuron also receives an excitatory, instantaneous current Iext(t)
from outside the network (Amit & Brunel, 1997b), modelled as a
Gaussian input of preassigned mean lEext, l

I
ext and variance

(rEext)
2 (rIext)

2, per unit time, respectively, for excitatory and inhibitory
neurons. The total current afferent on a neuron, I(t) in Eqn 1, is the sumof
the different contributions each evolving with its own time constant, i.e.

IðtÞ ¼
X
j;s

Ij;sðtÞ þ IextðtÞ; ð3Þ

where the sum on j, s is over all presynaptic neurons and all types of
channels relevant for the particular synapse.

Network connectivity is random: the direct afferent presynaptic
cells of a given neuron are selected, independently and randomly, by a
binary process with probability c, so that each neuron receives, on
average, cNE ¼ CE local excitatory and cNI ¼ CI local inhibitory
recurrent contacts. Self-connection is excluded. The structure of the
connectivity remains fixed throughout the simulation. The efficacies of
existing excitatory as well as inhibitory synapses onto inhibitory
neurons are assigned a uniform value. The recurrent excitatory-to-
excitatory synapses have two possible efficacy states, potentiated Jp
and depressed Jd. Prior to training, the distribution of excitatory–
excitatory synapses is generated by setting each existing synapse in
the potentiated (depressed) state, randomly and independently, with
probability c0 (1 ) c0). The synaptic delays are uniformly distributed
within a bounded interval.

The uniformity in synaptic efficacies has been introduced for
computational convenience to reduce memory requirements and

simulation time. It does not imply, however, uniform afferent currents
to the postsynaptic neurons because of the randomness in the
connectivity. The robustness of the network dynamics to the
elimination of this simplifying assumption has been tested (see
subsection on Robustness in Discussion).

2.2. Short-term synaptic dynamics

Following Tsodyks & Markram (1997) and Tsodyks et al. (1998), the
synaptic connection is characterized by a given amount of ‘resource’,
partitioned into three states: effective, inactive and available. Upon
presynaptic emission, a fraction u of the available resource is
activated, becoming effective, and then inactivated within a few
milliseconds. Synaptic resources then recover to the available state,
with a time constant of the order of hundreds of milliseconds (Tsodyks
& Markram, 1997). Because the inactivation time is much shorter than
the recovery time, the kinetics of the fraction of resources in each of
the three states simplifies to the evolution of a single variable x(t), the
fraction of available synaptic resources at time t (Tsodyks et al., 1998).
The remaining equation is

_xðtÞ ¼ 1� xðtÞ
sr

� uxðtÞ
X
k

dðt � tkÞ; ð4Þ

where sr is the time constant for resource recovery, u is the fraction of
the available resources activated upon presynaptic emission and tk is
the time at which the presynaptic neuron emits spikes. The current
afferent on the postsynaptic cell, via the synapse, is given by

IðtÞ ¼ xðtÞ � J
X
k

dðt � tkÞ ð5Þ

where J (which includes a factor of u), the total synaptic efficacy, is the
variation of the postsynaptic depolarization per presynaptic spike at
full availability of resources, i.e. x(t) ¼ 1.
Such a mechanism produces rate-dependent short-term synaptic

depression because, upon arrival of a spike, the available resources
decrease (Eqn 4). In between spikes, they recover to the full value,
x ¼ 1, on a time scale sr. At a low rate (> 1 ⁄ sr), the arriving spike
finds all resources available at the synaptic site, producing maximal
current (Eqn 5). As the emission rate increases above � 1 ⁄ sr, x(t)
cannot fully recover, and the current transmitted by the next spike
is reduced.

2.3. Long-term synaptic dynamics

The model of the plastic synapse is characterized by an internal
analogue variable X 2 [0,1], and by a two-state value for its stable
efficacy Jp, Jd (< Jp) (Del Giudice et al., 1998; Fusi et al., 2000; Amit
& Mongillo, 2003). When X > hX, the synaptic efficacy is Jp; for
X < hX it is Jd. If X crosses from below to above, the result is long-
term potentiation (LTP; Jd fi Jp); if X crosses from above to below the
result is long-term depression (LTD; Jp fi Jd). X ¼ 0,1 are reflecting
barriers for the dynamics of X. These dynamics are

_X ðtÞ ¼ RðtÞ þ HðtÞ; ð6Þ

where R(t) is a refresh term chosen to be

RðtÞ ¼ �aHð�X þ hXÞ þ bHðX � hXÞ; ð7Þ
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where Q(x) ¼ 1 for x > 0 and 0 otherwise. H(t) relates the synaptic
dynamics to the pre- and postsynaptic neural activities and is
responsible for synaptic transitions. It is chosen to be

HðtÞ ¼
X
k

F ½VpostðtÞ�dðt � tprek Þ; ð8Þ

i.e. H(t) is different from zero only at presynaptic emission and, in this
case, its value depends on the instantaneous level of depolarization of
the postsynaptic neuron, Vpost(t

pre
k ) through F[Æ]. In our case,

F ½VpostðtÞ� ¼
a hLTP � VpostðtÞ � h
�b VpostðtÞ � hLTD and refractory
0 otherwise

8<
: ð9Þ

with hLTD < hLTP < h, where h is the spike emission threshold.
This synapse behaves in a Hebbian way (Fusi et al., 2000; Amit &

Mongillo, 2003): when both pre- and postsynaptic emission rates are
high, synaptic efficacy tends to be potentiated (Jd fi Jp) while a
synapse connecting a high-rate presynaptic neuron to a low-rate
postsynaptic one tends to be depressed (Jp fi Jd). Both processes are
stochastic, due to the stochasticity of presynaptic spiking and of the
value of the postsynaptic depolarization. No change occurs if
presynaptic neurons emit at a low rate.
Figure 1 presents sample synaptic dynamic trajectories, extracted

from the full simulation, to exhibit the stochasticity of LTP and LTD.

Fig. 1A is an LTP transition: both pre- and postsynaptic neurons were
emitting at high rate (� 40 Hz); X started below hX (J ¼ Jd) and was
above hX (J ¼ Jp) at the end of the stimulation interval. In Fig. 1B,
both neurons emitted at same mean rate as in Fig. 1A but LTP did not
occur, due to the particular realisations of the presynaptic spike train
and of the postsynaptic depolarization time course. Similarly, LTD is
stochastic: in Fig. 1C is a typical LTD transition, in which the
presynaptic cell was emitting at high rate (� 40 Hz) while the
postsynaptic was emitting at low rate (> 2 Hz). In Fig. 1D, under
conditions of parity, LTD did not occur.

2.4. Simulation process

2.4.1. Dynamics

The instantaneous state of the network was specified by: (i)
NE + NI (10 000) analogue values of the depolarization, Vi(t), for
excitatory and inhibitory neurons; (ii) the analogue values of the
synaptic internal variables, Xij(t), of the plastic synapses among
excitatory neurons; (iii) the long-term efficacy of the plastic synapse
JEEij (t); and (iv) the values of the available resources per synapse
xij(t) among excitatory neurons. The total number of synaptic
variables depends on the randomly generated connectivity (see
Section 2.1). However, due to the large value of NE (8000), the
actual number of synaptic variables is close to cN 2

E, where cNE is
the average number of excitatory synaptic contacts per neuron
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Fig. 1. Stochasticity of long-term synaptic dynamics: examples of the coupled neural–synaptic dynamics from the full simulation. Time evolution of the
presynaptic depolarization [Vpre(t), top frames], the synaptic internal variable [X(t), middle frames] and the postsynaptic depolarization [Vpost(t), bottom frames] in
each panel. Upon presynaptic emission (dotted vertical lines), X(t) was up- or down-regulated according to the instantaneous value of Vpost(t). In between spikes, it
drifted linearly toward the corresponding reflecting barrier. (A) LTP transition: both pre- and postsynaptic cell were emitting at high rates (� 40 Hz). (B) As in A,
but no LTP. (C) LTD transition: presynaptic cell emitting at high rate (� 40 Hz) and postsynaptic cell at low rate (> 2 Hz). (D) As in C but no LTD. Horizontal
dashed line in middle frames, threshold for synaptic transitions; horizontal dotted lines in bottom frames, thresholds for up or down regulations. For both neurons the
spike emission threshold was at 20 mV, hence at the top horizontal line of the frame. The format of the present representation of the plasticity process is the analogue
of Fig. 1 of Fusi et al. (2000); here the data are taken from a full simulation.
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(cN 2
E ¼ 12 800 000; in the simulations it was 12 795 748). Note

that the JEEij (t)’s are kept as additional variables for computational
convenience.

The simulation consisted of numerical integration of the discretized
dynamic equations for the membrane depolarizations [Eqn 1 for Vi(t)
+ condition for spike emission and refractoriness], of the short-term
synaptic variable [Eqn 4, for xij(t)] and of the long-term synaptic
variables [Eqns 6, 7 and 9 for Xij(t) and JEEij (t)]. The temporal step was
Dt ¼ 0.10 ms. The initial distribution of the depolarization in the
network was set uniform at a subthreshold value. Spikes began to be
emitted due to the external currents. The actual value had little effect
on the network dynamics; the network reached the stationary state, in
which all neurons emit at the same low average rate (spontaneous
activity state), within short relaxation times (� 100 ms). The initial
values of the variables for the existing plastic synapses were set up as
follows: (Jij ¼ Jp \ Xij ¼ 1) randomly, with probability c0;
(Jij ¼ Jd \ Xij ¼ 0), with probability 1 ) c0. The initial fractions of
available resources xij were distributed randomly and uniformly
between 0 and 1.

The depolarization of every neuron is sequentially updated. If
Vj(t + Dt) ‡ h, a spike is delivered to all neurons postsynaptic to
neuron j, and Vj is reset to Vj ¼ Vr and kept fixed for sarp. The spike
adds to the value of the depolarization of the postsynaptic neuron i, at
time t + Dt + dij, the value Jijxij(t). The spike also decreases the
amount of available synaptic resources xij according to Eqn 4. In
between spikes, both Vj and xij tend deterministically and exponen-
tially to their steady-state values (Eqns 1 and 4).

Whenever cell j emits a spike, all internal variables (Xij) of synapses
which have this cell as a presynaptic cell are updated. The
depolarization of each excitatory postsynaptic cell is registered and
the internal variable Xij is varied as described in Section 2.3. In
addition each Xij is refreshed linearly, according to Eqn 7. If Xij > hX,
Jij ¼ Jp and if Xij < hX, Jij ¼ Jd. Because in between spikes both
synaptic variables xij(t) and Xij(t) evolve deterministically, their actual
up-dating occurs only upon presynaptic spike emission (see Mattia &
Del Giudice, 2000).

Two different simulation programs have been employed to check
each other. One simulation program, ‘Autonomous spike learningWM’,
is made publicly accessible at http://titanus.romal.infn.it/sources.html.

2.4.2. Stimuli and learning

At the start of the simulation a set of p stimuli to be learned is set up
by a binary process as follows. For every stimulus a subset of cells,
both excitatory and inhibitory, is selected independently and at random
with probability f (coding level). This subset of cells represents the
stimulus prototype. To each stimulus prototype corresponds on
average a pool of f(NE + NI) ¼ 1500 neurons. Any other stimulus
prototype shares a fraction f of these neurons (f2(NE + NI) ¼ 225, on
average), selected at random. Stimulus prototypes are kept fixed
throughout the simulation, so that one can associate to each neuron a
p-bit word, {nli }, l ¼ 1,…, p, where nli ¼ 1 if neuron i belongs to the
stimulus prototype number l, and 0 otherwise.

The neurons for which nli ¼ 1 are referred to as ‘selective’ to
stimulus l and those for which nli ¼ 0 as nonselective for stimulus l.
This a priori selectivity may differ from the observed a posteriori
selectivity, i.e. the set of neurons whose emission rate increases
significantly upon presentation of stimulus l. This is mainly because
of the random connectivity and the selective stimulation of inhibitory
neurons. However, the average rates in these populations are simple to
monitor and are a faithful parameterization of the collective states of
the network.

The p stimuli to be learned are repeatedly presented to the network
in a pseudo-random sequence. Blocks of p trials are set up so that in
each block the p stimuli are presented in a random order, without
repetition. In each trial, the stimulus selected is presented for a period
Tstim, followed by a delay interval Tdelay.
The actual stimulus to be presented is a noisy version of the

prototype, generated from it in the following way. A neuron of the
prototype belongs to the noisy version with probability
1 ) xnoise(1–f), while a neuron not belonging to the prototype
belongs to the noisy version with probability fxnoise. This ensures
that the average number of activated cells upon stimulation remains
f(NE + NI) (Brunel et al., 1998). xnoise ¼ 0 corresponds to the
presentation of the pure prototype. During presentation of the sti-
mulus, the mean and the variance of the external currents to the
selected cells are increased by contrast factors (GE

stim and GI
stim both

> 1). This leads to a higher average emission rate in the
corresponding subset of cells.

2.5. Observables: synaptic structuring and neural activity states

2.5.1. On-line

During the simulation the following information was collected.

Average rates. The population-averaged emission rate in the stimu-
lated, selective and nonselective neural populations, along each trial in
consecutive bins of 10 ms.

Spike rasters. Spike emission times of an unbiased, random sample of
10% of excitatory cells.

Fraction of potentiated synapses within functional synaptic popula-
tions. At the end of trial number k we determine the fraction of
potentiated synapses between selective cells and between selective and
nonselective cells, for each of the stimuli (l ¼ 1,…, p) of the training
set. Two p values are obtained: a p value [clss(k)] for selective–selective
cell pairs (ss), i.e. fraction of potentiated synapses for which pre- and
postsynaptic neurons respond to the same stimulus, and a p value
[clns(k)] for selective–nonselective cell pairs (ns), i.e. fraction of
potentiated synapses for which pre- and postsynaptic neurons respond
to different stimuli.

Internal synaptic variables. Xij(t) and xij(t) were collected in a
randomly selected sample of synapses (� 0.2%, i.e. 2.56 · 105)
between selective neurons and between selective and nonselective
neurons.

Synaptic transitions. Time and type (LTP or LTD) of transitions were
recorded for a sample (� 0.2%) of synapses.

2.5.2. Off-line

The data collected on-line was elaborated off-line to monitor the
network in terms of the synaptic structuring it underwent and the
corresponding neural dynamics it sustained. Blocks are used as a unit
for monitoring the evolution of the synaptic structuring and of the
emission rates. The pseudo-random protocol we adopted guarantees
that, following every block, all stimuli had been presented the same
number of times.

Block-averaged emission rates during the presentation and during the
subsequent delay interval. We obtained these rates by further
averaging the binned average rates, within the corresponding intervals
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(Tstim and Tdelay), and over the p presentations within the block. In
each interval the first 150 ms (i.e. the first 15 bins) were discarded to
avoid transients.

Block-averaged fraction of potentiated synapses within functional
synaptic populations. We averaged the p values of clss and the p values
of clns at the end of each block.

Short- and long-term synaptic dynamics. The recordings of Xij, xij and
the data on long-term synaptic transitions were used to observe the
behaviour of the synaptic device ‘in vivo’, i.e. embedded within a
network of spiking neurons. The use of ‘in vivo’ is metaphoric, in the
spirit of Amit (1998), because it implies the sample recording of an
autonomously running simulation mimicking real experimental situ-
ations.

3. Results

The results we report are from a simulation with a training set
consisting of p ¼ 7 stimuli and uniform coding level f ¼ 0.15, i.e.
every selective population consisted of exactly f(NE + NI) neurons.
No noise was present in the stimulus presentation. The number of
stimuli p was chosen low to limit the duration of the simulations; f was
set high and uniform to have stable working memory (WM) activity
with the ratio of potentiated : depressed efficacy not too large and to
avoid finite-size effects (Curti et al., 2004), given the relatively low
number of neurons (10 000). The detailed description of the
phenomenology in this constrained network is followed by tests of
the robustness of the synaptic structuring and WM functioning to the
lifting of the constraints.

3.1. Synaptic structuring

3.1.1. Basic phenomenology

In Fig. 2 we show the evolution, with the number of trials, of the
fraction, clss, of potentiated synapses among all neurons responsive
to one given stimulus (stimulus number l) of the set, and the
fraction, clns, of potentiated synapses between neurons responsive to

this stimulus and neurons not responsive to it. As training
proceeded, structuring took place, i.e. clss and clns began to vary
with respect to their initial (unstructured) level. Whenever stimulus
l was presented, clss increased and, correspondingly, clns decreased
(Fig. 2, shaded columns). However, variations in clss and clns also
occurred upon presentation of any of the other stimuli of the
training set: clss decreased while clns increased (Fig. 2, in between
shaded columns).
The latter variations in the structuring are a consequence of the

random overlaps among the neural populations coding for the stimuli,
i.e. the same neuron may participate in the representation of several
different stimuli, i.e. may be responsive to several stimuli. For
instance, upon presentation of stimulus 1, the neurons common to
stimulus 1 and stimulus 2 emitted at high rate, potentiating synapses
between them. This lead to an increase in cð2Þss . On the other hand,
neurons selective to stimulus 2, but not to stimulus 1, emitted at low
rates (during the presentation of stimulus 1), thus depressing the
synapses between the neurons common to both stimuli and all other
neurons in population 2. This lead to a decrease in cð2Þss which
outweighed the increase mentioned above, just because there were
many more neurons in population 2 which were not shared with
population 1 than there were neurons belonging to both. At the same
time, synapses from neurons selective to both stimuli and neurons
selective only to stimulus 1 would tend to be potentiated. This would
lead to an increase in cð2Þns .
To summarise, the potentiation level of a given synaptic

population increases (decreases) upon presentation of the corres-
ponding stimulus, while it decreases (increases) upon presentation
of the other stimuli. Consequently the structuring does not saturate,
i.e. asymptotically clss < 1 and clns > 0. This is a fundamental
difference with respect to the case of nonoverlapping stimuli. In the
latter case saturation can be prevented only if both LTP and LTD
probabilities in the functional synaptic population are different from
zero upon presentation of a given stimulus (Amit & Mongillo,
2003).

3.1.2. Population-averaged description of synaptic structuring

As discussed in the previous section, the overlaps among selective
neural populations cause variations in the synaptic structuring
associated with a given stimulus upon presentation of the other
stimuli (interference effect). This renders the description of the
structuring process more complicated than in the case of
nonoverlapping stimuli (see, e.g., Brunel et al., 1998; Curti et al.,
2004). In the latter case, what matters is only the number of times a
given stimulus was presented, because the structuring within the
synaptic populations (sel fi sel and sel fi nonsel) associated with
the stimulus is not affected by the presentation of other stimuli. The
only interpopulation variability, at parity of number of presenta-
tions, is associated with the intrinsic stochasticity of the synaptic
transitions; this variability is negligible due to the large number of
synapses within each functionally homogeneous population (Amit
& Mongillo, 2003).
By contrast, with overlapping stimuli the structuring of a given

synaptic population depends not solely on the number of times the
corresponding stimulus has been presented but on the entire
presentation history. Figure 3A shows the average structuring (over
the p functionally equivalent sel fi sel populations and the p
equivalent sel fi nonsel populations) every p trials. The interpopu-
lation variability was measured by the standard error of the mean
(SEM) over each of the two sets of p structuring variables, and is
shown in Fig. 3A as error bars. The pseudo-random presentation
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protocol (see Materials and methods) guarantees that, when averaging
the structuring variables clss and clns at the end of kp trials, every
stimulus would have been presented exactly k times. Thus, any
residual interpopulation variability was a result of the variability in the
presentation sequence.

One observes that, after � 30 presentations per stimulus (pres ⁄ st),
the average synaptic structuring had reached a steady, unsaturated,
level (Æcssæ ¼ 0.69 and Æcnsæ ¼ 0.095). Continuing stimulus presenta-
tion no longer affected the average synaptic structure. However, the
structuring within synaptic populations corresponding to different
stimuli differed, at parity of number of presentations, as shown by the
error bars. The interpopulation variability was not negligible and grew
with increasing number of presentations until it reached, asymptoti-
cally, a steady level. The difference in the actual structuring within a
given functional population from the average was due to the fact that
the number of intervening stimuli between repeated presentations of a
given stimulus varied, and the interference caused by stimulus
overlaps fluctuated. Figure 3B shows the distribution of clss at
asymptotic synaptic structuring. It was obtained by collecting the
fraction of potentiated synapses in all sel fi sel synaptic populations,
regardless of the stimulus presented, from trial no. 217 (31 pres ⁄ st) to
trial no. 385 (55 pres ⁄ st). The same was done for clns and the result is
shown in Fig. 3C. These are steady distributions which characterise
the asymptotic synaptic structuring: when stimulus l is presented, clss

and clns are random variables drawn from the distribution in Fig. 3B
and C, respectively.
The width of these distributions is related to the LTP and LTD

transition probabilities per presentation; the larger the transition
probabilities the larger the fluctuations (Brunel et al., 1998). To
show this we define qlLTP as the probability that a depressed
synapse undergoes LTP during the presentation of stimulus no. l.
qlLTD is defined analogously. They are estimated (Amit & Mongillo,
2003) as

qlLTPðkÞ ¼
clssðkÞ � clssðk � 1Þ
1� clssðk � 1Þ

qlLTDðkÞ ¼
clnsðk � 1Þ � clnsðkÞ

clnsðk � 1Þ ð10Þ

where k is the trial number in which stimulus l is presented. qlLTP and
qlLTD are averaged in each block of p presentations, and the
corresponding SEMs (over the p values in each block, separately for
qlLTP and qlLTD) are evaluated. The result is illustrated in Fig. 4. The
transition probabilities increased with the number of presentations per
stimulus (from 0.07 to 0.37 for qLTP and from 0.04 to 0.24 for qLTD),
due to the structuring process itself, until they reached a steady level.
Note that, throughout the trial sequence, the probability of LTP was
larger than the probability of LTD.

3.2. Neural activity

3.2.1. Response to stimulus presentation

Figure 5A shows the time course of the neural activity within the
selective neural population upon presentation of the best stimulus,
averaged over the first p trials, together with 10 rasters of sample
selective neurons. Figure 5B shows the time course of the fraction of
available synaptic resources of sel fi sel synapses over the same first
block. In a given trial the xij(t) of the synapses among neurons
selective to the stimulus presented were sampled every 10 ms, then the
average was computed over all values at the same time to give Æxæss(t).
Before the presentation of the stimulus, rates were low (Fig. 5A,

prestimulus interval) and synaptic resources were nearly at full
availability, i.e. Æxæss � 0.8 (Fig. 5B). The abrupt increase in the
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external currents due to stimulus onset (see Materials and methods)
caused a fraction of cells to fire almost synchronously. If that fraction
was sufficiently large, its correlated firing, together with the high
availability of synaptic resources, provoked further correlated firing
within the population. The population activity built up in a very short
time, from some 2.5 Hz to 65.8 Hz within 10 ms (peak response,
Fig. 5A). The peak response, mpeak, was defined as the maximal
population activity level (in bins of 10 ms) during stimulus presen-
tation.
The fast rise in activity caused a temporary imbalance between

inhibition and excitation. A selective neuron can fire three or four
times with very short interspike intervals. Such bursting provokes the
fast reduction in the fraction of available synaptic resources: Æxæss
decreased from 0.8 to 0.22 within � 100 ms (Fig. 5B). Population
activity then decreased to a steady lower level (� 40 Hz) as a
consequence of the reduced efficacy of the recurrent excitatory
synapses and of the rise in the inhibition (steady response; Fig. 5A).
We defined the steady response, msteady, as the average activity level in
the last 350 ms of stimulus presentation.
At stimulus removal, the population activity suddenly dropped off,

to a level lower than the corresponding stationary level (spontaneous
or WM) due to the low fraction of available synaptic resources left
over by the high rate during stimulation. However, a large amount of
slow-decaying NMDA-like current had been accumulated during
stimulation. This lead to the overshoot (above the stationary level) in
the population activity following the dip (Fig. 5A, inset). At the
same time, the activity in the rest of the excitatory subnetwork,
which was reduced during stimulation due to increased inhibition,
rose to the spontaneous level. Note that the fraction of available
synaptic resources recovered on a time scale srec (¼ 200 ms)

(Fig. 5B, delay interval) longer than both the deep drop and the
overshoot.

3.2.2. Basic phenomenology of neural activity

Alongside the synaptic structuring, the character of neural activity
evolved as training proceeded. Samples of the evolution, for the
activity within the neural population corresponding to one of the
stimuli in the training set, are presented in Fig. 6. The neural emission
rate was averaged over cells in the selective population, in consecutive
bins of 10 ms. Following four presentations of the particular stimulus
chosen, mpeak ¼ 81.2 Hz while msteady ¼ 43.5 Hz (Fig. 6a). When the
stimulus was novel, i.e. had been presented only a few times, the
average emission rate during the delay interval (after the presentation)
was as in the prestimulus interval because the synaptic strengthening
was not yet sufficient to sustain reverberating activity.
As the number of presentations of a given stimulus increased, i.e. as

the stimulus became familiar, the characteristics of the stimulus
response and of the delay activity modified; both mpeak and msteady
increased. The increase in msteady was significantly less pronounced
than that in mpeak. For example, after 15 pres ⁄ st, the relative increase in
mpeak was � 28% (to 103.6 Hz) while that in msteady was 13% (to
49.0 Hz); Fig. 6b. Also, selective enhanced delay activity emerged as
a consequence of the repeated presentations; Fig. 6b. At first, however,
the delay activity was not very stable, i.e. it often died out before the
next presentation.
Further training made the response to stimulus presentation still

stronger. The relative increase in the peak response, with respect to the
novel condition, was � 65% (mpeak ¼ 134.2 Hz), while for msteady
(¼ 50.4 Hz) it was only 16%. It also rendered WM activity stable
because it increased the difference between the potentiation levels in
the sel fi sel and sel fi nonsel synaptic populations (see Fig. 3).
After stimulus removal, the corresponding neural population reliably
emitted at an enhanced rate throughout the delay interval (Fig. 6c). At
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asymptotic synaptic structuring, the fraction of potentiated synapses
among the neurons selective to the same stimulus was large
(Æcssæ � 0.70), while the fraction of potentiated synapses among
neurons with different selectivity was low (Æcnsæ � 0.1). Delay
emission rate in the stimulated population was � 13.0 Hz, to be
compared to the average emission rate within the nonstimulated
populations (� 2.5 Hz).

Continuing stimulus presentation did not further affect the charac-
teristics of the neural activity in the network.

3.2.3. Stimulus response evolution

The repeated presentation of a stimulus provokes synaptic potentiation
within the corresponding populations and, consequently, an increase in
mpeak and msteady with increasing number of presentations. To monitor
the evolution of the stimulus response, we averaged mpeak and msteady
over the p stimuli in consecutive blocks. The results are plotted against
the number of presentations per stimulus in Fig. 7. The average peak
response increased from 67.8 Hz at the start of training to � 120 Hz
(76.9%) over 30 pres ⁄ st (Fig. 7A). At the same time, the average
steady response increased from 40.8 Hz to � 50 Hz (22.5%; Fig. 7B).
Further trials did not affect the average responses because the synaptic
structuring had reached its asymptotic level (Fig. 3).

The SEMs (related to interpopulation variability) in mpeak and msteady
increased with increasing number of presentations, due to the fact that
synaptic transition probabilities increased during training. Note,
however, that the variability in mpeak was significantly larger than that
in msteady. This was mainly related to the appearance of WM. As the
selective population sustained an enhanced rate in the delay following
the presentation, the average fraction of available resources in the
corresponding sel fi sel synaptic population was at a lower level than
in the case in which the neural population was in spontaneous activity.
For the parameters of Table 1, the WM rate was � 13 Hz while
spontaneous activity was at � 2.5 Hz. The corresponding average
fraction of available resources was Æxæss ¼ 0.46 (WM) and Æxæss ¼
0.82 (spontaneous activity). Hence, when the same stimulus was
presented in two successive trials, the reduced synaptic efficacy upon
the second presentation made the peak response lower. With the
presentation protocol chosen, stimulus repetition can occur only

between two successive blocks, i.e. when the last stimulus in one
block is the first stimulus in the next block. Given the low value of p,
repetition occurs with relatively high probability (l ⁄ p � 0.14).

3.2.4. Emergence of WM activity

To monitor the development of selective delay (WM) activity we
proceeded as follows. In each block, we collected the average delay
emission rate (see Materials and methods) within the selective neural
populations after the presentation of the corresponding best stimuli
(optimal trials). For each selective neural population, we also collected
the average delay rate in the trial successive to the optimal trial (other
trials), except for the last optimal trial in the block. At the end of a block,
we obtained a p vector, whose elements are the delay rates in the optimal
trials, and a (p ) 1) vector, of the delay rates in other trials. Then we
computed the average separately for the p vector, ~ms and for the (p–1)
vector, ~mn, as well as the corresponding SEMs. This corresponds to
measuring the average delay rate (averaged over the set of stimuli, at
parity of number of presentations) in the selective neural population
upon presentation of the best stimulus and upon presentation of a
nonoptimal one. In this manner we tested an eventual breaking of
ergodicity, namely whether the delay rate in the selective populations
became distinct depending on the stimulus presented. The result is
plotted against the number of presentations per stimulus in Fig. 8A.
In early stages of training, the average delay rate within a given

selective neural population was independent of the stimulus presented,
i.e. ~ms � ~mn (Fig. 8A, up to 10 pres ⁄ st). There was no selective delay
activity in the network. This was further checked by computing the
difference between the delay rate in the selective population upon
presentation of the best stimulus and the delay rate in the same
population in the successive trial, i.e. upon presentation of a different
stimulus. The histogram of these differences, collected from trial
no. 14 to trial no. 55 (2–8 pres ⁄ st), is reported in Fig. 8, Ba. It peaks
strongly around zero.
It may appear more logical to collect the delay rate before and after

stimulus presentation, i.e. in the same trial, to check for the appearance
of WM activity. However, because of plasticity, the presentation of a
stimulus provokes strengthening of the synapses among the neurons
selective to it, leading in turn to an increase in the average emission
rate within the neural population. The rate difference, with respect to
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the prestimulation level, increases with increasing LTP probability. In
our case, from intermediate stages on, the LTP probability is relatively
high (see Fig. 4). Thus, there is a potentially confounding effect in
detecting the difference in emission rates related to the breaking of
ergodicity (bi-stability), and not merely to the different number of
presentations. Our procedure ensures that the average delay rates,
upon presentation of the best stimulus and of a different stimulus, are
at parity of number of presentations. Furthermore, we collected the
delay rates in the selective population upon presentation of a different
stimulus only in the trials successive to the optimal trials, so that
potential LTD effects were negligible.
At intermediate stages (10–20 pres ⁄ st), ~ms and ~mn separated and

the corresponding error bars increased (Fig. 8A). WM activity began
to appear but, due to the variability in the synaptic structuring, not
all populations were able to sustain stable enhanced delay activity.
When the rate differences were collected from trials 63–104 (8–
14 pres ⁄ st), the distribution of the differences was bimodal, i.e. in
some trials there was WM activity (large delay rate differences
between consecutive trials) while in others there was none (small
differences). The bimodality of the distribution increased the error
bars; Fig. 8, Bb). Further training rendered WM activity stable and
robust and, at � 20 pres ⁄ st, ~ms and ~mn were well separated and error
bars shrank.
At asymptotic synaptic structuring (30–50 pres ⁄ st; see Fig. 3), both

~ms and ~mn reached a steady level where ~ms was significantly larger than
~mn (13.1 Hz vs. 2.5 Hz; Fig. 8A). All selective neural populations

exhibited enhanced delay activity following the presentation (and
removal) of the corresponding stimulus, as witnessed by the
distribution of rate differences collected from trial no. 287 to trial
no. 356 (40–50 pres ⁄ st; Fig. 8, Bc).

3.2.5. Single-cell behaviour at asymptotic synaptic structuring

The spike rasters of a sample of 800 (10%) excitatory cells were
collected upon presentation of the corresponding best stimuli over 140
consecutive trials (20 pres ⁄ st), starting at trial no. 209 (after
30 pres ⁄ st). At this stage the synaptic structuring was at its asymptotic
level (see Fig. 3). Figure 9A and B shows the spike rasters together
with trial averaged PSTHs for two sample cells upon presentation of
the best stimulus for each.
The activity of the cells was consistent from trial to trial, i.e. the cell

strongly responded to the stimulus and, after stimulus removal,
exhibited enhanced delay activity, though these trials were inter-
spersed with trials in which different stimuli were presented. A closer
examination of the discharge patterns revealed significant variability
from trial to trial.
As is common in experiments, to quantify this variability we

estimated (from the corresponding 20 rasters) the distribution of
interspike intervals (ISIs) for the two cells in Fig. 9, separately for
stimulus and delay intervals. ISls were sampled only for spikes
occurring in the interval 150–500 ms from stimulus onset (stimulus)
and in the interval 150–1000 ms from stimulus end (delay), where the
activity of the cell is supposed to be stationary. The results are shown in
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Fig. 9C and D. The distribution of ISIs, for both cells and for both
stimulus and delay intervals, is characterized by a long tail. An
exponential distribution would be expected for a Poisson point process.

In Fig. 9E and F we show the distribution of the coefficient of
variation (CV; the ratio between the standard deviation and the mean
of the distribution of the ISIs) within the neural sample (800 excitatory
cells; 10%), upon stimulus presentation (Fig. 9E) and during the
subsequent delay interval (Fig. 9F). The average CV was 0.46 during
stimulus presentation and 0.69 during the delay interval (WM
activity). These values for CV are somewhat lower than those
experimentally reported (Softky & Koch, 1993; Shadlen & Newsome,
1998), probably because of the higher emission rates in the model
network; see below.

From the collected spike rasters we also extracted the single-cell
average emission rate, during stimulation and in the subsequent delay
interval. For each cell, the rate upon stimulus presentation was
estimated by counting the total number of spikes emitted by the cell in
a time window 150–500 ms from stimulus onset, in the optimal trials,
and dividing by the number of trials (20) and by the time window
(350 ms). The delay rate was estimated analogously in the interval
150–1000 ms following stimulus removal. The resulting distributions
within the neural sample are reported in Fig. 10A for stimulus rate and
in Fig. 10B for delay rate.

The rate distributions are wide, as commonly observed in experi-
ments. The rates during stimulus presentation were in the range 11.7–
81.2 Hz (average 53.0 Hz), and the delay rates 0.37–27.2 Hz (average
13.2 Hz). The variability in the average emission rate, from neuron to
neuron, is mainly related to the variability in the number of
connections afferent on a cell (Amit & Brunel, 1997a), the multiplicity
of a cell (Curti et al., 2004) and the randomness of the presentation
protocol. Note, by the way, that a cell with a delay rate of 0.37 Hz has
a stimulus response of � 10 Hz and would appear like a cell which has
no delay activity but a good stimulus response (Miyashita, 1988).

Figure 10C is the scatter plot of the emission rate during stimulus
presentation vs. the emission rate during the subsequent delay interval.

One sees that neurons with high stimulus responses tended to have
enhanced rates in the subsequent delay interval. Neurons with low
stimulus responses tended to have low delay rates. This expresses the
high level of correlation between the activity within the network upon
stimulus presentation and in the following delay interval (retrospective
activity), consistent with experiments (Erickson & Desimone, 1999).
The rate distributions measured in the simulation largely overlap

with the rate distributions experimentally reported (Fuster &
Alexander, 1971; Miyashita & Chang, 1988; Nakamura & Kubota,
1995; Erickson & Desimone, 1999; Naya et al., 2003). However, the
model network produced somewhat higher emission rates. This is
likely to be related to the strong LTD, which significantly lowers the
potentiation level of sel fi nonsel synaptic populations from the
initial unstructured level (see Fig. 3). The average level of neural
activity within the excitatory subnetwork, and consequently within the
inhibitory subnetwork, decreased with training. This made stimulated
and delay rates higher and nonstimulated and background rates lower.
The average emission rate of nonselective cells during stimulus
presentation was practically zero while during the delay interval it was
� 0.15 Hz. It is interesting to note that when the average emission rate
of a neuron is within the experimental range the corresponding CV is
also within the experimental range. This can be read from Fig. 11,
which is a cell-by-cell scatter plot of the CV of the neurons of the
sample vs. their average emission rate during stimulation (Fig. 11A) as
well as during the subsequent delay interval (Fig. 11B). Lower,
‘biological’ emission rates correspond to CVs near 1, as would be the
case for a Poisson process.

3.3. Synaptic model and life times of synaptic structure

The model of the plastic synapse is characterized by an analogue
internal variable with a short time constant (� 20 ms), yet the internal
refresh dynamics allow for the synapse to have two stable efficacy
values on long time scales (Fusi et al., 2000). The dynamics of the
internal variable are fully controlled by the presynaptic spike events
and the postsynaptic membrane depolarization. The resulting plasticity
mechanism is not inconsistent with experimental findings; most of the
in vitro stimulation protocols inducing long-term plasticity in biolo-
gical synapses produce the same behaviour in the model (Amit &
Mongillo, 2003). Moreover, starting from an unstructured synaptic
state, the coupled neural–synaptic dynamics can drive the network into
a structured state, capable of sustaining selective delay activity.
The long-term synaptic dynamics ensure that, in the absence of

external stimulation, the acquired synaptic structure persists over very
long time scales. This is due to the fact that, in order to have a
significant probability of synaptic transitions, the average ISI must be
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of the same order as the synaptic time constant, which is the time the
refresh currents take to reset the stable synaptic internal state after a
jump (Fusi et al., 2000; Amit & Mongillo, 2003). This occurred in a
small subset of neurons (i.e. the selective neurons) upon stimulus
presentation (msteady � 50 Hz fi ÆISIæ � 20 ms). By contrast, in the
absence of external stimulation the average ISI within the excitatory
subnetwork was significantly longer than the synaptic time constant
(~ms � 10 Hz fi ÆISIæ � 100 ms � 20 ms), leading to negligible
transition probabilities.
We checked this in spontaneous and in delay activity states, in the

absence of stimulation, (i) in a simulation of 200 s, with an
unstructured synaptic matrix and the network in spontaneous activity
(� 3 Hz), and (ii) 20 s with the synaptic matrix at asymptotic
structuring and the network in selective delay activity (� 10–15 Hz)
for one of the stimuli in the training set. We estimated the rate of
synaptic transitions as the difference between the final and initial
number of potentiated synapses divided by the initial number of
depressed synapses and simulation duration. In both cases, we found
an increase in the total number of potentiated synapses because LTP is
the more probable transition, due to the lower number of jumps
required (two vs. four for LTD). Transition rates were 6.1 · 10)8 s)1

for spontaneous activity and 6.4 · 10)7 s)1 during selective delay
activity.
Thus, synaptic structuring is robust in the face of spontaneous and

delay activity. In the absence of stimulation, synaptic transitions occur

with negligible rates. This confers stability on the learning dynamics
(Del Giudice & Mattia, 2001; Amit & Mongillo, 2003).

3.4. Robustness of learning and functioning

We removed some of the constraints imposed on the simulation
process. First, we allowed for random coding of the stimuli in the
training set (still without noise in the stimulus presentation). The
neurons belonging to a population coding for a given stimulus were
randomly selected in a binary process with probability f. It resulted in
variability, from stimulus to stimulus, of the total number of excitatory
and inhibitory coding neurons, as well as in the relative percentage of
excitatory and inhibitory neurons within a selective population (see
Materials and methods). These stimuli of variable coding constituted
the training set. The presentation protocol was as described in Section
2.4.2. No noticeable effects were observed, either in the average
synaptic structuring or in the patterns of neural activity, throughout the
course of trials (data not shown).
Next we generated the stimuli to be presented to have random

coding (as above) as well as noise in their presentation. This was done
by constructing each of the p stimuli in a given block by choosing one
of the p prototypes (of variable coding) and suppressing the
stimulation of an average fraction, xnoise, of the neurons of the
selective population and by stimulating an equal (on average) number
of excitatory cells which are not selective for that stimulus (see
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Materials and methods). The particular neurons in the subset of ‘error’
neurons varied from trial to trial. We tried xnoise ¼ 0.10 and 0.20.

The evolution of the synaptic structuring with the number of
presentations per stimulus is reported in Fig. 12A, where we also
report, for comparison, the case with uniform coding level and no
noise (Fig. 3). The presence of noise had two predictable effects on the
synaptic structuring. First, noise decreased the potentiation level in the
sel fi sel synaptic populations and increased the potentiation level in
the sel fi nonsel synaptic populations, at all stages. For xnoise ¼ 0.10,
css ¼ 0.65 and cns ¼ 0.10, asymptotically (Fig. 12A, dash-dot
curves). For xnoise ¼ 0.20, css ¼ 0.60 and cns ¼ 0.12 (Fig. 12A,
dotted curves). These can be compared with the noise-free case where
css ¼ 0.69 and cns ¼ 0.09 (Fig. 12A, solid curves). Clearly, the
probability of a sel fi sel synapse experiencing a depressing pattern
of neural activity, i.e. presynaptic high rate and postsynaptic low rate,
increased with increasing noise level. This kept css always lower than
the noise-free case. Similarly, a sel fi nonsel synapse had a finite
probability of experiencing a potentiating pattern of neural activity
(i.e. pre- and postsynaptic rate both high), which kept cns asymptot-
ically larger than the noise-free case. Second, noise slows down the
process of synaptic structuring (Amit & Mongillo, 2003). In the noise-
free case, the potentiation level of the sel fi sel synaptic population
after 15 pres ⁄ st was 88% of its asymptotic level, decreasing to 86%
for xnoise ¼ 0.10 and to 83% for xnoise ¼ 0.20.

In the inset of Fig. 12A, we show the evolution of inter-stimulus
variability among the sel fi sel structuring levels with the number of
presentations per stimulus. The sel fi nonsel variability is not
represented because it is significantly lower (see Fig. 3). The
sel fi sel variability decreased with increasing noise level in the
presented stimuli due to the reduced transition probability. Both LTP
and LTD probabilities decreased because, with noise, the amplitude
of the initial burst diminished (see Section 3.5). Furthermore, the
LTD probability among the sel fi sel synapses was quite low
because, even if some selective neurons were not stimulated, their
emission rates were high due to the strong recurrent synaptic
efficacy.

The functioning of the network as a WM was not disrupted by the
presence of noise. This can be read from Fig. 12B, where we report the
evolution, with the number of presentations per stimulus, of the
average delay emission rate within the selective population in optimal
trials (full curves) and in others trials (dashed curves). The appearance
of stable WM activity, in the presence of noise, required a larger
number of trials as a consequence of the slowing down of the synaptic
structuring (see above). In the noise-free case, average delay emission
rates in optimal trials and in other trials were well separated after
� 20 pres ⁄ st (Fig. 12B, top panel). For xnoise ¼ 0.10, � 30–40 pres ⁄ st
were required (middle panel). Furthermore, the asymptotic delay
emission rate was lower because of the lower synaptic structuring (see
above). The average delay rate in optimal trials was � 10 Hz (13.1 Hz
for xnoise ¼ 0) while in other trials it was � 4 Hz (2.5 Hz in the noise-
free case).

For xnoise ¼ 0.20 no good separation was achieved even after
55 pres ⁄ st (bottom panel). The average delay rate in optimal trials
was � 7 Hz while in other trials it was � 5 Hz. At this level of noise,
the reliability of the network as a WM was reduced. When
asymptotic synaptic structuring had been reached, the network
exhibited stable, selective WM activity only in a fraction of trials. We
did not attempt a quantitative estimate of the performance level. A
glimpse at the observed phenomenology is presented in Fig. 12C,
showing the neural activity during some sample trials (at asymptotic
structuring). The top left panel shows stable selective WM activity.
The selected (stimulated) population continued to emit at an

enhanced rate (solid curve) with respect to other selective populations
(dotted curves), following stimulus removal, throughout the delay
interval. In the bottom left panel, by contrast, after stimulus removal
the average rate within the stimulated population was as in the other
selective, nonstimulated populations (bottom left panel and inset).
There was no WM activity. In the top right panel, during the delay
interval the emission rate activity within the stimulated population
went down to background level (after 500 ms from stimulus end),
while the activity within one of the nonstimulated, selective
populations rose up to the WM level and persisted until the end of
the trial. Finally, in the bottom right panel there is an example of
multiple-item WM activity (Amit et al., 2003); besides the stimulated
population, another nonstimulated selective population entered WM
activity after stimulus removal, and both persisted throughout the
delay interval.
In a separate simulation (data not shown), we added noise

(xnoise ¼ 0.20) to the stimulus presentation only at asymptotic
structuring, i.e. stimulus presentation was without noise until the
asymptotic synaptic structuring had been reached. In this case,
selective stable WM activity was observed for 70 consecutive trials
(i.e. 10 pres ⁄ st). Additional aspects of robustness are described in the
Discussion.

3.5. ‘In vivo’ behaviour of plastic synapses

As observed in Section 3.1.2, the average synaptic transition
probabilities per presentation grew along the course of training until
they reached steady levels at asymptotic synaptic structuring. This
increase was due to the fact that both mpeak and msteady increased with
structuring. As the ISIs during stimulus presentation became shorter,
the transition probabilities increased.
The average ISI in a sample (10%) of selective cells upon

presentation of the best stimulus was estimated in two periods during
the stimulation. For each cell and in each trial, ISIs were collected over
the first four spikes (three values) from stimulus onset and over the last
350 ms of stimulus presentation, uniting values for equal numbers of
presentations. We considered the first four spikes because four is the
minimum number of jumps required for both LTP and LTD to occur.
The average ISI over the first four spikes went from � 23.5 ms at the
start of training to 16.0 ms, asymptotically. The average ISI during
steady response went from 26.4 ms to 21.0 ms (Fig. 13A). With
training, both averages decreased and, consequently, long-term
synaptic transitions tended to occur with increasing probability (see
Fig. 4).
During the initial transient (i.e. the first four spikes), the stimulated

neurons emitted with ISIs shorter than those in the subsequent late
phase throughout training history (Fig. 13A). As a consequence the
synaptic transitions tended to occur earlier in the stimulation interval
where the 1SIs were shorter. To show this, we collect the transition
times within the sel fi sel (LTP) and sel fi nonsel (LTD) synaptic
populations, upon the presentation of each stimulus separately, over
consecutive blocks. The transition time is the time, from stimulus
onset, at which the synaptic internal variable X(t) crosses the threshold
(LTP from below to above, LTD from above to below), and does not
return back (see Fig. 1). The stimulation interval was divided into 10
bins of 50 ms. In each bin we counted the total number of transitions
that occurred in the entire block of p trials. The probability of
transition in a given bin was estimated as the number of transitions in
that bin divided by the total number of transitions that took place in the
entire stimulation interval in the p trials. The upper and lower bounds
of the confidence interval of the estimated probabilities (Meyer, 1965)
are given by
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Pup=low ¼ Pnþ k2=2� k½P ð1� P Þnþ k2=4�1=2

nþ k2
ð11Þ

where n is the total number of transitions, P is the fraction of
transitions within a given bin (i.e. the estimated probability) and k
(¼ 2) is the width of the confidence interval in SD. The distributions
of transition occurrence times (from stimulus onset) during the first
(dotted line), 10th (dashed line) and 30th (solid line) presentation are
shown in Fig. 13B and C for LTP and LTD, respectively. LTP tended
to occur early in the stimulation interval with respect to LTD,
throughout the training (Fig. 13), because the minimal number of up-
jumps required for LTP is two while for LTD at least four down-jumps
are required. Later in training, the probability of ‘early’ transitions
increased. The increase in the transition probability at the beginning of
the stimulation interval was more evident for LTD (Fig. 13C). At the
beginning of training, the probability of LTD occurring became
significant after � 200 ms from stimulus onset because four down-
jumps are required for LTD. At asymptotic synaptic structuring, LTD
occurred with elevated probability within the first 50 ms, due to the
shorter ISIs (Fig. 13C, solid line).
Throughout training history, the average ISI over the first four

spikes decreased more significantly than that during the late response
(47 vs. 26%), mimicking the corresponding variation in mpeak (with
respect to msteady). A rough inverse proportionality between the average
ISI over first four spikes and mpeak is indeed expected. Moreover, one
also expects a correspondingly larger contribution to the variation of
the transition probabilities. The larger the burst amplitude (and its
variation) the larger the transition probabilities (and their variations).
Interestingly, the strong dependence of the transition probabilities on
the amplitude of the peak response can be also seen in Fig. 4, where a
significant increase in the error bars from 15 to 20 pres ⁄ st is evident.
This is related to the appearance of WM activity and its effect on the
amplitude of the peak response (see Section 3.2.3).
To test the effect of the initial transient of the stimulus response on

the transition probabilities, we manipulated the amplitude of the initial
burst by desynchronising the external selective currents during
stimulus presentation. In each trial, a delay was randomly associated
with each selective neuron, representing the time from nominal
stimulus onset to the instant in which the external afferent current was
actually increased (see Materials and methods). The delays were

uniformly distributed between 0 and dact ms, with steps of 0.1 ms
(equal to the time step used in simulation).
Figure 14A shows the time course of stimulus response (averaged

over all stimuli) in an unstructured synaptic matrix for dact ¼ 20 ms
(full curve), dact ¼ 50 ms (dashed curve) and, for comparison, for
synchronous activation of external afferents (main simulation; thin
solid curve). Desynchronising the activation of the afferents during
stimulus presentation resulted in a reduction in the peak response. It
also increased the time, from stimulus onset, to reach maximal
emission. Both effects are related to the fact that the fraction of cells
firing almost synchronously at stimulus onset decreases with increas-
ing dact (see Section 3.2.1). The peak response at the start of training
decreased by 22% from 67.8 Hz (for synchronous activation) to
55.5 Hz for dact ¼ 20 ms, and by 28% to 52.8 Hz for dact ¼ 50 ms.
Correspondingly, the time to peak response increased from � 10 ms
(synchronous activation) to � 30 ms for dact ¼ 20 ms and to � 70 ms
for dact ¼ 50 ms (Fig. 14A).
Figure 14B shows the evolution along the training history of the

average mpeak (over all stimuli) for dact ¼ 20 ms (solid curve),
dact ¼ 50 ms (dashed curve) and in the case of synchronous activation
(thin solid curve) for comparison. For clarity we have only shown the
SEMs (over the p values) for the case of asynchronous activation. The
SEMs for synchronous activation can be read from Fig. 7A. With
increasing dact the peak response increased more mildly along the
training history (Fig. 14B). For dact ¼ 20 ms, the average peak
response increased by 74% from 55.5 Hz at the start of the training to
96.9 Hz at asymptotic synaptic structuring; for dact ¼ 50 ms it
increased by 33% from 52.8 Hz to 70.2 Hz. In the synchronous case
the relative variation in the peak response was 76.9%.
In all cases, the structuring trajectories and, consequently, the

evolution of the steady response and of the delay activity were very
close despite of the significant variation in the evolution of the peak
response (data not shown). Asymptotically, for dact ¼ 20 ms,
css ¼ 0.68 and cns ¼ 0.09; for dact ¼ 50 ms, css ¼ 0.66 and
cns ¼ 0.09; (in the main simulation, css ¼ 0.69 and cns ¼ 0.09,
dact ¼ 0 ms). Finally, in panels Fig. 14C and D we show the evolution,
with the number of pres ⁄ st, of the average LTP and LTD transition
probabilities per presentation for dact ¼ 20 ms (solid curves) and
dact ¼ 50 ms (dashed curves). Again, for comparison, we show the
corresponding data (thin curves) for synchronous activation (see Fig. 4
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for SEMs). In all cases the transition probabilities increased with the
number of presentations per stimulus, and the LTP probability was
larger than the LTD probability throughout the training. However, in the
case of asynchronous activation the increase in the transition probabil-
ities decreased with increasing dact: qLTP went from � 0.07 to 0.33 for
dact ¼ 20 ms and to 0.26 for dact ¼ 50 ms (0.37 in the synchronous
case). qLTD increased from � 0.04 to 0.21 for dact ¼ 20 ms and to 0.16
for dact ¼ 50 ms (0.24 in the synchronous case).

4. Discussion

The main result achieved in the present work is the demonstration, by
simulations, that in the large space of parameters characterising the
ensemble of simple, universal microscopic elements, i.e. neurons and
synapses, a suitable zone can be found in which the network functions
as a system which dynamically stores and recalls a set of randomly
chosen stimuli. The appropriate zone of parameters is within ranges of
biological credibility. Moreover, the characteristics of the neural
dynamics express most of the details of the corresponding observed
physiological phenomena.

The network is subjected to a stream of stimulus-delay trials in
which one of the stimuli belonging to the training set is presented,
followed by a delay during which no stimulus is presented. The
patterns of neural activity induced by the repeated presentation of the
set of stimuli, via spike-driven local synaptic plasticity dynamics, lead
to synaptic structuring. During stimulus presentation, the concurrent
activation at high rates of the cells coding for the stimulus increases the

potentiation level (fraction of synapses in the potentiated state) of the
synaptic population connecting the neurons selective for the stimulus.
At the same time, the synaptic dynamics decrease the potentiation level
of the synaptic population from stimulated to nonstimulated neurons.
When the difference between the potentiation levels reaches a suitably
high level, the neural population becomes capable of reliably
sustaining reverberating activity in the absence of external selective
inputs (Brunel et al., 1998; Curti et al., 2004).
No external intervention or artificial stop-learning conditions are

involved at any stage. After sufficiently long training (30–35 pres ⁄ st;
note thatWM appears much earlier in the course of training; see Section
3.2.4), the coupled neural–synaptic dynamics reach a stable, asymptotic
configuration. Neural activity, whether the network is stimulated (by
familiar stimuli) or not, no longer affects the synaptic structuring itself
(in a statistical sense). Consequently, the patterns of neural activity
exhibited by the network remain stable apart from fluctuations, related
to the corresponding fluctuations in the synaptic structuring, which do
not affect the qualitative functioning of the network. If the training set
and the frequency with which stimuli are presented (presentation rate)
remain unchanged, both the synaptic structuring and the corresponding
patterns of neural activity persist.
A particularly interesting feature of the double dynamics of this

system is a type of ‘homeostasis’. Neither potentiation nor depression
level becomes saturated. Both attain a stationary level determined by
the coexistence of potentiation and depression in every functional
synaptic population, due to the fact that a significant fraction of the
neurons belong to the representation of more than one stimulus.
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4.1. Robustness of the learning process

The process of synaptic structuring, together with its neural correlates,
is very robust. This was corroborated by removing a number of
simplifying assumptions used in the main simulation. First, we carried
out simulations in which variability was introduced in the synaptic
efficacies within every synaptic population (excitatory-to-inhibitory,
inhibitory-to-excitatory, inhibitory-to-inhibitory, excitatory-to-excita-
tory potentiated and depressed). The efficacies have been drawn from
a Gaussian distribution centred around the corresponding J used in the
main simulation. The variance of the distribution is set to D2J2, with D
varying between 0.1 and 0.5 (Amit & Brunel, 1997a). In none of the
simulations carried out did we observe noticeable differences with
respect to the phenomenology described previously.
Also, we ran simulations with randomly variable coding levels for the

stimuli together with noise during stimulus presentation (Section 3.4)
and we desynchronized the activation of the external selective currents
to different neurons upon stimulus presentation (Section 3.5). In both
cases, the process of synaptic structuring, as well as the functioning of
the network as a WM, were qualitatively unaffected. Not surprisingly,
large levels of noise during stimulus presentation, throughout the
training, degraded the performance of the network. However, if there
was no noise during training the same noise levels did not affect
performance at asymptotic structuring (see Section 3.4 for details).
We are currently testing the robustness of the learning process to

several additional aspects, keeping the average parameters of the
network as in the main simulation.
1. Allowing variability of the ‘contrast’ factor from neuron to

neuron. In each stimulation, the ‘contrast’ factors are randomly drawn
from Gaussian distributions, centred on the ‘contrast’ factors in the
main simulation.
2. Allowing nonselective currents during stimulation. All neurons

not selective for the stimulus receive increased external currents,
during presentation, with ‘contrast’ factor lower than that of the
selective neurons.
3. Allowing finite excitatory and inhibitory synaptic time constants.

We chose ss ¼ 2 ms for the fast excitatory currents and ss ¼ 5 ms for
the inhibitory currents (see Materials and methods). We found it
necessary to increase both rEext and JEI to eliminate oscillatory
behaviours (see, e.g., Traub et al., 1999), to increase Jp to ensure
stable, long-living delay activity, and to reduce GE

stim to maintain the
average steady response before structuring as in the main simulation.
Preliminary results show the phenomenology remained the same as

in the main simulation.

4.2. The roles of short-term depression and NMDA

In obtaining ‘robust’ learning, a fundamental role has been played by
the mechanism of short-term synaptic depression implemented
(Tsodyks & Markram, 1997; Tsodyks et al., 1998). It also allows for
the removal of external manual intervention during training (Amit &
Mongillo, 2003). Upon structuring, stimulus response tends to increase
and this increase is a source of instabilities in the learning process (Del
Giudice & Mattia, 2001; Amit & Mongillo, 2003). In fact, too high
average emission rates upon stimulus presentation could alter the
balance between excitation and inhibition, leading to the appearance of
oscillatory behaviour or uncontrolled growth of global network
activity. Such high rates can significantly affect the probability of
synaptic transitions within the various functional synaptic populations,
leading to undesirable synaptic modifications (e.g. potentiation instead
of depression) which may distort the learning process. Short-term rate-
dependent depression of the excitatory synaptic efficacies contains

stimulus response within functional boundaries. During stimulation the
network reliably works in an asynchronous irregular spiking regime
(balanced regime). This ensures that the probability of synaptic
transitions is significantly different from zero, and low, only in
synapses among responsive neurons (LTP) and in the synapses from
responsive to nonresponsive neurons (LTD).
With short-term synaptic depression, we have found it necessary to

add slow NMDA-like currents to ensure the proper functioning of
selective WM activity. In its absence, after the network had structured
itself properly and had stable selective delay activity states, either
according to mean-field analysis (Curti et al., 2004) or by direct access
to these states in the simulation, the neural dynamics of the network,
following the removal of a stimulus, did not reach the WM state
corresponding to that stimulus. The reason is that, at the end of
stimulus presentation, the fraction of available resources of the
synapses corresponding to selective neurons is very low due to the
relatively high emission rate (� 50 Hz) during stimulation. They
recover on a relatively long time scale (� 200–300 ms, in simulation),
and the memory of the stimulus presented may be lost. The network
either relaxes to the spontaneous activity state or to a WM state
corresponding to a different randomly selected stimulus.
The slow (100 ms) NMDA-like component (50%) of the excitatory

recurrent current keeps track of the information of the presented
stimulus while synaptic resources recover. In other words, after
stimulus removal there is a selective recurrent current within
the stimulated neural population. This NMDA current compensates
for the temporary low availability of synaptic resources, maintaining
the emission rate within the selected population at a relatively higher
level. Slow NMDA-like currents also render WM activity more stable
(see, e.g., Wang, 1999; Compte et al., 2000; Brunel & Wang, 2001).
Such slow currents also play a role in preventing spontaneous

global bursting, commonly manifested in networks of spiking neurons
with short-term depressing synapses (Tsodyks et al., 2000; Loebel &
Tsodyks, 2002). Bursts occur because of occasional synchronous
firing of a subset of excitatory cells and, with fast excitatory currents,
synchronous spiking provokes an avalanche of firing activity, and
nearly all neurons in the network spike within a few ms (Tsodyks
et al., 2000). A slower recurrent current renders inhibition more
effective in controlling small spontaneous fluctuations of the activity
in the excitatory population. The network operates reliably in an
asynchronous firing regime. At the same time, the network maintains
its ability to generate fast-developing activity in response to stimulus
presentation. This bursting regime is, however, limited to neurons
belonging to a selective population, which consists of a small fraction
of the entire excitatory population.

4.3. LTP–LTD transition probabilities and neural activity

The average transition probabilities per presentation increase with
training, as a consequence of the increase with structuring of the
average emission rates upon stimulation. The shorter the average ISI,
the larger the transition probabilities. In particular, the initial burst can
significantly affect the transition probabilities. During the initial
transient, due to the temporary imbalance between excitation and
inhibition and to the large availability of synaptic resources, single
neurons can fire multiple action potentials with short ISIs. In fact,
reducing the amplitude of the peak response (and its relative variation
through training) results in the reduction of the transition probabilities
and of its increase during training. (Section 3.5).
It must be noted, however, that the relative variation of the LTP–

LTD transition probabilities in the course of training is not fully
accounted for by the corresponding variation of the average ISI upon
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stimulation. This is due to the low CVs during stimulus presentation
(Section 3.2.5). For the same average ISI (i.e., the same mean emission
rate), a larger CV implies a long tail of the underlying distribution of
firing times. This reduces the probability of a synaptic transition. One
also expects that higher CVs upon stimulation may produce low and
quite constant probabilities of synaptic transitions throughout training.
Larger CVs can be obtained by reducing the average emission rates
upon stimulus presentation, by increasing the level of external noise
during stimulation and by allowing Hebbian plasticity in the
inhibitory-to-excitatory synapses.

From the theoretical point of view, obtaining transition probabil-
ities low and constant through the training history has the important
consequence that the learning theory of Brunel et al. (1998) becomes
applicable together with its relative, the mean-field description of the
stationary states of the neural system (Curti et al., 2004). Without the
constancy of the synaptic transition probabilities the first step is not
possible. The second can still be partially saved, with much reduced
effectiveness, by running the simulation up to a given stage and
then using the resulting potentiation levels in different functional
synaptic populations to set up an instantaneous mean-field analysis.
On the other hand, the rise in probabilities and their dependence on
the burst amplitude may also have a positive side in the development
of associations between delay activity distributions in associative
learning, as in the pair-associate paradigm or in learning sequences
of stimuli with a fixed order. Study of the related effects is under
way.

4.4. Achievements and perspectives

The model network captures several important aspects of the experi-
mentally observed phenomenology. (i) Both excitatory and inhibitory
neurons respond selectively to the stimuli; they respond with the same
coding level and with roughly equal mean emission rates (Tamura et al.,
2004). (ii) The discharge patterns of the neurons are quite irregular, and
the distribution of the firing times is characterized by a long tail (Section
3.2.5). (iii) The distributions of the selective average emission rates,
during stimulus presentation as well as during the subsequent delay
interval, are wide and similar to those experimentally reported (Section
3.2.5). (iv) The time course of the stimulus response is consistent with
profiles observed in in vivo recordings (Tamura&Tanaka, 2001; Tamura
et al., 2004): for excitatory neurons, fast initial transient at a high rate
followed by a steady response at a lower rate; for inhibitory neurons,
tonic response throughout the stimulation.

Because of its biological credibility, themodel may constitute a useful
tool in tracing learning-related modifications of neural activity in
experiments, as well as in designing new, informative experiments. It
also makes experimentally testable statements. The model predicts an
increase in the stimulus response with training. Presentation of familiar
stimuli produces higher rates than those produced by novel stimuli. At
present there is barely preliminary evidence for this. In Messinger et al.
(2001) and Holscher et al. (2004), the emission rate of single neurons in
perirhinal cortex and area TE in inferotemporal cortex (IT) during
training for a delay task increases significantly with the number of
presentations per stimulus.

Another neural correlate of learning is the narrowing of the single-
cell tuning curves, i.e. responses to the stimuli which are poor before
learning are completely suppressed, or reduced, with training (see,
e.g., Rainer & Miller, 2000; Zohary et al., 1994; Holscher et al.,
2004). Rainer & Miller (2000) also report that the selectivity to the
familiar stimuli is more robust with respect to the stimulus degradation
(see also Amit et al., 1997). Both effects are easily accounted for in the

model. As the stimulus becomes familiar (i.e. it is repeatedly
presented), the fraction of potentiated synapses among the neurons
selective to it increases. In this way, even when the stimulus is
degraded by noise (see Section 3.4), the nonstimulated selective cells
emit at enhanced rates because of the strong recurrent synaptic
efficacies. Similarly, with training, the fraction of potentiated synapses
from selective to nonselective neurons decreases. Consequently, upon
presentation of a given stimulus the excitatory currents afferent on the
nonselective neurons decrease, reducing their emission rates. This
produces the narrowing of the tuning curves.
In the simulations reported we did not observe this effect directly

because during stimulus presentation nonselective cells are practically
quiescent, throughout the training. However, we did observe a
decrease in the average depolarization level of the nonselective cells
with training, indicating a corresponding reduction in the afferent
current. In preliminary simulations we increased the nonselective
afferent current during stimulation. This, on the one hand, may be
interpreted as a change in the subject’s attention in viewing the
stimulus; on the other hand it endows nonselective cells with
significantly higher emission rates without harming the structuring
process (see Section 3.4). In these simulations we observed the
narrowing of the single-cell tuning curves as training proceeded.
In this network, one can naturally study the dependence of the

structuring and of the associated neural dynamics on the presen-
tation protocol. The present study reports a basic case in which the
set of stimuli is stationary (i.e. no stimuli are added or removed
from the training set), and stimuli are presented in a random,
uncorrelated way at the same rate. Moreover, the trial is an
elementary stimulus–delay pair. The simulations can be applied to
modelling the neural correlates observed in more elaborate tasks,
starting from the simple delay-match-to-sample with fixed-order
sequences (Miyashita, 1988), the pair-associate matching (see, e.g.,
Erickson & Desimone, 1999; Messinger et al., 2001; Naya et al.,
2003), and task switching during delay (Naya et al., 1996). Several
of these tasks have been modelled with promising results (Amit
et al., 1994; Brunel, 1994; Brunel, 2003; Mongillo et al., 2003),
but not yet with a fully embedded microscopic synapse. Such
applications may reinforce the credibility of the modelling elements,
and may also hide some surprises and lead to new predictions.
Adding or removing stimuli from the training set, or varying their

presentation rates, could expose learning-related modifications in
experiments in a more effective way. Finally, the presentation protocol
could be relevant with respect to the issues such as learning and
forgetting rates (Brunel et al., 1998), and the storage capacity (Curti
et al., 2004). Preliminary simulations show that, in some cases, the
network is unable to store a given number stimuli if they are all
presented in the same training session. By contrast, if training is made
first on a subset of the stimuli and then on the entire set, the network
develops selective delay activity for all stimuli. Such a feature of
training could account for a common strategy for memorising a long
text, as for instance a poem.
Last, among many possible additional ones, we mention the

prospect of using such a network to investigate the unsupervised
development of neural representations expressed by selective delay
activity states. The network could be trained on an arbitrary set of
stimuli, not necessarily random or of fixed coding level; they could,
for example, be pixelised images of real objects. The neural dynamics
together with the synaptic plasticity would create delay activity
representations for the stimuli which are likely to be quite different
from the presented stimuli and would probably give rise to higher
selectivity (fewer correlations, fewer overlaps) and lower coding. Such
an outcome is imaginary at this stage but, if verified, could lead to the
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resolution of the puzzle of the collapse of the delay-activity
representations of many images into very restricted columns.
Many of these issues are currently under investigation.
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l, no. of a given stimulus in a set of stimuli; CV, coefficient of variation; ISI,
interspike interval; LTD, long-term depression; LTP, long-term potentiation;
mpeak, peak response (maximal population activity level in 10-ms bins during
stimulus presentation); msteady, steady response (average activity level in the last
350 ms of stimulus presentation); pres ⁄ st, presentations per stimulus;
sel fi nonsel, selective fi nonselective, i.e. pre- and postsynaptic neurons
responding to different stimuli; sel fi sel, selective fi selective, i.e. pre- and
postsynaptic neurons responding to the same stimulus; ns, selective fi nonse-
lective; ss, selective fi selective; WM, working memory; X, internal analogue
variable.
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