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Abstract. Synaptic plasticity is believed to underlie the
formation of appropriate patterns of connectivity that
stabilize stimulus-selective reverberations in the cortex.
Here we present a general quantitative framework for
studying the process of learning and memorizing of
patterns of mean spike rates. General considerations
based on the limitations of material (biological or
electronic) synaptic devices show that most learning
networks share the palimpsest property: old stimuli are
forgotten to make room for the new ones. In order to
prevent too-fast forgetting, one can introduce a stochas-
tic mechanism for selecting only a small fraction of
synapses to be changed upon the presentation of a
stimulus. Such a mechanism can be easily implemented
by exploiting the noisy fluctuations in the pre- and
postsynaptic activities to be encoded. The spike-driven
synaptic dynamics described here can implement such a
selection mechanism to achieve slow learning, which is
shown to maximize the performance of the network as
an associative memory.

1 Introduction: cortical reverberations

In a growing number of neurophysiological experiments
in which a primate performs a memory task, neurons are
observed to have elevated spike rates in the delay periods
between successive visual stimuli (for recent reviews see,
e.g., Miyashita and Toshirio 2000; Wang 2001). The
delay-activity distribution across the recorded cells is
automatically triggered by specific visual stimuli, and it
lasts for long periods after the removal of the sensory
stimulus (up to 30 s; Fuster 1995). In the inferotemporal
cortex the sustained activity is stimulus specific, that is,
each visual stimulus evokes a characteristic pattern of
delay activity. When unfamiliar, novel stimuli are
presented, the recorded neurons may respond with
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elevated selective rates to the stimulus, but they do not
show any sustained delay activity (Miyashita 1993). This
is an indication that the delay-activity phenomenon is
established only after many presentations of the same
visual stimuli. A typical example of recorded delay
activity 1s shown in Fig. 1. In the absence of any
experimental evidence of the contrary, we assume that
the spike activities of different neurons are asynchro-
nous, and that all the information about the identity of
the stimulus is encoded in the mean spike frequency of
every cell.

1.1 The attractor picture

The experimental findings described above have been
interpreted as an expression of the cortical interactions
between large numbers of neurons, and a comprehensive
picture has been suggested in the framework of attractor
neural networks (Amit 1995; Amit and Brunel 1997a,b).
In this framework the selective sustained activity is not a
single-cell property, but rather the result of a feedback
mechanism that maintains a reverberating activity in the
absence of the sensory stimulus. During the delay
period, those neurons that have been driven to high
spike rates by the visual stimulus and that are coupled
by strong-enough synaptic connections excite one an-
other in such a way that the enhanced activity is stably
self-sustained until the arrival of the next visual
stimulus. The dynamics of this population of neurons,
and in particular of the feedback mechanism, is gov-
erned by the set of all the synaptic connections and
efficacies. This set stores passively all the possible delay
activity distributions in response to different stimula-
tions: the visual stimulus selects one of the potential
responses by determining the initial state of activation of
the population. Following the removal of the stimulus,
the network dynamics is attracted towards one of the
stable patterns of activity (attractors), which represents
the response of the network. Since these responses are
expressed in terms of spike-rate variations, they can be
communicated actively to other areas for further
processing.
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The formation of the suitable synaptic structure for
stabilizing the delay activity distributions discussed in
Amit (1995) is probably one of the best exemplifications
of the Hebbian paradigm (Hebb 1949). The repeated
imposition of a pattern of reverberating activity to an
assembly of neurons eventually leads to a synaptic
structure that makes the reverberating activity stable,
even in the absence of the sensory stimulus that triggered
it. In other words, when a cell takes part in the collective
dynamics that activates another cell (during the impo-
sition of the visual stimulus), its efficacy is increased,
since this change goes in the direction of further stabi-
lizing the imposed reverberating activity. This is equiv-
alent to a covariance-based updating rule for the
synaptic efficacy: when the two neurons are simulta-
neously active the synapse should be potentiated
(Sejnowski 1977; Hopfield 1982).

2 An analytic, quantitative framework
for realistic learning

Attractor formation was our starting point for devel-
oping a general framework that would provide a simple

STIM 24

and general description of a wide class of biologically
plausible prescriptions for updating the synaptic con-
nections. This framework has been introduced in Amit
and Fusi (1992, 1994), and relies on basic constraints
that are likely to pose limitations on any type of
material (biological or artificial) synaptic device. The
guiding principle that dictated the assumptions proved
to be surprisingly powerful for drawing general con-
clusions about synaptic dynamics. The assumptions
are:

1. Locality in time (online learning) and in space: the
only information available to the synapse is the cur-
rent activity of the two neurons it connects and the
previous synaptic state. The synapse is supposed to
acquire information from every single presentation,
and no temporary storage is available for a later up-
date in which the information about more than one
stimulus is available at the same time.

2. All internal variables describing the synaptic state are
bounded.

3. Long-term modifications of the synaptic internal
variables cannot be arbitrarily small.
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Fig. 1. Stimulus-selective delay activity in the cortex. The monkey
performs a delayed-match-to-sample task in which it has to compare a
visual sample stimulus (S) to a visual test stimulus (7) and respond
differently depending on whether the two stimuli are the same or
different. The plot shows the response of a cell to two different stimuli
(STIM 24 and STIM 14). The rasters show the spikes emitted by the
cell in different trials, and the peristimulus time histogram shows the
mean spike rate across all the repetitions of the same stimulus as a
function of time. Note that the trial intervals are sorted and
reorganized according to their corresponding stimulus identity.
Consequently, the number and order of the rasters for the sample
and test stimuli are not aligned: the data shown during and following

the test stimulus are combined across match and nonmatch
conditions. The visual stimulus S triggers a sustained delay activity
in response to stimulus 14, but not to stimulus 24. The information
about the last stimulus seen is propagated up to the presentation of
the next visual stimulus. The mechanism underlying the selective delay
activity seems to be automatic, i.e., not effected by the task. Indeed the
sustained activity is triggered also in the intertrial interval, between the
test stimulus and the sample of the next trial, where there is no need to
hold in memory the identity of the last stimulus seen. See also Amit
et al. (1997) for a description of many other features of the delay
activity (figure adapted from Yakovlev et al. 1998)



2.1 The palimpsest property

Under the above assumptions, any network of neurons
exhibits the “palimpsest” property (Nadal et al. 1986;
Parisi 1986; Amit and Fusi 1992, 1994): old stimuli are
automatically forgotten to make room for the most
recent ones. The memory span is limited to a sliding
window containing a certain number of stimuli that
induced synaptic modifications. Within this window,
recent stimuli are best remembered while stimuli outside
the memory window are completely forgotten, as if they
had never been seen by the network. The width of the
sliding window depends on how many synapses are
changed following each presentation: if this number is
small the network is slow to acquire information from
the stimuli to be learnt, but the memory span is large.
Otherwise, if the fraction of synapses that are changed
upon each stimulus presentation is large, the network
learns quickly but the memory span is quite limited. This
constraint can be so tight that it might seriously
compromise the functioning of the network as an
associative memory. In Sect. 2.1.1 we illustrate the
palimpsest property when the network learns uncorre-
lated, random patterns of activity.

2.1.1 The problem of fast forgetting. Learning can be
seen as a stochastic process when the stimuli to be stored
are random (Heskes and Kappen 1991; Amit and Fusi
1992): each stimulus imposes a specific activity level to
the two neurons connected by the synapse. If these
stimuli are random and uncorrelated, each synapse will
see a random sequence of pairs of activities. We denote
the activity of neuron i by the variable yi!, where &
denotes a generic stimulus shown at time 7. In our case &
represents the mean spike rate, but in principle it can be
any quantity related to what should be encoded by the
synapse (e.g., it might be the degree of correlation
between the spike activities of the pre- and postsynaptic
neurons). To simplify the analysis we assume that the set
of stable internal synaptic states is discrete (but it can be
arbitrarily large). As a consequence the presentation of a
sequence of uncorrelated stimuli induces a random walk
among the stable synaptic values which can be described
as a Markov process. More formally, the probability
Mg, that a synapse makes a transition from the internal
stable state K to the stable state J is given by:

M = Z p(éprevépost)Q(éprevépost) (1)

EpresEpost

where the sum extends over all the pairs of activities that
induce long-term synaptic modifications. For each pair
of activities, p(&pre,Epost) 18 the probability that a
stimulus imposes the activities ¢, and o to the pair
of neurons connected by the synapse, and Q(&pre, Epost)
is a matrix of binary values that encodes the learning
rule, i.e., how the neural activities modify the internal
synaptic state: if O (e, &post) = 1, then a transition
from state K to state J occurs whenever the specific pair
of activities ¢y and o is imposed by the stimulus to
the pre- and postsynaptic neurons. Otherwise, when
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O (e, Epost) = 0, the transition cannot take place. If a
particular pair of activities leaves the synapse un-
changed, then Q is equal to the identity matrix (the
synapse remains in the initial state and only the diagonal
terms are nonzero). If the pair of activities potentiates or
depresses the synapse by inducing a transition to one of
the two neighboring states, then the matrix has the
following form (top: long-term potentiation, LTP;
bottom: long-term depression, LTD):

0O 1 0 .. 0
0 0 1 ... 0
Q=14 o o 1
0 0 0 1
1
1
0 1
Q:
0 0 10

Low indexes (J,K) correspond to depressed synaptic
states. Notice that each row contains only one nonzero
term.

We now focus on the memory trace left by a generic
stimulus &', followed by the presentation of p — 1 other
uncorrelated random patterns. We want to know
whether the final, current synaptic matrix still preserves
any dependence on the pattern of activity imposed by
stimulus &'. As shown below, the memory trace of the
most recent stimuli &, ..., & is stronger than the one of
&' Hence if &' can be retrieved from memory, then all
the other p — 1 patterns can be recalled a fortiori, and p
provides an estimate of the number of patterns that can
be stored in the synaptic matrix. The conditional dis-
tribution function pﬂ(f;re, éllmt) that a synapse is in state
J following the presentation of p patterns, the first of
which imposed éére,ééost on the synapse, satisfies the
equation

P o) = D k(e e )P, 2)
K=1

where the index K runs over all the stable ng synaptic
states. The initial distribution p) induced by the
presentation of stimulus &' is modified p — 1 times by
the successive random stimuli. We implicitly hypothesize
that all the patterns of activity induced by the p stimuli
have the same statistics and are not correlated with the
first pattern &'.

It is reasonable to assume that there is always a
sequence of synaptic transitions, on any given synapse,
that can bring the synapse from any one of its stable
states to any other state. This type of dynamics is
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ergodic and hence, for a large number of presentations
of random patterns, there is an asymptotic distribu-
tion:

pﬂ(é:}reﬂ érl)ost) - p.?o (3)

which is independent of f;,e, sose- When the distribution
of the synapses becomes too close to the asymptot1c
distribution, the memory trace of the first pattern &l
fades away, and eventually disappears. This is another
expression of the palimpsest property. The number of
patterns of which there is still some memory trace
depends essentially on the forgetting rate, i.e., the
convergence rate to the asymptotic distribution.

2.1.2 A tight constraint on storage capacity. The synaptic
matrices that would be obtained after the presentation
of a very large number of statistically independent
random patterns (in principle an infinite number) would
be independent of the initial condition determined by the
presentation of the first, oldest pattern &'. Following
each stimulus presentation, the synaptic matrix still
changes, but the statistics remains constant and is only
determined by the asymptotic distribution of (3). In
order to preserve a dependence (and hence some
memory) on &', the difference between the synaptic
matrix W(p) following the presentation of p patterns
and any of the asymptotic synaptic matrixes W(oo)
should be large enough. This is just a necessary
condition because this memory trace expresses only a
generic dependence of the synaptic matrix on the
structure of &', and such a dependence could be too
small for the network dynamics to retrieve information
about stimulus &'. In more formal terms we should
impose

AW = S [Wy(p) = Wy()]

i

>0 4)

where § depends on the details of the network neural
dynamics. If the network is composed of N neurons, N is
large, and the number of synapses scales as N2 (the best
case), then AW is estimated by

AW ~ N2 Z[Pg( pre’ pOSt) p-:;C]WJ

where now the sum extends over all the stable synaptic
states 1,...,ng that correspond to the synaptic efficacies
w' ..., Ww". We implicitly hypothesized that the statis-
tics of the stimuli is ““translation invariant,” i.e., it does
not depend on the specific pair of neurons that we are
considering. What follows can be easily extended to the
case in which the statistics of the stimuli is more
complex.

Since we assume that the process is ergodic, there will
be an ngy such that all the elements of M™ (M raised to
the power ng) are greater than 0. ngy is the mean number
of presentations that are needed to visit all the stable
synaptic states. If the synapse is discrete, and only
transitions between neighboring synaptic states are

permitted, then ny corresponds to the number of stable
states ng. In general ng < ns. If the synapse is deeply
analog (i.e., the number of stable states is large), ng is
proportional to the full range of variability of the syn-
aptic efficacy W™ — ™" divided by the minimal
change in the synaptic efficacy that a single stimulus
presentation can induce.

For the ergodic theorem (see, e.g., Shiryaev 1984) we

have, for any pair (K,.J) of states, that M” converges to
its limit geometrically:
(V) = (M) ] < (1 = Aun) /" (5
where A, 1s the minimal value of M™, and depends in a
complicated way on the smallest nonzero components of
M and on ny. The inequality (5) sets an upper bound for
the difference between p% and the asymptotic, memory-
less distribution pg. The necessary condition of (4) for
retrieving the oldest pattern &' can be rewritten as
follows:

AW ~ N2 Z[pk( [l)rev post)(MP ])

JK

_Pk(fére, épost)(Moo)KJ] WJ >0

We used the explicit expression of the conditional
distribution p” given in (2). If we now replace the
difference between the two matrices (M?~! — M™) with
its maximum given by (5), we obtain

AW<N2<1 mm { :| ZWJZPK gpre’ post)

L
< N* W™ (1 = Amin) H
where W"s is the max1mal efficacy. The final condition
for retrieving pattern &' now reads

AW ~ WngN*(1 = Agin) "1 > 8

which poses a constraint on the maximum number of
patterns p that can be stored in the synaptic matrix:

Mo log(N/ng)

—nglog(ngN?/5)
Amin (6)

log(1 — Amin)

This constraint is extremely tight and very general. Only
a number of patterns that scale as log N can be retrieved,
which makes the network a very inefficient associative
memory. Note that if one of the parameters such as ng or
Amin becomes N-dependent, then one can extend the
memory span. For instance, if the number of synaptic
states increases with N (as in the case of the Hopfield
(1982) model), ny and 1/An;, provide two extra N-
dependent factors which in some cases destroy the
palimpsest behavior. In those cases the storage capacity
is mainly limited by the interference between the
memory traces of different stimuli, and not by memory
fading. For a wide class of models, as soon as the




maximum storage capacity is surpassed, the network
suddenly becomes unable to retrieve any of the memo-
rized patterns. This is also known as the blackout
catastrophe (see, e.g., Amit 1989). In order to prevent
this, one has to stop learning at the right time, or the
network must be able to forget. Hence the palimpsest
property, if forgetting is not too fast, can be a desirable
feature of the learning process.

2.1.3 The solution: the stochastic selection mecha-
nism. The expression for p (Eq. 6) contains the direc-
tions to solve the problem of the logarithmic constraint.
Indeed A, depends on the fraction of synapses that
make a transition to a different stable state (contained in
the structure of M), which, in turn, depends on the
statistical properties of the stimuli (i.e., the fraction of
neurons that are driven to activities that induce long-
term synaptic changes) and on the inherent synaptic
dynamics which in our case is described by the Q matrix
(see Eq. 1). Decreasing the fraction of synapses that are
changed upon each presentation can dramatically in-
crease the memory span. What the network needs is a
mechanism that selects which synaptic efficacies have to
be changed following each stimulation. In the absence of
an external supervisor that could perform this task, a
possible local, unbiased mechanism is stochastic learn-
ing: at parity of conditions (activities of the pre- and
postsynaptic neurons) the transitions between stable
states occur with some probability. This means that only
a fraction of randomly chosen synapses are changed
upon each stimulus presentation. This stochastic selec-
tion would correspond to transforming the binary Q
matrix, which expresses a deterministic learning rule
(given a specific pair of pre- and postsynaptic activities
the synapse always behaves in the same way), into the
matrix of the probabilities of making a transition from
one state to another state given a specific pair of pre- and
postsynaptic activities. In this way the elements of Q can
be arbitrarily small and A, can tend to zero, hence
increasing the memory span. See Sect. 2.2 for an
example of this.

2.2 The standard learning scenario

The scenario depicted in Sect. 2.1.3 has been studied
analytically in (Amit and Fusi 1992, 1994; Battaglia and
Fusi 1995; Fusi 1995; Kahn et al. 1995; Lattanzi et al.
1997; Brunel et al. 1998). Learning can be described as a
random walk of the internal synaptic variable among the
stable states. Every stimulus imposes a pattern of
neuronal activity, and a randomly selected fraction of
the synapses make a transition to a different stable state.
Such a system can be described as a Markov process,
and the final distribution of the synaptic efficacies can be
computed as an explicit function of the patterns of
activity imposed by the stimuli. From the analysis it
turns out that in general there are at least three elements
that characterize online updating rules for material
synapses:
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1. The memory trace left by each stimulus presentation.
This represents the way the synapse encodes the
activity of the pre- and postsynaptic neurons. It
depends also on the initial distribution of the synaptic
states.

2. The decay of the memory trace due the palimpsest
property. New stimuli use resources that had been
previously allocated to other stimuli, and, in doing so,
erase the memory trace of the oldest stimuli. The
forgetting rate depends on the statistics of the stimuli
and on the inherent transition probability of the
synapse.

3. The interference between memory traces corre-
sponding to different stimuli: the simultaneous pres-
ence in the synaptic matrix of memory traces
corresponding to different patterns within the mem-
ory span generates noise that might prevent the sys-
tem from recalling the stored patterns correctly.

We now illustrate the meaning of these three ingredients
with a simple example. Assume that the synapse has only
two stable states (n; = 2), corresponding to two effica-
cies: W' =0, W? = W. In this case the transition matrix
M is 2 x 2 and contains only two independent terms: (i)
the probability of making a transition to the potentiated
state and (ii) the probability of jumping into the
depressed state (see below for the expression of M).

Each stimulus selects randomly a mean fraction f of
neurons and drives them to a state of elevated activity,
the same for all the active neurons. In order to estimate
the retrievable memory trace of the first stimulus pre-
sented (&), we introduce the classical signal-to-noise
ratio (indicated as S/R; see, e.g., Amit 1989): the signal S
expresses the distance between the distribution of the
total synaptic input across all neurons that should be
active, and the corresponding distribution across the
neurons that should stay quiescent when the pattern of
activity &' is imposed on the network. Quantitatively S is
defined as the difference between the averages of these
two distributions. The noise R represents the mean width
of the two distributions. A high S/R would allow the
network to retrieve from memory the pattern of activity
&! that is embedded in the synaptic matrix, and make it a
stable point of the collective dynamics.

The synaptic updating rule is as follows: when the two
neurons connected by the synapse are both active, the
synapse makes a transition to the potentiated state with
probability qg A and a transition to the depressed state
with probability ¢¥,. The other transitions occur with
probabilities denoted with a similar notation (e.g., gb) is
the probability that depression occurs when the presy-
naptic neuron is active and the postsynaptic neuron is
inactive). These probabilities correspond to the terms of
the Q(&pres Epost) Matrix introduced in (1) and, again,
encode the learning rule. For simplicity we dropped one
of the state indexes K,J (the one corresponding to the
initial state) since the synapse is bistable, and we ex-
pressed the dependence on the activities &, and Epoq in
two subscript indexes. With this notation, the most
general Markov matrix has the following form (see
Eq. 1):
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AT —4qIA
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+(1- 1)
an 1-4qf

where f? is the probability that the pre- and postsynap-
tic neurons are active (AA), f(1 — f) is the probability
that the postsynaptic neuron is active and the presy-
naptic neuron is inactive (IA), and so on for all the four
combinations of activities.

For such a system, after the presentation of p pat-
terns, the signal corresponding to the oldest pattern is
(for the derivation of this expression in a simpler case,
see Amit and Fusi 1994)

S =W (1= co)gha — aia) +coldin —a2a)]  (7)

where ¢ is the initial fraction of potentiated synapses
and A is the smallest eigenvalue of the Markov transition
matrix. 4 is given by

A=1=(qaa + a0 — (@a+aia+dn1 + dm)f (1=1)
—(qh +am) (1 = 1)

which is essentially 1 minus the sum of all the transition
probabilities, each multiplied by the corresponding
probability of occurrence of a specific pair of activities
(e.g., the probability of both pre- and postsynaptic
neurons being active is f?). Let ¢, be the asymptotic
fraction of potentiated synapses that one would get after
an infinite number of presentations of different stimuli.
The interference noise term depends mostly on ¢, and
not on the conditional dlStrlbuthIlS that still preserve
memory of the first pattern &' (Amit and Fusi 1994):

A
R~W COON
where N is the number of neurons in the network.
From these formulae it is clear that the most efficient
way of storing patterns of activities (i e., when S/R is
mdx1ma1) is when the Hebbian term g% , dommdtes over
gh, the transition probabilities are low (4 ~ 1), and the
coding level f of the stimuli tends to zero with N. The
transition probabilities should scale in such a way that
all terms in A tend to zero with f at the same rate as
g f? (egey by ~ qAAf) or faster. This would corre-
spond to a scenario in which learning is slow — i.e., the
stimuli have to be repeatedly presented to the network in
order to be learnt — and the updating rule ensures the
balance between the mean number of potentiations and
the mean number of depressions. In such a case the
network performs extremely well as an associative
memory (e.g., it recovers the optimal storage capacity in
terms of information that can be stored in the synaptic
matrix), even if the synaptic efficacy is binary (two stable
states only). The number of different patterns that can

be stored and retrieved from memory without errors can
be as large as N2/(logN)?, if the mean fraction f of
active neurons scales as log N/N (Amit and Fusi 1994).
Slow learning also allows automatic prototype extrac-
tion from a class of stimuli that evoke similar, correlated
patterns of activity (Fusi 1995; Brunel et al. 1998).

Increasing the number ng of stable synaptic states
does not improve the performance of the network much,
provided that in the patterns of activity to be stored
large populations of neurons encode the same informa-
tion (e.g., they have the same mean spike rate). In the
case analyzed here this assumption is definitely true,
since there are only two levels of activity imposed by the
stimuli: neurons are either active or inactive. All the
active and inactive neurons are read by the postsynaptic
neuron through two classes of synaptic efficacies, and
the total synaptic current can be written as

Z Wié; + Z Wi,

/EA jel
§A él

N ity 2y

jEA j€l

If the two groups of synapses are large enough, the two
sums are equivalent to an analog weight that has a
number of states as large as the number of neurons that
encode the same activity (when each synaptic efficacy is
binary). For a wide class of network models, if p
patterns can be stored with binary synapses, no more
than (ns—1)p patterns can be memorized with a
multistable synapse (Amit and Fusi 1994). In small
networks, the performance improvement that can be
achieved by increasing ng can be more dramatic.

Interestingly, the dependence on the initial fraction ¢
of potentiated synapses ¢y can change the behavior of
the network qualitatively. By changing this parameter
one can even implement the phenomenon of primacy, in
which the first stimulus seen by the network has a
stronger memory trace than the subsequent stimuli
(Kahn et al. 1995).

Finally, a few considerations about the coding level f
of the patterns are mentioned. The optimal case is
achieved when both f" and the transition probabilities ¢
tend to 0 with N, as explained above. However there are
many intermediate cases that are studied in Amit and
Fusi (1994) in which the network can perform well as an
associative memory, even if only the condition of
sparseness of the stimuli is imposed. However, in this
case the number p of random patterns with a mean
fraction f of active neurons that can be stored and
successfully retrieved does not surpass 1/f. In the case
of stochastic learning p can be as large as 1/f2.

3 Synaptic dynamics

Stochastic learning provides a good tool for studying
quantitatively the process of attractor formation without
specifying the details of the synaptic dynamics. Howev-
er, to proceed further, it is important to have a detailed



model that provides a link between the transition
probabilities and the synaptic dynamics driven by the
neural activities. This implies the identification of the
source of noise that drives the stochastic selection
mechanism. The solution we propose is suggested by
the analysis of cortical recordings: the spike trains
recorded in vivo are quite irregular (see, e.g., Softky and
Koch 1993), and the interspike interval variability is
directly accessible by the synapse. It is actually possible
to exploit this source of stochasticity to achieve sto-
chastic transitions in a fully deterministic synaptic
model.

3.1 The model

The synaptic dynamics is described in terms of an
internal variable X (¢). X is restricted to the interval [0, 1]
and, inside the permitted interval, obeys

dXx(¢)
dt

- —oc@( —X(0) + ex)
+pO (X(t) — ex) YH() | (8)

where © is the Heaviside function. The first two terms
make the upper and the lower bound the only two stable
states of X when H(¢), the stimulus driven Hebbian
learning term, is 0. The internal state decays at a rate o
to the lower bound X = 0 when X < 0y. Otherwise X is
attracted towards the upper bound X =1 with a
constant drift 5. The Hebbian term depends on variables
related to the activities of the two neurons connected by
the synapse. Presynaptic spikes trigger temporary mod-
ifications in the synaptic variable: each spike induces a
jump in X whose value depends on the instantancous
depolarization of the postsynaptic neuron Fpos. It is
upwards (X — X +a) if the depolarization is high
(Mpost > Vu), and downwards if the depolarization is

LTP TRANSITION
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low(Vhost < ¥1). The depolarization is indirectly related
to the activity of the postsynaptic neuron. A single
reading of the instantaneous depolarization does not
contain much information about the postsynaptic mean
rate. However, the required information is distributed
across several neurons that are driven to the same
activity by the stimulus. This means that even a single
instantaneous reading of the depolarization of a popu-
lation of cells contains all the information about the
mean spike rate and many other statistical properties of
the activity of these neurons (see the Appendix).

3.2 Stochastic transitions

To illustrate the stochastic nature of the learning
mechanism, we assume that the presynaptic spike train
1s Poisson distributed, while the afferent current to the
postsynaptic neuron is a noisy, Gauss-distributed sto-
chastic process. Such a situation is meant to mimic what
happens in vivo during the presentation of a visual
stimulus. The heavy bombardment of synaptic inputs
that determines the activity of the postsynaptic neuron is
here emulated by a Gaussian-distributed current (see,
e.g., Tuckwell 1988).

The synaptic dynamics depends on the detailed sta-
tistics of the spike trains of the pre- and postsynaptic
neurons. During stimulation the synapses move tempo-
rarily up and down, driven by the presynaptic spikes.
Following the removal of the stimulus, the synaptic ef-
ficacy may return to its initial state, or it may make a
transition to another state. Then, in the presence of
spontaneous activity, the internal state of the synapse
continues to change upon the arrival of each spike, but
the probability of crossing the threshold 6y becomes
negligible and the synapse fluctuates around one of the
stable states. Figure 2 shows two cases, during a typical
stimulation, at parity of mean spike rates of pre- and

NO TRANSITION
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Fig. 2. Stochastic long-term potentiation (LTP): pre- and postsynap-
tic neurons fire at the same mean rate and the synapse starts from the
same initial value [X(0) = 0] in both cases illustrated in the left and
right panels. In each panel are plotted as a function of time (from top
to bottom): the presynaptic spikes, the simulated synaptic internal
variable X (¢), and the depolarization ¥ (¢) of an integrate-and-fire

el

0 50 100 150 200
time (ms)

post-synaptic neuron (the threshold for emitting a spike is 1). Left
panels: LTP is caused by a burst of presynaptic spikes that drives X (¢)
above the synaptic threshold. Right panels: At the end of stimulation,
X returns to the initial value. Even though the mean firing rates are
identical, the final state is different in the two cases (figure reproduced
from Fusi et al. 2000a)
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postsynaptic neurons: in one case (left panels in Fig. 2),
a fluctuation drives the synaptic efficacy above threshold
and, when the stimulus is removed, X is attracted to the
high state: LTP has occurred; in the second case (right
panels), when the stimulus is removed, X is below
threshold and is attracted by the refresh to the initial
state (no transition occurred). In the two cases the sta-
tistics of the activity to be encoded — the mean spike
frequency — is the same, but the realization of the sto-
chastic process that generated the pre and postsynaptic
activities is different.

Such a stochastic selection mechanism shows that the
importance of an internal threshold 0y for the synaptic
dynamics is at least twofold: (i) it stabilizes memory by
ignoring all the fluctuations that do not drive the inter-
nal state across the threshold, and (ii) it provides a
simple mechanism that allows the neural activity to se-
lect which synapses are to be modified. This mechanism
is so simple and robust that it can be readily imple-
mented in discrete electronics (Badoni et al. 1995; Del
Giudice et al. 1998) or in analog VLSI (Fusi et al. 2000a;
Chicca and Fusi 2001).

3.3 Transition probabilities

The transition probability is defined as the fraction of
cases — out of a large number of repetitions of the same
stimulation conditions — in which at the end of the
stimulation, the synapse made a transition to a state
different from its original state. The spike-based synaptic
dynamics described here produces the transition prob-
abilities required to store an extensive number of
patterns of mean rates. The stochastic process induced
by the noisy pre- and postsynaptic activity on the
internal synaptic variable X is known as a Takacs
process and can be studied using a density approach
(Fusi et al. 2000a). The solution of the equations for the
distribution of X gives the transition probabilities for
any pair of pre- and postsynaptic spike rates, and for
any stimulation time interval. For each postsynaptic
frequency, the parameters u and ¢ characterizing the
input current are tuned to produce the desired mean
firing rate vpos, as explained in the Appendix. The
relation between the mean spike frequency and the

Logarithm of LTP probability

parameters that characterize the statistics of the input
current depends on the details of the neuronal dynamics.
In the case of simple integrate-and-fire neurons, this
relation can be computed analytically (Ricciardi 1977;
Fusi and Mattia 1999). Below we adopt the following
model of an integrate-and-fire neuron: the depolariza-
tion V is the only dynamical variable. The neuron
integrates linearly the synaptic input as long as V is
below some threshold 6. When this threshold is crossed,
the neuron emits a spike and is then reset to some value
H, where it stays for the duration of a refractory period
7y; then it starts to integrate the current again. In formal
terms, the dynamics is governed by the following
differential equation:

dv

i L4+ 1(t)

where A is a constant leakage and I(¢) is the total
synaptic current. Such a neuron has a similar behavior
to the one of the classical integrate-and-fire neuron with
a leak proportional to the depolarization provided that
V is limited from below by a rigid barrier (Fusi and
Mattia (1999). Interestingly, the response function (the
mean firing frequency as a function of the mean and
variance of the input current) of these simple neurons
can be fitted to that of real cortical pyramidal cells
(A. Rauch, G. La Camera, H.-R. Luescher, W. Senn,
S. Fusi, unpublished work, 2002).

The parameters of the current determine not only the
mean firing rate, but also the distribution of the depo-
larization, and hence the probability that a presynaptic
spike triggers an upwards (probability r,) or a down-
wards jump (probability 7). Given these two probabil-
ities and the presynaptic rate vp., the LTP/LTD
probabilities [the O (e, &post) of Eq. 1] can be com-
puted numerically by calculating the probability that X
is above/below the threshold 0y at the end of the stim-
ulation, when the initial state is 0/1.

These transition probabilities are plotted in Fig. 3.
We assume that every stimulus brings a mean fraction f
of cells to an activity level of 50 Hz; all the other neurons
remain at a spontaneous level of 4 Hz. The LTP prob-
ability when the pre- and postsynaptic neurons are both
active correspond to the ¢& , introduced in Sect. 2.2 and
is the highest transition probability. ¢}, (presynaptic

Logarithm of LTD probability
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Fig. 3. Contour plots of LTP and long-term
~6 depression (LTD) probabilities (¢) on a log
scale vs pre- and postsynaptic neuron rates
22 for a 500-ms stimulation. LTP occurs when
_8 pre and post synaptic rates are both high.
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neuron at 50 Hz, postsynaptic neuron at 5 Hz) is clearly
much smaller than ¢%,, and gD, > ¢%,. All these rela-
tions go in the direction of maximizing the signal S (see
Eq. 7) left by a single stimulus presentation. The pa-
rameters of the synapse are also tuned to ensure that qu
is a fraction ' =1/30 of ¢ ,, to ensure the balance
between potentiations and depressions. This is required
to maximize the memory span. The highest probability
g% 4 is anyway small (0.03), which means that learning a
pattern of activity would require many presentations
(~30) of the same stimulus (slow learning). As one
moves towards low, spontaneous activities, all the
transitions probabilities (LTP and LTD) drop dramati-
cally. This is necessary to prevent the network from
forgetting in the presence of spontaneous neural activity.
Interestingly, the mean time one has to wait until the
synapse makes a spontaneous transition to another state
is of the order of 100 days (or years, if the spontaneous
activity is below 2 Hz), a period of time which is several
orders of magnitude longer than the longest inherent
time constant of the synaptic dynamics (the decay due to
o occurs in a time of the order of ~100 ms). This is
another advantage of transferring the load of generating
stochasticity to a system (the network) which is much
bigger than a single synapse and hence offers a much
larger state space. This permits the generation of rare
events, as required for the synaptic transitions, without
needing fine tuning of parameters or the resorting to
biologically implausible long time constants.

4 Discussion
4.1 The problem of noise generation

Stochastic learning turned out to be a simple, unbiased
mechanism for selecting the synapses that are to be
updated upon a stimulus presentation. The mechanism
has the great advantage of being localized in space: each
synapse decides whether or not to change without
knowing what the other synapses are doing, and
nevertheless the average fraction of updated synapses
is kept constant. Moreover slow learning can be easily
achieved since the transition probabilities can be so low
that the mean number of modified synapses is even
smaller than one (Fusi 2001). However, this approach
moves the problem to the generation of the proper noise
to drive the synaptic dynamics. The fully deterministic
spike-driven synaptic model described here exploits the
variability in the neural activity to drive the stochastic
mechanism: the source of randomness is in the spike-
emission process of the neurons. The next issues,
currently studied, are: (i) is it possible to generate the
proper irregular spike activity with a deterministic
network? and 2) would this irregular activity be good
enough to drive the synaptic stochastic mechanism? It is
known that deterministic networks of randomly con-
nected integrate-and-fire neurons can generate highly
irregular activity by exploiting the quenched, frozen
disorder in the pattern of connectivity (van Vreeswijk
and Sompolinsky 1996; Fusi et al. 2000b). There is
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preliminary evidence that this kind of noisy activity is
actually good enough to generate small transition
probabilities (Chicca and Fusi 2001).

Another advantage of transferring the load of gen-
erating stochasticity to the network dynamics is that the
learning and forgetting speeds can be readily controlled
by the statistics of the network activity. One simple
control measure is the rate provoked by the stimuli, as
discussed above. However, for the same mean frequen-
cies, the synapse is rather sensitive also to the variability
in the interspike intervals and to the degree of syn-
chronization of the spike trains. This means that the
network can easily and quickly switch from a single-shot
learning modality (for highly correlated inputs) to slow
learning (with uncorrelated inputs) and optimal storage
capacity, without changing any inherent parameter of
the synaptic dynamics (Chicca and Fusi 2001). This
would fit nicely into a scenario in which the mean fre-
quency encodes the information about the stimulus to be
memorized, and the other statistical properties provide a
triggering signal for learning (e.g., due to attention).

4.2 Biological plausibility

We showed that the network can perform well as an
associative memory even if the analog depth of the
synaptic efficacies is reduced to the extreme (bistable
synapses). One might wonder whether biological syn-
apses are discrete on long time scales. Such a discrete-
ness is compatible with experimental data (see, e.g., Bliss
and Collingridge (1993). Recently Peterson et al. (1998)
provided preliminary experimental evidence that LTP is
actually all or none, meaning that for each synapse only
two efficacies can be preserved on long time scales.

A second issue concerns the protocols for inducing
LTP and LTD. Recent experiments (see, e.g., Markram
et al. 1997; Zhang et al. 1998) indicate that the precise
timing of presynaptic spikes and postsynaptic action
potentials can determine the directions of the synaptic
change: LTP occurs when the presynaptic spikes precede
postsynaptic spikes, and LTD when presynaptic spikes
follow the postsynaptic spike within a short time win-
dow. The synaptic dynamics described here is compati-
ble with such an experimental result: whenever a
presynaptic spike precedes a postsynaptic action poten-
tial, the depolarization is likely to be near to the emis-
sion threshold (above the threshold 7y4) and LTP is
likely to be induced. When a presynaptic spike occurs
just after the emission of a postsynaptic action potential,
that model neuron is likely to be hyperpolarized (due to
the spike after hyperpolarization), and the depolariza-
tion will tend to be below /1. This produces LTD.

Of course the depolarization of our postsynaptic
neuron should be considered as an effective variable: it is
the only internal variable characterizing the neural dy-
namics of our simple integrate-and-fire neuron. Such a
variable may not correspond directly to the depolariza-
tion of a complex biological neuron. There may instead
be some internal variable which accounts also for other
internal states and which is sensitive to particular time
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intervals, before and after the postsynaptic spike. For
instance, the effect of the postsynaptic action potential
should definitely be incorporated in the model (in our
model even the depolarization peak during the emission
of the spike is totally ignored). However our study
shows that it is easy to embed patterns of asynchronous
activity in the synaptic matrix by reading the depolar-
ization of the postsynaptic neuron, and our mechanism
does not require strong nonlinearities as in a synaptic
dynamics entirely based on spike timing (Senn 2002).
Such a simple solution has probably not been over-
looked by biology, and recent experiments have actually
shown that there is an important dependence of LTP
and LTD on the residual depolarization of the postsy-
naptic neuron (Sjéstréom et al. 2001).

4.3 Back to delay activity

A final issue is whether a network of integrate-and-fire
neurons connected by the plastic synapses described here
can reproduce the delay activity observed in cortical
recordings and discussed in Sect. 1. The problem is
complicated by the fact that the network activity induces
synaptic changes, and the synaptic changes affect the
network dynamics (for a review, see Del Giudice et al.
2002). The synaptic modifications can actually compro-
mise the stability of the network dynamics. From recent
work (Del Giudice et al. 2001; Amit and Mongillo
(2002), it is becoming clear that the synaptic dynamics
described here or a slightly modified version thereof is
good enough to generate stable selective delay activity
and to reproduce the phenomenology described in
Fig. 1, provided that some extra regulatory mechanism
for controlling the stability of the network dynamics is
introduced. This mechanism might be short-term syn-
aptic depression (Del Giudice et al. 2001), a progressive
reduction of the external input coming from the sensory
areas as the patterns of activity are learnt (Amit and
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Fig. Al. Distributions of the postsynaptic depolarization, p(v) (left),
and r, (probability of an upward jump) (right) vs v(= vpost) for the
stimulation procedure described in the Appendix. In the case shown
here the reset potential H has been chosen to be identical to the resting
potential 7 =0. For low spike rates, p(v) is concave and the
probability of a depolarization near the spike-emission threshold

Mongillo 2002), or, finally, an inherent property of the
synaptic dynamics that automatically normalizes the
statistics of the plastic weights (Fusi 2002).
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Appendix: Mean spike rates vs depolarization distribution

The probabilities of occurrence r, and r, of the
temporary modifications a and b control the direction
in which the synapse is modified by the activity of the
pre- and postsynaptic neurons. These probabilities
depend on the statistics of the depolarization of the
postsynaptic neuron under stimulation, and can be
calculated analytically when the model of the neuron is
simple. Here we focus on the simple model of an
integrate-and-fire neuron with constant leak and a
reflecting barrier at the resting potential (Fusi and
Mattia 1999) which is described in Sect. 3.3. If such a
neuron is injected with a Gaussian current characterized
by its mean u and variance ¢°, the stationary distribu-
tion of the depolarization p(v) has a simple expression,
and is given by (Fusi and Mattia 1999; Fusi et al. 2000a)

p(v) = ﬁ (O~ #)(1 -0

2, 2p 2u,,
+ O(H —v) (ef%H - e7ﬁ0>eﬁ”}

where v is the mean firing frequency:

62 [ w  _um\ O—H]
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0(= 1) is low. As v, increases, the distribution becomes convex, and
increasingly uniform. The white line is the depolarization value which
separates the regions corresponding to upwards (high V) and
downwards (low ¥) jumps. Notice that in the case shown here,
Vau=VW.ra=] SH p(v) (figure reproduced from Fusi et al. 2000a)



where 7, is the absolute refractory period. », and r, are
given by the integral of p(v) over the intervals [V, 0] and
[0, 7], respectively. It is straightforward to compute
these integrals analytically. The analytical expressions
for p(v) and v for the classical integrate-and-fire neuron
with a leak proportional to the depolarization are also
available (see, e.g., Brunel 2000).

1 and o characterize the synaptic input and depend
on the network interactions. We assume that vpes is
changed by increasing or decreasing the average spike
frequency of a subpopulation of presynaptic neurons
(Fusi et al. 2000a). If the recurrent feedback of the
postsynaptic neurons does not have a great effect on
the network activity, then the parameters of the input
current move along a linear trajectory in the (u,d?)
space. We chose u as an independent parameter, and
6> =Ju+ K. In a network of excitatory and inhibitory
neurons, in which in a spontaneous activity state the
recurrent input is as large as the external input, we
have that J = Jg (the average coupling between excit-
atory neurons) and K = v\ NiJi(Ji + Jg), where vy is the
spontaneous activity of the Ny inhibitory neurons that
are projecting to the postsynaptic cell (mean coupling
J1). r, 1s plotted in Fig. Al. Since the external stimulus
increases vpost, the distribution of the depolarization V'
changes in such a way that », decreases and r,
increases. Figure Al exhibits the characteristics of the
resulting distribution of Vyos.
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