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Abstract. We use a simple pendulum model to study how the 
combination of feedforward and feedback can be combined to 
control rhythmic limb movements. We show that a purely 
feedforward central pattern generator (CPG) is highly 
sensitive to unexpected disturbances. Pure feedback control 
analogous to reflex pathways can compensate for 
disturbances, but is sensitive to imperfect sensors. We 
demonstrate that for systems subject to both unexpected 
disturbances and sensor noise, a combination of feedforward 
and feedback can improve performance. This combination is 
achieved by using a state estimation interpretation, in which a 
neural oscillator acts as an internal model of limb motion that 
predicts the state of the limb, and by using α-γ coactivation or 
its equivalent to generate a sensory error signal that is fed 
back to entrain the neural oscillator. Such a hybrid 
feedforward/feedback system can optimally compensate for 
both disturbances and sensor noise, yet it can also produce 
fictive locomotion when sensory output is removed, as is 
observed biologically. CPG behavior arises due to the 
interaction of the internal model and a feedback control that 
uses the predicted state. We propose an interpretation of the 
neural oscillator as a filter for processing sensory information 
rather than as a generator of commands.  
 
Abbreviations: CPG, central pattern generator; FF, 
feedforward; FB, feedback; HFB, hybrid feedforward / 
feedback; rms, root-mean-square 

Key Words: central pattern generator, locomotion, reflexes, 
motor control, efference copy 

1 Introduction 
 Central pattern generators (CPGs) are neural circuits 
that generate periodic motor commands for rhythmic 
movements such as locomotion (see Fig. 1a). Although 
the anatomical details of CPGs are known for only a 
few cases, the motor commands have been shown to 
originate from the spinal cords of a variety of 
vertebrates (Grillner and Wallén, 1985). These circuits 
can function in vitro even when isolated from the brain, 
as evidenced by locomotion in decerebrate cats (Shik et 
al., 1966); and when isolated from the motor and 
sensory apparatus of the limbs (Grillner and Wallén, 
1985). Fictive locomotion also occurs in invertebrates 
(Pearson and Fourtner, 1975). Locomotor CPGs were 
originally thought to entrain the limbs to oscillate at a 

sustained frequency, providing a rhythmic motor 
command to overcome dissipation associated with 
friction and other phenomena (Brown, 1914). However, 
the existence of limb dynamics and of feedback 
pathways may lead to a different interpretation of CPG 
activity. 
 The limbs, which receive commands from CPGs, 
have natural dynamics that govern many aspects of 
locomotion. In walking, the motion of the limbs has 
been likened to that of coupled pendula, so that there is 
a periodic exchange between potential and kinetic 
energy. In running, the legs function in a manner 
analogous to springs, with the exchange occurring 
between kinetic energy of the center of mass and the 
potential energy of the springs (Alexander, 1989). For 
both of these cases, the dynamics are sufficiently 
significant that they govern many aspects of 
locomotion. Timing, limb kinematics, and ground 
reaction forces can all be predicted to a surprising 
degree of fidelity through consideration of dynamics 
alone (McGeer, 1993), without regard to the commands 
arising from CPGs. In fact, the resonant limb dynamics 
might limit the influence of CPG function to a greater 
degree than the converse. For example, humans scale 
walking speed primarily by adjusting step amplitude 
and stance duration; swing phase duration is closely 
tied to the pendulum-like motion of the legs, making it 
energetically costly to tune away from what is natural 
(Alexander, 1989; Kuo, 2001). 
 From a control perspective, motion of a system 
whose mechanics dictate a need for efficiency and 
stability is better accomplished with feedback, as 
opposed to pure feedforward signals. The limbs, having 
a natural rhythmic state, can act as a peripheral pattern 
generator that triggers the feedback signals necessary to 
supply energy and sustain oscillatory behavior (Fig. 1b; 
see also Gray, 1950). In fact, nearly all existing 
examples of physical robots that locomote and have 
significant dynamics are based on feedback control 
(e.g., Raibert, 1986). The combination of natural 
dynamics and feedback signals produces motion 
without need for a centrally generated command. 
Practically speaking, feedback is advantageous because 
limbs do not generally behave exactly as commanded 
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(Hatsopoulos, 1996), and a feedback signal can 
compensate for unexpected disturbances. A centrally 
generated command does not, by definition, respond to 
sensory information, and performance can potentially 
suffer if disturbances are significant.  
 Biological evidence demonstrates that feedback 
pathways do in fact act in concert with CPGs. For 
example, feedback circuits in the lamprey can entrain 
the CPG to physical motion (Grillner et al., 1981). 
Cohen (1992) has emphasized that there is a two-way 
interaction between the CPG and the body, in which the 
CPG actively processes sensory inputs and mechanical 
factors contribute to entrainment of the CPG. Given the 
coexistence of both feedforward and feedback and 
engineering evidence favoring feedback alone, we ask 
what possible advantage there might be to this 
combination. 
 Modern control theory provides a basis for studying 
the roles of feedforward and feedback. Control theory 
acknowledges the superiority of feedback for control of 
systems that are subject to unexpected disturbances. 
However, feedback is predicated on the ability to 
correctly sense the state of the system to be controlled. 
Because sensors are not perfectly accurate in practice, 
there arises a need to make use of imperfect sensory 
information to generate the appropriate feedback 
command. The results of Kalman show that an optimal 
estimate of the system state can be produced using an 
internal model to predict the expected state and 
associated sensory output (Bryson and Ho, 1975). The 
sensory prediction error can then be used to adjust the 
expected state in an optimal manner, and this estimate 
can in turn be used to produce the appropriate feedback 
command. If the internal model is of a system with 
rhythmic behavior, as in locomotion, then the model 

will act as a central pattern generator, albeit one which 
is tuned with sensory feedback. The relative roles of 
feedforward and feedback should therefore be 
dependent on the relative significance of unexpected 
disturbances and imperfect sensors. 

Fig. 1. Pure feedforward and feedback circuits for rhythmic movements. a. Feedforward system is driven by two mutually inhibitory 
half-centers (enclosed by dashed circles) which produce alternating bursts of activity driving motor neurons (MN). Muscles, 
triggered by α motor activity, produce motion of a limb. Half-centers receive tonic excitation, and appear to comprise multiple 
neurons, and may include nonspiking neurons. b. Feedback system also produces rhythmic movement, but only through feedback of 
muscle stretch sensation through Ia afferents, which trigger monosynaptic reflex commands and contralateral inhibition. If gain K is 
properly tuned, system will exhibit limit cycle behavior. c. Identical limit cycles, shown here in a phase plane plot, can be generated 
through pure feedforward or feedback. Limit cycle shown is for parameters α = 0.3, ζ = 0.1. 

 In this paper, a simple model will demonstrate these 
principles. The model is of a damped pendulum driven 
to oscillate in a manner analogous to limb motion. We 
first show that for an ideal system, either feedforward 
or feedback control can be used to produce the desired 
oscillation. However, in the presence of unexpected 
disturbances, the pure feedforward control has 
significant performance disadvantages. We then show 
that the pure feedback system also has performance 
disadvantages when sensory information is imperfect. 
An optimally designed intermediate of the two 
extremes performs best when both types of disturbances 
are present. These results lead to a new interpretation in 
which CPGs generate oscillatory signals more to assist 
the decoding of sensory information rather than to 
produce feedforward motor commands. Lastly, we will 
discuss some physiological implications of this 
interpretation. 

2 Pendulum Model 
 As a simple model for a limb undergoing rhythmic 
motion, we will employ a simple damped pendulum 
under the influence of either gravity or a torsional 
spring (or any combination of the two), forced to 
oscillate about vertical equilibrium by impulsive 
torques applied at the extremes of motion. The 
impulsive torques are a mathematical convenience that 
approximate the influence of short bursts of muscular 
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activity. Assuming small angles, the linearized equation 
of motion for the pendulum will be used: 

  (1) 2 uθ ζθ θ+ + =

 
τ
α2≡U . (6) 

 To restrict the number of free parameters, the 
pendulum boundary conditions will be restricted to 
those corresponding to a constant speed U = 0.5, which 
is the speed of an undamped pendulum swinging freely 
with amplitude 4π . This constraint, along with (1) 
and (2), make τ and Ω functions of two free parameters 
α and ζ. Note that limit cycles for other speeds may be 
found by scaling appropriate trajectories at the nominal 
speed, due to the linearity of the pendulum dynamics.  

where θ is the angle of the pendulum as measured 
counterclockwise from the vertical, ζ is the damping 
ratio, and u is the externally applied torque. We will 
employ normalized units in the subsequent analysis, 
with mass in units of pendulum mass m, length in units 
of pendulum length . Time is in units of nω1 , with 
the definition of ωn depending on the influence of 
gravity or spring-like muscles. If gravitational potential 
energy is significant, ( )1 2

n gω . The resonant 
frequency ωn may also be modified to include a spring 
constant if spring-like potential energy is significant. 
There is a direct equivalence between a model with 
impulsive torques and one with spring-like muscles 
acting over an arbitrary duty factor (see Appendix A of 
Kuo, 2001).  

 The following free parameter values are chosen for 
the nominal limit cycle (Fig. 1c): α = 0.3 rad, ζ = 0.1. 
At a speed of U = 0.5, this results in a half-period of τ = 
1.2, initial velocity of magnitude Ω = 0.510 and loss 
constant η = 0.731. Although the model only produces 
rhythmic limb motions, the parameter set is chosen to 
roughly correspond to leg swinging in freely selected 
human walking at 1.5 m/s and 2.5 Hz, although in 
humans much of the energy loss occurs at heel contact 
rather than being distributed over an entire stride as is 
the case here (Donelan et al., 2001; Alexander, 1989). 

 The pendulum is to undergo steady-state oscillations 
of amplitude α and with initial angular velocity  of 
magnitude Ω in units of ωn (see Fig. 1c). We therefore 
define the initial condition 

θ

3 Feedforward and Feedback 
Systems   .  (2) ( ) αθ =0 , ( ) Ω−=0θ

The damping ratio ζ determines how much speed is lost 
during one half-period, crudely modeling the energy 
loss due to dissipatory effects, which can occur both 
continuously, as with friction, and at discrete instances, 
as during foot contact in animal locomotion. We define 
the constant η to describe the amount of speed retained 
by the end of each half-period of duration τ, after which 
the speed Ω will be restored instantaneously through 
application of an instantaneous impulse. We will 
restrict allowable behaviors to those with non-negative 
η. Employing the ‘–‘ superscript to denote conditions 
just prior to the impulse, and ‘+’ for just after, the half-
period condition is 

3.1 Feedforward and Feedback Control 
Laws 
 In the absence of disturbances, identical limit cycles 
may be obtained using any combination of feedforward 
and feedback. A pure feedforward control applies the 
impulses at every half-period, regardless of the 
pendulum’s state (see Fig. 1a). The control law is, from 
(3)-(5), 

 , . (3) ( ) ατθ −=− ( ) ητθ Ω−=−

 FF: , k = 1, 2, 3… (7) ( ) ( ) ( )
( )
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The asymptotic stability of this system may be verified 
through application of Poincare maps (Guckenheimer & 
Holmes, 1983). 
 A pure feedback, however, applies the impulses as a 
function only of state (i.e., the pendulum’s position and 
velocity) and not explicitly of time (see Fig. 1b). One 
possible feedback law is 

is applied. In order for the pendulum to exhibit periodic 
behavior, it is necessary that this impulse results in the 
initial condition for the next half-period, 

 , , (5) ( ) ατθ −=+ ( ) Ω=+τθ
 FB: ( ) ( )( ) ( )( ) sgn1sgn, Ω−−Ω+−= ηθθηθθθ KI  

  if θ = ±α or θ  = 0      (8) 
which in turn ends when the pendulum returns to its 
original position of (2). The amplitude of swing and 
half-period τ determine the dimensionless speed 

where K is a control feedback gain, and the bounds on 
limb motion α and angular rate Ω are specified by a 
higher-level (descending) command. The first term 



 

above is equal to the nominal impulse applied by the FF 
control law, and the second term is a corrective impulse 
dependent on the deviation of  from the nominal. 
When K = 1, which will be taken as the default case, 
the FB control law applies an exactly corrective 
impulse at each extreme of motion. If the pendulum 
does not have sufficient energy to reach θ = ±α, an 
impulse is supplied to redirect it toward one of these 
limits starting from zero velocity. In principle, a 
feedback law could alternatively supply an exactly 
corrective impulse when , but the calculation of 
the appropriate magnitude cannot, in general, be solved 
analytically. It may be verified that the FB control law 
provides global stability. 

θ

0=θ

 The pure feedforward and feedback control laws 
differ in behavior only when disturbances act on the 
system. We will consider two types of disturbances: 
those that apply unexpected torques w, and those that 
add unexpected errors v to measurements of the state. 
Equation (1) is therefore replaced by 

  u=+θθθ 2  (9) w++ ζ

and the feedback law FB (8) is made a function of 
measured states  

 ,  (10) 1vm += θθ 2vm += θθ

rather than actual states. To characterize average 
behavior, the disturbances w, v1, and v2, may be 
modeled as noise with short correlation time, as 
described below. 
 The feedforward and feedback systems also differ in 
analytical tractability. The FF control is a periodic 
excitation of a linear system, for which analytical 
solutions can be found. In contrast, the FB control law 
is neither continuous nor periodic—it uses discrete 
impulses with triggering time and magnitude both 
functions of the state—and does admit analytical 
solutions. Simulations were therefore used to 
characterize the behaviors for both systems, and FF 

results were verified against analytical predictions. 

3.2 Sensitivity to Disturbances and 
Measurement Noise 
 We will use the pendulum system to demonstrate 
two fundamental control principles: that pure 
feedforward systems are sensitive to unexpected 
disturbances, and pure feedback systems are sensitive to 
measurement errors. We first apply a 10% perturbation 
to the initial velocity, which results in oscillatory 
behavior of the pendulum under FF control, as shown in 
Fig. 2.  To describe this behavior, we compute errors in 
θ and  from the nominal values directly after each 
impulse following the initial release. The FF system 
produces a maximum error of 14.1% in θ before slowly 
converging to the limit cycle. Settling time, defined as 
the number of half-periods required for error to go 
below 5%, is 10 half-periods for θ and 6 half-periods 
for . To demonstrate the sensitivity on parameter 
values, the maximum θ errors were computed for a 
range of values for α and ζ (see Fig. 2b). The parameter 
domain was for amplitudes between 0 and , and ζ 
between 0 and 1.2. Large errors, 20% and above, were 
found for values of α less than approximately 0.2, and 
errors on the order of 10% were found for values of α 
up to approximately 0.4. These and subsequent results 
were computed using a model implemented in Simulink 
2 (The MathWorks Inc., Natick, MA). The limit cycle 
behavior was computed using numerical integration by 
Simulink’s ode23 variable step size function. The 
relative integration error tolerance was 1e-3, and the 
absolute tolerance was 1e-6. 

θ

θ

4/π

 The FB system, using K = 1, performs considerably 
better under the same conditions, assuming accurate 
measurements of the state (i.e., v1 = 0, v2 = 0). 
Following initial release, the control law supplies an 
exactly corrective impulse, so that the maximum error 

Fig. 2. Feedforward systems are 
sensitive to unexpected disturbances. 
a. When feedforward system of Fig. 
1a is started with an initial velocity 
with 10% error, system exhibits 
oscillatory behavior and slow 
convergence to limit cycle. b. 
Maximum position error due to 10% 
initial velocity perturbation, as a 
function of parameters α (amplitude) 
and ζ (damping ratio). Domain is 
restricted to parameter values for 
which pendulum has no overshoot, 
delimited by zero velocity boundary. 
Note that majority of parameter 
values result in greater than 10% 
position error, demonstrating high 
sensitivity to perturbations. 
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Fig. 3. Feedback systems are sensitive to 
measurement errors. a. When feedback 
system of Fig. 1b is subject to noise-like 
errors in measurements of θ and , system 
exhibits continual oscillations about limit 
cycle. b. Steady-state position error, shown 
as percentage rms (root-mean-square), as a 
function of parameters α (amplitude) and ζ 
(damping ratio). Feedback system exhibits 
sensitivity to measurement errors for low 
amplitude movements. 
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is 0% and the settling time is 1 half-period for both θ 
and . This behavior is invariant to parameter choice, 
and is more similar to perturbation responses seen in 
animals (e.g., Mellen et al., 1995). 

θ

 However, the FB system does not perform as well 
when measurements are imperfect. To assess sensitivity 
to measurement noise, we evaluated steady-state 
behavior, defined as root-mean-square (rms) errors over 
100 steps, with simulated white noise, using noise 
parameters determined as follows. We assume that the 
precision of sensory data does not greatly exceed the 
ability of the motor system to regulate movement and 
vice versa, implying that measurement noise should be 
approximately equivalent to the variability due to 
disturbance noise alone. First, nominal disturbance 
noise w with zero mean and arbitrarily chosen 
covariance , and no measurement noise, was 
applied to the FF system. This value produced steady-
state root-mean-square errors of 7.2% in θ and 4.7% in 

. Root-mean-square error was computed at discrete 
instances, based on the deviations of θ and  from the 
fixed point directly following each impulse for 100 
half-periods. These errors were used to determine 
nominal measurement noise characteristics: v1 and v2 
had zero mean and variances equal to the steady-state 
disturbance noise response. In other words, v1 and v2 
had rms values of 7.2% and 4.7%, respectively. For 
computations, band-limited white noise was simulated 
with normally distributed random numbers applied in 
discrete time with a zero-order hold and a step size 40 
times smaller than the half-period τ. 

( 22.0 nωΩ )

θ
θ

 When the FB system operates with no disturbance 
noise but with nominal measurement noise as described 
above, the state oscillates about the fixed point (see Fig. 
3a). The steady-state rms errors are 5.0% for θ, and 
4.5% for . Performing the same calculations for a 
range of parameter values for α and ζ (Fig. 3b), but 
with identical noise attributes, we find that the FB 

system grows increasingly sensitive to measurement 
noise inversely proportional to α, because error is 
reported as a percentage. In terms of absolute error, the 
FB system is insensitive to parameter choice. 

θ

 In contrast, the FF system is completely insensitive 
to measurement noise, because impulses are applied 
according to an intrinsically generated rhythm rather 
than sensory measurements. 

4 Hybrid Feedforward/Feedback 
System 
 Given the respective weaknesses of both FF and FB 
and the likely presence of both unexpected disturbances 
and sensory measurement errors in any biological 
system, we next explore whether there is some 
advantage to be gained by combining FF and FB. To 
this end, we desire a model which can act as a pure FF 
or FB system at the extremes, but which mixes the two 
in some flexible manner. Moreover, the hybrid model 
should exhibit the ability to intrinsically generate motor 
activity even in the absence of sensory feedback, as is 
observed in CPGs. After developing such a model, we 
will apply both types of noise and examine its behavior 
as the FF/FB mixture is varied, using optimal state 
estimation theory as a parameterization tool. 

4.1 Hybrid Feedforward/Feedback Model 
 A hybrid model satisfying these requirements is 
obtained by modifying the FF system to incorporate 
elements of the FB system (see Fig. 4). First, the CPG 
oscillators will be assumed to model the dynamics of 
the pendulum, producing a prediction of motion that in 
turn drives the FB system. Second, we adopt the 
equivalent of α-γ coactivation so that the sensors, in 
this case muscle stretch receptors, signal deviations 
from the commanded movement, i.e., unexpected 
disturbances. Third, the resulting error signals are fed 
back to the half-center oscillators with a CPG feedback 



 

 . (12) vxy +=

Fig. 4. Hybrid system combines feedforward (FF) and feedback 
(FB) in such a way that limit cycle behavior is retained. Half-
centers (enclosed by dashed circles) produce bursts of α-γ co-
activation with control gain K. Coactivation causes stretch 
receptors to adjust sensitivity so that afferents feed back error 
information e, signaling unexpected disturbances. Error 
feedback entrains half-center oscillators with gain L, referred to 
as CPG feedback gain. When L is zero, error information is 
ignored and system functions identically to pure FF system of 
Fig. 1a. When L is very large, half-centers are immediately 
entrained to error signals, essentially acting as relay 
interneurons, and system behaves identically to pure FB system 
of Fig. 1b. (When L is sufficiently large, interneurons are largely 
redundant and can be bypassed, resulting in identical topology of 
pure FB system.) For any value of L, hybrid system produces 
invariant limit cycle, though with varying degrees of sensitivity 
to unexpected disturbances and measurement errors. When 
feedback e is eliminated, half-center oscillators produce nominal 
limit cycle behavior, regardless of magnitude of L. 
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Hybrid FF/FB model

Note one difference with the former system: the 
disturbance vector  has been expanded to include an 
additional component w2 that affects  through Γ.  

w′
θ

 We assume that the CPG oscillators, as a group, 
exhibit separate but identical dynamics to the body, but 
possibly different inputs. The CPG’s intrinsic state will 
be referred to as , so that its dynamics are described 
by 

x̂

  (13) LeBuxAx −+= ˆˆ

 . (14) yxe −= ˆ

These equations reflect the fact that the CPG does not 
have access to values for unexpected disturbances and 
measurement noise. Even the feedback information it 
receives regarding limb position or velocity are 
ambiguous due to the interaction of γ input to the 
muscle spindles. Finally, a hybrid control  is 
constructed by applying the FB control law to the 
intrinsic state: 

( )xfu ˆ=

 HFB:  ( ) ( )( ) ( ) 


 Ω−−Ω+−= ηθθηθ ˆsgnˆ1ˆsgnˆ KxI

  0 =±= .     (15) ˆor  ˆ if θαθ
 The model described by (13) and (14) produces 
rhythmic limb motion based on feedback only of 
sensory error e. It is able to do so because the internal 
model generates the expected limb motion, and requires 
updates only to correct for errors in that expectation, 
relayed by e. We therefore interpret muscle spindle 
output as a comparison between actual and expected 
limb motion, effectively providing feedback of e. gain L (not to be confused with the control feedback 

gain K), which entrains the FF component to actual 
movement. The oscillator output in turn triggers the  
reversing torque that in the FB system would be 
triggered directly by the sensed leg angle (8). The CPG 
feedback gain may be varied between 0, in which case 
behavior identical to the FF system is achieved, and 
values approaching infinity, causing the behavior to 
approach that of the FB system. 

 The model also satisfies all requirements for the 
hybrid system. When L is the zero matrix (2 2), the 
impulses are applied at intervals of τ, just as in the FF 
system. Elimination of feedback e has the same effect. 
It may also be verified that for large values of  and 

 the intrinsic state simply follows the measured 
state. 

×

L11

22L

 To complete the analysis, it is necessary to prescribe 
a simple parameterization of L such that steady-state 
behavior in the presence of disturbances and 
measurement errors may be evaluated over a range of 
values between the FF and FB extremes. The next 
section introduces a parameterization based on a single 
index that determines all four entries of L. 

 Mathematical implementation of the hybrid model is 
most conveniently performed in state space. Defining 
the vectors and system matrices 
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4.2 Optimal State Estimation Theory 
the state-space equivalents to (9) and (10) are 
  (11) wBuAxx ′Γ++=

 The preceding development lends itself well to 
analysis by optimal state estimation theory, which is 
concerned with the determination of a system’s state 
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based on measurements which are indirect, imperfect, 
or ambiguous. This theory can be used to interpret CPG 
behavior as optimal in some sense, although the 
primary reason driving its application is simply as a 
means to parameterize the CPG feedback gain. 
  An optimal estimate of the state of a linear, time-
invariant system may be obtained by using an internal 
model of the system to predict both the state and the 
associated sensory output. The estimation error may be 
minimized in the mean-square sense by feeding back 
the sensory prediction error to the internal model using 
gains which are constant in the steady-state condition 
(Bryson and Ho, 1975).    
 Our hybrid system uses a single parameter, the CPG 
feedback index (CFI), to set the relative contributions of 
feedforward vs. feedback. The CFI is employed in the 
design equations for the optimal estimator as follows: 

   (16) 010CFI1 =ΓΓ⋅+−+ − TT WPPVPAAP

   (17) 1−= PVL
where W  and V . The estimator gain L 
depends on the relative magnitudes of W and V, and the 
CFI inflates the influence of W over V. It may be 
verified that if W and V are positive definite, then both 

 and  asymptotically approach lines proportional 

to  as CFI grows in the negative direction, and 
both asymptotically approach lines proportional to 

w′≡ cov

22L
CFI

vcov≡

11L

10

2CFI10

mθ

 as CFI grows in the positive direction. The off-

diagonal entries of L, which couple  to  and  to 
, approach 0 as CFI grows in either direction.  

θ̂ mθ θ̂

 The estimated state is then used as input to the 
closed-loop feedback (15). Combining (16)-(17) with 
the HFB system, the CFI can be used to interpolate 
between pure FF and FB behavior. The resulting 
performance depends on the interaction between the 

predicted  and  and the control feedback. The 
estimator is theoretically optimal at CFI = 0, but 

simulations are needed to evaluate the overall 
performance because HFB is a nonlinear feedback.  

θ̂ θ̂

4.3 Performance of Hybrid 
Feedforward/Feedback System 
 The CPG feedback index is to be used to evaluate 
performance of systems using various proportions of 
feedforward and feedback but subject to noise-like 
disturbances and measurement errors. Performance will 
be evaluated in terms of % rms error. We first consider 
performance as a function of the CPG feedback index 
(CFI) for nominal values of free parameters, after 
which we will examine how variation of parameters 
affects results. 
 In devising the hybrid system model, we introduced 
a disturbance w2 acting directly on . As with the 
primary disturbance, w2 is modeled with zero-mean 
simulated white noise. To ensure that w remains the 
dominating influence as in the previous example, we set 

. 

θ

22 cov001.0cov vw =
 Using the nominal parameter settings, we calculated 
CPG feedback gains for integer values of the CPG 
feedback index ranging from –5 to 5. At CFI = 0, L11 = 
1.02ωn, L22 = 3.88ωn; for all index values, the off-
diagonal terms of L never exceeded 5% of the diagonal 
terms in magnitude. Simulations were performed for 
100 half-periods, and rms errors relative to the fixed 
point were calculated as described above. Simulations 
were also performed using pure FF and FB control 
under the same conditions to serve as limiting cases. 
The range of CFI feedback indexes was chosen based 
on the finding at those extremes, the entries in L were 
sufficiently small or large in magnitude to induce 
significant errors in finite-precision arithmetic.  
 Results show that there is a hybrid combination of 
FF and FB that is least sensitive to the 
disturbance/measurement noise combination (see Fig. 
5). For the noise levels chosen, minimum steady-state 

Fig. 5. Steady-state position and velocity errors (bars) 
and CPG feedback gains (solid lines) for hybrid system 
subject to noise-like perturbations and measurement 
errors, as function of CPG feedback gain index (CFI), 
which sets value of CPG feedback gain. Index of 0 
corresponds to optimal CPG feedback gain, as calculated 
from optimal state estimation equations. Negative index 
values of increasing magnitude correspond to decreasing 
L, approaching pure FF system. Positive index values of 
increasing magnitude correspond to increasing L, 
approaching pure FB system. a. Position errors, in terms 
of % rms, are minimized for feedback gain index of 0 
and is relatively insensitive to excessive CPG feedback. 
Errors increase over fourfold over minimal value for 
pure FF and FB systems. Right-hand axis is for gain L11. 
b. Velocity errors, in terms of % rms, are also minimized 
for index 0. Right-hand axis is for gain L22. 
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errors were 1.4% rms in θ and 1.7% rms in , and this 
minimum was achieved with a CPG feedback index of 
0. Errors increased as the CPG feedback index was 
increased in positive and negative directions, reaching a 
maximum of about 5.8 times the minimum θ error and 
2.9 times the minimum  error at the FF extreme. 
These same trends also hold true for absolute error 
rather than percentage error.  

θ

θ

 To determine whether our results were dependent on 
a particular choice of parameters, we repeated the 
hybrid model calculations, systematically varying every 
nonredundant parameter at least once (see Table 1). We 
found that, regardless of parameter values, minimum 
rms errors were achieved with a CFI feedback index of 
0. However, the value of that minimum and the relative 
amount by which it is exceeded using FF or FB were 
dependent on parameter choices. For example, both the 
magnitude of minimum error and the relative advantage 
over FF/FB decreased with increasing damping ratio ζ 
(see parameter sets b and c). Nevertheless, the 
sensitivities to parameter choice were quite small 
overall, with relative advantages over FF ranging from 
3.7 to 7.4 in θ and from 1.7 to 3.9 in  despite 
parameter changes on the order of twofold or more. The 
most significant absolute effect was an approximately 
order of magnitude increase in minimum error 
(parameter set i), but this occurred when the 
disturbance covariance was increased by two orders of 
magnitude, equivalent to a tenfold increase in the rms 
value of w and therefore indicative of an approximately 
linear scaling relationship.  

θ

5 Discussion 
 Our results demonstrate the claim that, for dynamical 
systems subject to both disturbances and measurement 
noise, there is an optimum level of combined 
feedforward and feedback that results in better 
performance than either FF or FB alone. Feedback is a 
necessary component for any system which must 
respond to disturbances, and when measurements are 
accurate, there is no advantage to be gained through 

feedforward. In the more realistic case where 
measurements are subject to noise, combining 
feedforward with feedback can optimally reduce 
steady-state errors. For example, the results of Fig. 5 
showed steady-state errors that were smaller by a factor 
of about 2 to 7 for a wide range of parameter values. 
 There were a few anomalies in which the results did 
not conform to expectations. Estimation theory predicts 
that errors should increase monotonically towards the 
FF and FB extremes as the CPG feedback gains 
decrease or increase, respectively, from their optimal 
values. In several cases, the FF and FB errors appeared 
to be lower than expected. Closer examination revealed 
that errors were magnified by numerical errors when 
gain values were large or small relative to the 
integration error tolerance for the simulation. These 
errors were due to a combination of stiff differential 
equations and scaling effects in numerical arithmetic, 
and typically occurred only with a CPG feedback index 
of ±5. With the exception of these anomalies, all of the 
results shown in Fig. 5 were consistent with 
expectations.  
 We therefore hypothesize that the primary advantage 
gained by the presence of intrinsic rhythmic oscillations 
is in the processing of sensory information for use in 
feedback, rather than to control timing or to sustain a 
stable limit cycle. Both of these functions are better 
served through feedback. Strict timing should not in 
any case be relevant to many rhythmic movements, and 
even to locomotion. When there is a perturbation to a 
nominal trajectory, it should be of primary importance 
to return to the limit cycle in a stable and/or energy-
efficient manner rather than to preserve the phasing in 
place before the perturbation. This expectation has been 
demonstrated empirically (Kay et al., 1991). 
 If the purported disadvantages of feedforward seem 
at odds with the prevailing opinion, it is in part because 
this term is technically not appropriate for biological 
CPGs under the influence of feedback. In standard 
control terminology, the hybrid FF/FB model (Fig. 4) is 
a closed-loop feedback system, no component of which 
could be considered feedforward. This is true despite 
the fact that it will generate rhythmic output even in the 
absence of the error signal e. CPG behavior arises from 

Fig. 6. Steady-state position and velocity 
errors for hybrid system using variety of 
parameter sets. a. Position errors were 
minimized for feedback gain index of 0, 
using all parameter sets. b. Velocity 
errors were either minimized, or within 
1% of minimum, for feedback gain index 
of 0, using all parameter sets. Results 
demonstrate general principle of hybrid 
FF/FB control: steady-state error is 
minimized for some intermediate value 
of CPG feedback gain, regardless of 
parameter choice.  FF -5 -4 -3 -2 -1 0 1 2 3 4 5 FB
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two components of the model: an internal model that 
can be used for state estimation in any type of 
movement (including posture or non-rhythmic 
movement), and a feedback gain K that can stabilize 
posture or produce rhythmic movement depending on 
its magnitude. In the case of zero CPG feedback (L=0) 
there is a sudden change in terminology; the internal 
model becomes a feedforward controller and the control 
feedback gain K becomes a feedforward gain. Because 
most CPGs have feedback pathways, it is perhaps more 
appropriate to think of intrinsic CPG oscillations in a 
feedback rather than feedforward context. Cohen 
(1992) proposes the term “heterarchical control” for 
this type of interaction; the internal model hypothesis 
considers the CPG to be a sensory processor within the 
feedback loop.   
 Although the hypothesis has been studied using a 
very simple model, experience suggests that it is 
applicable to a wide variety of more complex systems. 
The conditions under which the output of a constant-
gain state estimator (13)-(14) serves as an appropriate 
feedback control signal are theoretically limited to 
stationary linear systems. However, practically 
speaking, the constant gain estimator appears to be 
applicable to situations such as the HFB system used 
here. 
 The model studied here is restricted to rhythmic limb 
motion, but may have some relevance to locomotion as 
well. The stance phase of locomotion certainly does not 
resemble the motion of a simple pendulum, but its 
inverted pendulum behavior is also rhythmic. It is 
reasonable to suppose that the propulsive extension of 
the stance leg which occurs just prior to toe-off 
(Donelan et al., 2001 in press) can advantageously be 
generated through feedback. Again, the advantage of 

feedback is that the timing is adjusted based on the 
actual state of the limb, and the disadvantage is a 
sensitivity to sensory errors. Just as with the present 
model, a state estimator can optimally combine the 
advantages of feedback and a feedforward internal 
model. Finally, motion of the swing leg can be modeled 
as a pendulum-like oscillation forced by actively 
applied muscle torques (Kuo, 2001), very similar to the 
model presented here.   

Table 1. Effect of parameter variations on CPG feedback gains and steady-state rms error. For each parameter set, the name of the 
parameter and its perturbed value is given, along with values for two feedback gains and two sets of rms error. Each set contains one 
column for rms error in θ or , followed by two columns containing the factor by which this error is multiplied under pure feedforward 
and pure feedback, respectively. 

θ

 
θ  rms error  θ  rms error 

Set Parameter Value  L11  L22  optimal  FF  FB   optimal  FF  FB 
a all — 1.02 3.88 1.4% 5.8 3.6  1.7% 2.9 2.7 

b ζ 0.025 0.88 2.32 2.0% 6.6 3.5  2.2% 3.9 3.1 

c ζ 0.4 1.11 7.00 1.1% 5.7 3.2  1.1% 2.4 2.3 

d α 0.2 0.98 4.38 1.5% 6.4 4.3  1.3% 3.1 3.2 

e α 0.4 0.93 3.04 1.5% 4.5 3.3  2.1% 2.6 2.7 

f U 1 1.01 6.82 1.1% 7.4 5.5  0.9% 2.8 2.6 

g U 0.25 0.91 2.90 1.5% 4.3 3.1  2.3% 2.5 2.5 

h K 0.6 1.05 3.72 1.3% 6.0 3.5  3.0% 1.7 1.6 

i w ×100 1.12 3.90 12.8% 5.5 1.7  17.1% 2.9 2.6 

j w2 ×100 1.07 3.88 1.4% 5.9 3.6  1.7% 2.9 2.4 

k v1 ×10 0.28 3.98 2.2% 3.7 5.9  1.8% 2.7 2.7 

l v2 ×10 2.10 0.79 1.9% 4.2 2.9  2.4% 2.0 6.2 

 Applying the hypothesis to other systems leads to 
interesting conceptual predictions. For example, for 
systems with multiple body or limb segments, the state 
estimation hypothesis predicts the presence of multiple 
CPGs and bi-directional feedback paths which most 
heavily weight neighboring segments. Intersegmental 
coupling of this sort has been identified in the lamprey. 
Comparative tests are possible based on scaling laws. 
Internal models are only advantageous for dynamical 
systems, and limb dynamics are expected to be most 
significant for larger animals. Animals with small limbs 
are more likely to move in an overdamped environment 
in which dynamics are less significant. In this situation, 
motor commands may act more as position commands 
rather than force commands, and the limbs may be 
largely stabilized by mechanical, rather than sensory, 
feedback. Sensory feedback should therefore be less of 
an issue for very small animals. 
 Other tests of the hypothesis may be possible if there 
is a degree of feedback connection plasticity. If an 
animal actively adjusts feedback weights based on the 
efficacy (and therefore the precision) of sensory 
information, then the state estimation hypothesis 
predicts that artificial corruption of a sensory signal 
should result in a decrease in its weight. Such a test 



 

 

would require a means to substitute or augment the 
information carried by an afferent. 

Grillner S, McClellan A, Perret C (1981) Entrainment of the 
spinal pattern generators for swimming by 
mechanosensitive elements in the lamprey spinal cord in 
vitro. Brain Res 217: 380-386 

 Finally, it should be emphasized that the hybrid 
model studied here should be taken conceptually rather 
than literally. It uses efference copy and sensory error 
signals to drive an internal model without specifying 
the particular anatomical structure for these 
components. There are many possible schemes based 
on half-center, pacemaker flexor burst generators, or 
other networks (Pearson, 1976) that can perform the 
function of an internal model, and these networks could 
encode information through either spiking or 
nonspiking neurons (Pearson and Fourtner, 1975). 
Although mammalian α-  coactivation is used to 
generate sensory error signals in the model of Fig. 4, 
there are analogous methods employed in other 
vertebrates (Vinay et al., 1996) and even invertebrates 
(Cohen, 1992). The internal model hypothesis has few 
anatomical constraints beyond specifying the necessity 
of such signals and providing a conceptual framework 
for how and why they are processed. In fact, there is 
evidence that state estimation is applied at higher levels 
of the CNS for motor planning (Wolpert et al., 1995). 
Its main purpose is to provide a conceptual basis for 
interpreting and identifying common functions among 
the disparate anatomies of a wide variety of species 
generating rhythmic movements.  
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