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Abstract. Learning in a neuronal network is often thought of as a linear su-
perposition of synaptic modifications induced by individual stimuli. However, since
biological synapses are naturally bounded, a linear superposition would cause fast
forgetting of previously acquired memory. Here we show that this forgetting can be
avoided by additional simple constraints. We consider Hebbian plasticity of excita-
tory synapses which modifies a synapse only if the postsynaptic response does not
match the desired output. With this learning rule the original memory capacity with
unbounded weights is regained, provided there is (1) some global inhibition, (2) a
small learning rate, and (3) a small neuronal threshold. We prove, in the form of a
generalized perceptron convergence theorem, that under these constraints a neuron
learns to classify any linearly separable set of patterns. The maximal storage ca-
pacity is also reestablished if the synapses are distributed over a spatially extended
dendritic tree, provided that distal synapses are allowed to attain stronger weights.
After successful learning, excitation will roughly balance inhibition. Moreover, learn-
ing a large number of patterns urges the synapses to acquire similar strengths when
measured in the soma. The fact that synapses saturate has the additional benefit
that non-separable patterns, e.g. similar patterns with contradicting outputs, even-
tually generate a subthreshold response, and therefore silence neurons which can not
provide any information.

1 Introduction

Realistic synaptic efficacies vary within a limited range of values. Synaptic satura-
tion induced by new stimuli to be learned can provoke a rapid deterioration of the
memories acquired in the past. In general, neural networks with bounded synapses
are forgetful (Parisi, 1986) and the memory traces of past experiences are destroyed
at a rate which is dramatically high: if one assumes that the long term changes
cannot be arbitrarily small, the memory trace decays exponentially with the number
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of stored patterns. The neural network remembers only the most recent stimuli and
the memory span cannot surpass a number of patterns which is proportional to the
logarithm of the number of neurons (Amit and Fusi, 1994; Fusi, 2002). Slowing down
the learning process by changing a small fraction of synapses solves the forgetting
problem and it allows in principle to store an extensive number of random uncor-
related patterns, as is the case for unbounded synaptic strengths (Amit and Fusi,
1994). These studies were restricted to patterns with uniform statistics and fixed
coding level. Moreover they focused on the maintenance of the memory trace, and
not on the dynamic mechanisms to store and retrieve the information.

Here we focus on the dynamics of a biologically realistic network which distin-
guishes between excitation and inhibition, and which is able to store more complex
patterns (i.e. linearly separable patterns, but otherwise arbitrary correlations among
the components). To assure the robustness of the long-term memory against noise
and smooth degradation, the synapse must be able to sustain discrete synaptic states.
As can be formally proven (Senn and Fusi, 2003a), the weight assignment problem
for discrete synapses can be solved by a stochastic learning rule, to the expense of
an increased number of neurons. To study the meanfield dynamics of a stochastic
model with discrete (binary) synapses, we focus on the case of continuous synaptic
states with multiplicative saturation. Simulations with discrete synaptic states show
that this meanfield description is accurate.

We consider a learning scenario in which each stimulus imposes a pattern of
activities to the individual neurons of the network. The learning rule is designed
to imprint the imposed activity patterns into the synaptic matrix, such that after
learning a pattern can be retrieved by presenting a distorted version. Each neuron
within such a network is taught in a ‘supervised learning’ mode since the pre- and
postsynaptic activities are ‘clamped’ by the stimulus. The goal of the learning pro-
cess is to reproduce the clamped output of a postsynaptic neuron in response to the
presynaptic input pattern, or a distortion of it. When the specific value of the output
activity is discarded, the postsynaptic neuron has learned to dichotomize the input
patterns. It separates the inputs into two classes of patterns which either should or
should not activate the postsynaptic neuron: patterns of the first class will generate
a supra-threshold input, while patterns of the second class generate a sub-threshold
input.

We show that a Hebbian learning rule with an additional stop-learning condition
will find appropriate synaptic weights projecting onto an individual postsynaptic
neuron, provided that the two classes of input patterns are linearly separable. In
case of unbounded synapses a faithful learning is assured by the classical perceptron
convergence theorem (see e.g. Hertz et al. 1991). The perceptron learning rule
imprints the patterns into the weight vector by adding or subtracting a fraction of the
input pattern, provided that the postsynaptic neuron does not yet give the required
response (of 1 or 0, coding for active or inactive, respectively). With increasing
number of patterns to be learned, however, the weight vector during the learning
procedure becomes longer and longer. It is not clear a priori, how a local algorithm
could find an appropriate weight vector if the individual components have a fixed
upper and lower bound. In fact, additional requirements are necessary. Only in the
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presence of global inhibition, with a learning rate which is small enough, and with a
neuronal threshold which is small compared to the total amount of excitation, will
a faithful learning become possible. In turn, these constraints assure that any sets
of linearly separable patterns can be learned by a Hebbian rule with a stop-learning
condition and bounded synapses. This statement represents a generalization of the
classical perceptron convergence theorem (Rosenblatt, 1962; Block, 1962; Minsky
and Papert, 1969; Diederich and Opper, 1987; Arbib, 1987; Hertz et al., 1991) to
the case of separate excitatory and inhibitory synapses with bounded strengths.

By imposing global inhibition and small neuronal thresholds we recover further
properties which seem to be shared by the biology. A recent experimental finding
shows that the effective strength of synapses projecting onto hippocampal pyramidal
neurons is almost the same when measured in the soma, independently of their den-
dritic position (Magee and Cook, 2000). This equalization of the synaptic response
in the soma is only possible if the synapses correct for the dendritic attenuation,
and increase their local strength with distance from the soma. Another finding is
that the somatic strength of excitatory synapses is relatively high compared to the
their number and the neuronal threshold. In fact, 10′000 afferents with a somatic
amplitude of 0.2 mV and a spontaneous firing rate of 1 Hz, say, would give a depo-
larization of 2 mV per millisecond (see e.g. Abeles, 1991). With a voltage threshold
of 20 mV this would lead to a spontaneous firing rate of roughly 100 Hz instead of
1 Hz. Only a strong balancing of excitation by inhibition can resolve this puzzle and
prevent the neurons from constantly being active at a high rate.

The properties of the synaptic equalization and the neuronal balancing, as de-
scribed above, emerge as a byproduct of successful learning with bounded synapses
and the stop-learning condition. Such successful learning requires a small neuronal
threshold to prevent the individual synapses from running into saturation. As a
consequence, the total excitation will be roughly cancelled by inhibition. Moreover,
overlaps in the patterns to be separated urge the synaptic weights to be roughly
equal (although complete equality would fully destroy the memory). Interestingly,
the constraint of bounded synaptic strengths turns out to be advantageous when
dealing with non-separable sets of patterns. Due to synaptic saturation, learning
similar patterns with contradicting outputs tends to erase any synaptic structure,
and eventually the postsynaptic response is suppressed by the global inhibition. Such
a suppression mechanism appears as a self-correcting feedback of a network in re-
sponse to an overflow of unstructured inputs: instead of responding with random
activity onto contradictory information, the neurons prefer to silence themselves.

2 The model

Neuron model. We consider a single postsynaptic neuron which receives excita-
tory inputs from N presynaptic neurons, and an inhibitory input which is propor-
tional to the total activity of the N excitatory neurons (Fig. 1a). The postsynaptic
neuron is either active or inactive, depending on whether the total postsynaptic cur-
rent h is above or below the neuronal threshold θ◦. The total postsynaptic current
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is calculated by the weighted sum of the excitatory synaptic input ξj, minus global
inhibition. Global inhibition is represented by an inhibitory neuron (or a population
thereof) with a linear transfer function, which uniformly sums up the excitatory in-
put. More precisely, the total postsynaptic current is h = 1

N

∑N
j=1(Gj − gI)ξj, where

ξj can take on any value from (and including) 0 to R. The excitatory weights Gj

and the global inhibitory weight gI take on real values in the interval [0, 1]. In the
simulations with binary synapses the excitatory weights take on values Jj = 0 or 1.

Training protocol. During training the network is repeatedly presented with all
the p patterns ξ of two classes C+ and C−. At each presentation, the activities ξj are
clamped to the N presynaptic neurons, and the output of the postsynaptic neuron
is clamped to the desired response (ξpost = 0 or 1, depending on whether ξ belongs
to class C+ or C−, respectively). The synaptic learning rule is designed such that,
after successful training, the total synaptic current h generated by a pattern ξ falls
either above or below the threshold θ◦, depending on whether ξ is in class C+ or C−.

Synaptic dynamics. Upon presentation of a pattern ξ the excitatory weights are
modified in a Hebbian way, depending on the pre- and postsynaptic activities and
the total current h. When the pre and postsynaptic cells are both active (clamped
to ξpost > 0, ξj = 1) and the total synaptic current is not too large (h ≤ θ◦ + δ◦,
with a learning margin δ◦ ≥ 0), the weight Gj is increased by q+ξj(1 − Gj). The
weight increase is proportional to the learning rate q+, the presynaptic activity ξj,
and the saturation factor (1 − Gj). When the presynaptic neuron is active (ξj >
0), the postsynaptic cell inactive (ξpost = 0), and the total synaptic input not too
low (h ≥ θ◦ − δ◦), the weight Gj is decreased by q−ξjGj. The weight decrease is
proportional to the learning rate q−, the presynaptic activity ξj, and the saturation
factor Gj. Summarized, the weight change at time t writes

Gt+1
j =

{

Gt
j + q+ ξt

j(1 − Gt
j) , if ξt

post = 1, ξt
j > 0, and ht ≤ θ◦ + δ◦ ,

Gt
j − q− ξt

jG
t
j , if ξt

post = 0, ξt
j > 0, and ht ≥ θ◦ − δ◦ .

(1)

The condition onto the total synaptic current ht represents a ‘stop-learning’ condi-
tion: learning stops as soon as the total synaptic current would be able to reproduce
the desired postsynaptic activity (with some margin δ◦ for overlearning).

The motivation to study the learning rule (1) comes from a probabilistic synaptic
model with binary states. In this model the synapse stochastically flips its state upon
presentation of a pattern ξ, depending on the conditions on the pre- and postsynaptic
activities and the total current h imposed in (1). Downregulated synapses (Jj = 0)
are potentiated with probability q+ξj if ξpost = 1, ξj > 0, and h ≤ θ◦+δ◦. Potentiated
synapses (Jj = 1) downregulate with probability q−ξj if ξj > 0, ξpost = 0, and
h ≥ θ◦ − δ◦. The dynamics of the expected synaptic strengths, Gt

j = 〈J t
j〉, can

be well approximated by the dynamics (1). Note that the stochastic update can
formally be described by J t+1

j = J t
j + ζ+

j (1−J t
j) and J t+1

j = J t
j − ζ−

j J t
j , respectively,

where ζ± are random variables which are 1 with probability q±ξt
j and 0 otherwise.

Since the fluctuations of the total postsynaptic current ht for different realizations of
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the stochastic process ζ typically shrink to zero with growing N , the expected total
current 〈ht〉 (which is again denoted by ht in Eq. 1) does well approximate the actual
total current ht. A formal treatment of the stochastic model with a convergence proof
for linearly separable patterns is found in (Senn and Fusi, 2003a).

3 Results

Linearly separable patterns can be learned. Given any two sets C± of lin-
early separable patterns, a neuron endowed with global inhibition and the stochastic
learning rule described above will always learn to correctly classify the patterns in a
finite number of presentations. The tighter the separation between the two classes
C±, the smaller the neuronal threshold θ◦, learning margin δ◦, and learning rate q
must be (for simplicity we assume q+ = q− = q). More precisely, we assume that
there is a separation vector S of length ‖S‖ = N (not necessarily binary and pos-
itive), and a separation threshold θ, such that the classes are separated by S and
θ with a positive margin (Fig. 1b). Writing this separation margin as δ + ε, the
linear separability states that ξS > (θ + δ + ε)N for ξ ∈ C+, and ξS < (θ − δ − ε)N
for ξ ∈ C−. Classification is then also possible by a separation vector which is
scaled by a factor %, provided that also the threshold and the margins are scaled
by the same factor. These different solutions correspond to output neurons which
would separate the patterns around different thresholds at the end of the training
session (i.e. h > %θ + %δ for ξ ∈ C+ and h < %θ − %δ for ξ ∈ C−). However, as
we show, the synaptic dynamics can only converge to a scaled separation vector if
the scaling factor is small enough, % ≤ εgI/(2R), where ε is the partial separation
margin of the sets C±, gI = min{gI , 1 − gI} the ‘distance’ of the inhibitory weight
gI from the boundaries 0 and 1, and R is the maximal activity of an input ξj (Fig.
1b). Given such a scaling factor and any global inhibition gI between 0 and 1, the
synaptic dynamics (1) converges (i.e. all the patterns will be classified correctly) in
at most n◦ = 6/(q%εgI) synaptic updates, provided that the learning rate is small
enough, q ≤ %εgI/(2R2). This is valid for any presentation order of the patterns to
be learned and for any initial conditions for the synaptic states. The detailed proof
of the theorem is found in the Appendix.

Sketch of the proof. The idea behind the threshold scaling and the global in-
hibition is to keep the synaptic strength Gt far away from the lower and upper
boundaries. This prevents the weight vector Gt from being distorted by synaptic
saturation. Let us write the synaptic update in the form Gt+1 = Gt + q∆Gt, where
we assume equal learning rates for LTP and LTD, q+ = q− = q. The normalized
change ∆G can be decomposed into a ‘linear’ and a ‘forgetting’ (saturation) part
∆L and ∆F . If the updating conditions are met we can write (1) in the form

∆G = ∆L + ∆F =

{

ξ ∗ (1 − G) = (1 − gI)ξ − ξ ∗ GI , if ξ ∈ C+ ,
−ξ ∗ G = −gIξ − ξ ∗ GI , if ξ ∈ C− ,

(2)
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where GI = G−gI1 and ‘∗’ is the componentwise product of vectors. The linear term
∆L = (1− gI)ξ in case of ξ ∈ C+ and ∆L = −gIξ in case of ξ ∈ C−, respectively, is
the learning component which is parallel to the pattern to be learned (Fig. 1c). This
linear term is also present in the case of the classical perceptron learning with analog
unbounded synapses, and would always bring Gt toward a solution vector. Selecting
a pattern ξ ∈ C+, for instance, we have ξ%S > %(θ + δ + ε)N by assumption that
the solution vector S (and therefore %S) separates the classes. In the case that this
pattern is not yet correctly implemented by the neuron, i.e. if hN = ξGI < %(θ+δ)N ,
the synaptic weight vector is updated by q∆G (as the inequality is equivalent to the
update condition ht ≤ θ◦ + δ◦ in Eq. 1). By subtracting this inequality from the
previous one we get (%S − GI)ξ ≥ %εN . Multiplying with the factor (1 − gI) and
using the definition of ∆L and gI = min{gI , 1 − gI} given above, we obtain,

(%S − GI)∆L ≥ %εgIN . (3)

The same estimate (3) is obtained when ξ ∈ C− and ∆L has the form −gIξ. Were
the forgetting part negligible, we would have ∆G ≈ ∆L, and (3) would ensure that
total weight vector Gt

I moves towards the solution vector %S, provided that the
learning rate q is small. In fact, if the angle between (ρS − GI) and ∆G is smaller
than 90◦, the weight vector at the next time step, GI + q∆G, is always closer to the
target vector ρS than GI was, assuring that q is small enough (Fig. 1d).

The forgetting part ∆F in the decomposition ∆G = ∆L +∆F (Eq. 2) takes the
form ∆F = −ξGI for both of up- and downregulation. It arises from the synaptic
saturation and tends to bring GI = G − gI towards 0, where Gj = gI for all j. In
this asymptotic limit no structure would be present in the synaptic weight vector,
showing that synaptic saturation might neutralize previous learning steps (see Fig.
1c). However, synaptic saturation is strongly reduced and can become negligible if
all the weights are far from the boundary. This is the case if the weight vector is
close to the main diagonal where all the synaptic strengths are roughly equal. If
the uniform component is subtracted by the global inhibition, and if the neuronal
threshold is small, the remaining structure in the weight vector is enough to separate
the patterns.

The supervised learning, together with the small neuronal threshold θ◦, enforces
the dynamics to reach the region of the diagonal where synaptic saturation is negli-
gible. Given the separation threshold θ and the separation parameter ε of the two
classes, the neuronal threshold leading to a correct separation must be in the range
of εθ. More precisely, the convergence of the weight vector is guaranteed with a
threshold θ◦ = %θ, provided that % ≤ εgI/(2R). In fact, it is possible to show that
(%S − GI)∆F ≥ −%2RN , and that for small % the distortion by the synaptic satu-
ration therefore vanishes. Together with (3) we obtain (%S − GI)(∆L + ∆F ) > 0,
asserting that the effective synaptic change ∆G = ∆L + ∆F , including the forget-
ting term, points towards the target vector %S. Hence, provided that % is small,
convergence of the learning procedure is guaranteed as outlined above.

Global inhibition and a small threshold are necessary. To test the statement
of the theorem and to show the necessity of the different requirements we consider
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a simple numerical example. We randomly chose a set of p = 10 patterns ξ with
activities ξj uniformly distributed between 0 and 40 (=R, e.g. in units of spikes/s)
and components j = 1, . . . , N = 20. The excitatory synaptic weights Gj of the 20
synapses were randomly initialized between 0 and 1. The threshold and the margin
(θ◦ = 5.2 and δ◦ = 0.08) were set such they separate the 10 patterns ξ into two
classes of 5, after projection to a random separation vector S. As predicted, the
separation of the postsynaptic current, ht > θ◦ + δ◦ and ht < θ◦ − δ◦ for patterns in
C+ and C−, respectively, is reached after a few synaptic updates (cf. Fig. 2a). The
simulation confirms that learning makes always some progress due to its linear part,
in the sense that in case of a synaptic update we have (%S−GI)∆L > 0, Eq. 3, while
the forgetting (saturation) part may work against this progress as (%S −GI)∆F can
become negative (Fig. 2b).

The value of the global inhibition plays a crucial role. As predicted by the
theorem, many more learning steps are necessary if gI is close to the boundary 0
or 1 (Fig. 3a). In fact, the theorem predicts that the number of synaptic updates
required to learn the patterns is roughly n◦ ∝ 1

gI
≈ 1

gI(1−gI)
. The chance of finding a

configuration of excitatory synapses which balance inhibition shrinks when gI tends
to a boundary value. Similarly, only when the neuronal threshold is small, expressed
by a small threshold scaling factor, will it be possible to converge to a solution (Fig.
3b). The simulation result is expressed by the requirement % ≤ εgI/(2R) appearing
in the theorem (see also Fig. 1b). If global inhibition is kept away from 0 and 1,
the drawback of synaptic saturation is fully compensated, provided that the learning
rate and the threshold are sufficiently small.

Intuitively, global inhibition is necessary since the separation of the patterns into
two classes may require, for instance, assigning an output ξpost = 0 to a pattern
with high coding (activity) level f = 1

N

∑N
j=1 ξj (many presynaptic neurons strongly

active). This would not be possible with excitatory synapses alone because a pattern
with a high coding level would always lead to a suprathreshold response. However,
if the global activity level is subtracted by the global inhibition, h =

∑

Gjξj −gIf =
∑

(Gj − gI)ξj, then the assignment of the output 0 becomes possible, even if the
activity level of the pattern is high (choose Gj < gI for components j with strong
input ξj). Intuitively, a small threshold is necessary because tightly separated classes
(ε small) require that small differences in the inputs ξj, independently of the size of
ξj, may turn a subthreshold response into a suprathreshold response.

A small learning rate and the stop-learning condition are necessary. To
prevent overshooting of the target vector %S, the learning rates q± (= q) must be
small enough. A monotonic convergence towards the target vector is expected if the
learning rate is small compared to the neuronal threshold. Since the threshold itself
scales with the separation parameter ε, the learning rate must scale, for instance,
with ε2. In fact, the convergence is guaranteed if q ≤ %εgI/(2R2) (cf. Fig. 4a). The
requirement of a small threshold is also confirmed by the simulations, see (Senn and
Fusi, 2003a; Senn and Fusi, 2003b).

Learning is also severely impaired if the stop-learning condition on the total post-
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synaptic current ht in (1) is not imposed. Only if the learning process stops when
the desired output is reached is it possible to learn any set of separable patterns.
Otherwise, the dynamics may learn a dominant cluster of patterns while other pat-
terns far from such a cluster may fall off from the correct classification (Fig. 4a).
In fact, dropping the stop-learning condition leads to sustained oscillations in the
total postsynaptic currents and no further learning progress is achieved (Fig. 4b).
Although the ongoing learning prevents the weights from being settled in an ap-
propriate state, the synaptic weights tend to be equalized by the forgetting part,
(%S − GI)∆F → 0 (decaying curve in Fig. 4b). Any learning rule which is able to
learn tightly separated classes must incorporate some form of stopping condition.

Learning equalizes synaptic strengths and balances inputs. Another phys-
iological prediction is that the synaptic strengths, due to their boundedness, be-
come more similar to each other, the more difficult the separation task. This is
because during learning the algorithm must find a synaptic configuration for which
the detrimental effect of synaptic saturation is weak compared to the difficulty of
the separation task. The tighter the two classes C+ and C− are separated, the less
distortion by synaptic saturation can be afforded, and the more uniform the distri-
bution becomes. A relatively uniform distribution of the excitatory synaptic weights
Gj around the value of the global inhibition gI is enforced by a priori choosing a
small threshold (small scaling factor %) depending on the separation margin of the
classes to be learnt (cf. Fig. 1b,c). The balancing of excitation and inhibition and
the equalization of the synaptic weights appears as a byproduct of efficient learning.

The balancing and the equalization of the synaptic weights are confirmed by
our simulations. Due to the random initialization, the weights originally span the
whole possible range of values (Fig. 5a). After a few synaptic updates evoked by
the initially incorrectly classified patterns, the weights all adopted roughly the same
value (Fig. 5b, solid line). Note that the weaker excitatory weights are cancelled by
inhibition, in the sense that Gj − gI < θ◦ (dotted line). If the learning algorithm is
not able to separate the patterns, for instance because the stop-learning condition is
discarded, the weight equalization does not fully develop (dashed-dotted line).

Equalized synaptic strength and dendritic democracy. The equalization of
the synaptic strength also works when the synapses are distributed across a dendritic
tree. In this case, it is the amplitude of an excitatory postsynaptic potential (EPSP)
measured in the soma which is equalized by the local learning rules. This is because
it is at the level of the soma where the total synaptic input is compared with the
neuronal threshold, and where the postsynaptic signal for the modification of the
synaptic strengths is triggered. However, to locally control the degree of synaptic
saturation, distal synapses must be allowed to attain stronger weights. In fact, if the
upper bound imposed on the synaptic strength linearly increases with the distance
from the soma, our theorem can be reformulated in the context of learning on a
dendritic tree (by scaling the synaptic strength Gj by an attenuation factor aj, and
its upper bound by 1/aj).
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To test the undiminished learning capabilities in the presence of the dendritic tree
we distributed N = 350 synapses along a cable of 350µm length, showing attenuation
factors aj from 1 down to 0.2 (Magee and Cook, 2000), and upper bounds 1/aj for
the maximally achievable synaptic strength. The initial synaptic weights, measured
at the corresponding dendritic site, were uniformly distributed between 0.2 and 0.6
(Fig. 5c). The neuron was trained with p = 350 random activity patterns with
individual presynaptic activities ξj ranging uniformly from 0 to 40 (e.g. in Hz), and a
random splitting of these patterns into two classes C+ and C−, requiring a supra- and
subthreshold postsynaptic response, respectively. The neuron learned to correctly
separate the patterns within a total of 3023 presentations. After faithful learning the
somatically recorded synaptic weights (Gjaj) were equalized, while the local synaptic
weights (Gj) increased with distance from the soma (Fig. 5d). We again assumed
that global inhibition is fixed (gI = 0.1), and that it directly projects onto the soma,
where the rough balance between excitation and inhibition is established.

Conflicting patterns shut down neuronal activity. An interesting property of
(multiplicative) synaptic saturation is that it tends to stabilize the synaptic weights.
This property can be advantageous when dealing with unstructured patterns, or
with similar patterns requiring different outputs, since in these cases it leads to a
uniform excitatory weight distribution around some common equilibrium weight. If
this excitatory equilibrium weight is dominated by the global inhibition, the neuron
will no longer respond to these patterns, and therefore not try to make an impossible
classification of unstructured or conflicting stimulus.

To be more concrete, we stimulate our neuron with a set of input patterns which
repeatedly lead to sequential potentiations and depressions of the same synapses.
According to the update rule (1) the equilibrium weight of synapse j is then deter-
mined by the equation

∆Gj = q̃+(1 − Gj) − q̃−Gj = 0 , (4)

where q̃± represent the effective rates of up- and down-regulations. These rates are
the product of the learning rates q±, the expected presynaptic activity 〈ξj〉, and the
relative frequency of requiring a postsynaptic response 1 or 0, respectively. Solving
(4) for Gj gives the unique equilibrium weight G∗ = q̃+/(q̃+ + q̃−). This equilibrium
is an attractor of (4), as shown by the negative derivative of ∆Gj with respect to

Gj at the fixed point,
d∆Gj

dGj
= −q̃+ − q̃−. Whatever the initial synaptic weight is,

the saturation factors (1−Gj) and Gj in (4) always drive the synapse to the unique
steady state. If the equilibrium weight is dominated by the global inhibition, G∗ < gI ,
the total postsynaptic current would become negative in response to an arbitrary
stimulus ξ, h = 1

N

∑

(Gj−gI)ξj < 0. Taking the stop-learning condition into account,
however, the weights Gj are only depressed until the lower learning threshold θ◦− δ◦
is reached, h = 1

N

∑

(Gj − gI)ξj ≈ θ◦ − δ◦. In any case, trying to learn different
outputs to similar input patterns, will eventually lead to a subthreshold activation.

The neuronal suppressing mechanism is confirmed by the simulations. As an
example we show the evolution of the total postsynaptic currents ht for the case
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of 5 pairs of identical patterns ξ± (i.e. p = 10 and identical classes C+ = C−).
As predicted, the total postsynaptic currents eventually become, or remain, sub-
threshold for all patterns (Fig. 6a). The downward drift of the total postsynaptic
current ht is caused by the synaptic saturation which strongly homogenizes the
synaptic weights until excitation is dominated by the global inhibition (Fig. 6c).
In fact, without synaptic saturation (mimicked by cancelling the forgetting part
∆F = −ξGI in the update rule (2)), the suppression effect vanishes and the total
postsynaptic currents incoherently become either sub- or suprathreshold (Fig. 6b).
This is also reflected in the uncontrolled growth of the synaptic weights beyond the
upper boundary (Fig. 6d). Hence, teaching the neuron with different outputs for the
same patterns will uniformly depress the synaptic weights and silence the neuron.

Convergence for binary synapses with stochastic modifications. We finally
provide a partial account of the results that learning with discrete synapses converges
in a finite number of steps, provided that 1) the number of neurons is large enough,
2) the low learning rate is replaced by low transition probabilities between stable
discrete states. If these two conditions are satisfied, the average values of the discrete
synapses are well described by the continuous synaptic variables introduced in the
Model. As a consequence, the convergence of the learning process is well predicted
by the theorem in the Appendix (see Senn and Fusi, 2003a, for more details and for
extensive simulations with highly correlated patterns).

Simulations with binary synapses projecting to a single output cell confirm that
the stochastic learning rule is successful (Fig. 7). The parameters of the learning
dynamics are the same as in the simulations of the deterministic example (Fig. 2),
and the activities ξj of the 10 patterns are either 0 or 40, with probability of 0.5.
As expected, the convergence in the stochastic case is more noisy and it takes a
larger number of presentations than in the case with continuous synapses (Fig. 7a).
With increasing number of neurons, however, the prediction of the synaptic dynam-
ics by the meanfield equation (1) becomes more reliable. The redundancy in the
synaptic encoding speeds learning up until it approaches the convergence speed of
continuous-valued synapses. In fact, the number of presentations per pattern, re-
quired to correctly classify the stimuli, shrinks with increasing number of presynaptic
neurons towards an asymptotic value (Fig. 7b).

4 Discussion

We showed that despite the synaptic boundedness and restriction of plasticity to
the excitatory synapses, any set of linearly separable patterns can be learned with
Hebbian plasticity incorporating a stop-learning condition. These biologically plau-
sible restrictions, however, require that (1) there is some global inhibition, (2) a
small learning rate, and (3) a threshold which is small compared to the the overall
excitatory synaptic strengths. The restrictions are shown to be necessary to prevent
fast forgetting which may arise during the learning process by driving the synap-
tic strengths into saturation. As a byproduct of learning, the synaptic strengths
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roughly (but not fully) equalize, and a rough balancing between the total excitation
and inhibition emerges. Synaptic saturation further causes a neuron to suppress its
activity if it is learned with similar patterns, but opposing outputs.

The stop-learning condition protects from overlearning. The stop-learning
condition is necessary to not lose previously acquired memory when repeatedly pre-
senting the same or similar patterns. There are many ways of implementing such a
stopping mechanism. It could be inherent to the individual synapse, governed by the
postsynaptic neuron, or depend on an external feedback. For instance, the synapse
may not undergo potentiation if the pre- and postsynaptic activities and the postsy-
naptic calcium concentration are each above some critical level (cf. also (Fusi, 2003;
Amit and Mogillo, 2003)). The stop-learning condition might also be implemented
by an anti-Hebbian term in the learning rule. Unfortunately, experimental data
leave the question of such an intrinsic nonlinearity open (see e.g. (Cho et al., 2001;
Rumsey and Abbott, 2003)). Another possibility would be that the stop-learning
signal is carried by a third signal, for instance in the reduction of dopamine release,
as observed after successful reinforcement learning (see e.g. Fiorillo et al., 2003).
A similar stop-learning phenomenon is observed in V4 of a monkey performing a
delayed match-to-sample task, where no learning effect is seen if the visual stimuli
are not degraded by noise and easy to classify (Rainer et al., 2003).

Global inhibition sets the range of excitatory weights. Global inhibi-
tion is a general property often assumed in neural networks to normalize the total
synaptic input. In fact, recent experimental findings show that inhibitory neurons
in neocortex, but also in hippocampus, may form a large network, tightly coupled
through gap junctions (see e.g. Amitai et al., 2002). In our framework, inhibition
defines a range, far from saturation, into which the excitatory weights will tend dur-
ing learning. Inhibition must be global to assert that any set of linearly separable
patterns with any correlations (i.e. clustering of the patterns) can be learned. Non-
global inhibition could make it difficult to learn a specific set of correlated patterns
when plasticity is restricted to only excitatory synapses. In fact, non-global inhibi-
tion may lead to a strong and unequal forgetting across the synapses due to unequal
synaptic saturation, unless also inhibition is plastic.

Slow learning prevents fast forgetting. Slow learning becomes important if
the set of patterns to be learned is large. This is because a slow learning prevents
the synaptic weights from overshooting, but also from heading off into the saturation
regime. In the continuous-valued synaptic model, slow learning is implemented by a
small learning rate (q). However, biological synapses do not admit arbitrarily small
changes. Synapses must operate with discrete states, allowing them to benefit for
the long-term maintenance of their strengths. In a discrete-valued synaptic model,
slow learning is achieved by a stochastic selection of a small number of synapses to be
modified. In general, networks with bounded synapses which do not allow arbitrarily
small changes share the palimpsest property (Fusi, 2002): new patterns to be learnt
overwrite the oldest ones, and only a limited number of patterns are remembered.
When learning is slow, in the sense that only a few synapses are changed with each
presentation of a stimulus, the speed of overwriting is small and more patterns are
remembered. Slow learning also occurs in biology, for instance in infero-temporal
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and perirhinal cortex (Miyashita, 1993; Yakovlev et al., 1998; Erikson and Desimone,
1999). The slow learning observed in these experiments is consistent with the implicit
task for the monkey to maximize the number of memorized patterns.

Small neuronal thresholds allow to separate similar patterns. The as-
sumption of a small neuronal threshold relative to the total excitatory synaptic
strength seems to be satisfied in biology by virtue of the huge number of excitatory
synapses projecting onto a single neuron (Abeles, 1991). As we showed, the ratio
between the neuronal threshold and the total excitatory synaptic strength must de-
crease with the difficulty of the learning task, i.e. with decreasing separation margin
between the two classes to be learned. The correct tuning of this threshold-to-
synaptic strength ratio could be performed by additional homeostatic processes (see
e.g. Desai et al., 2002). Homeostatic plasticity may also tune the global inhibition
(gI) to dominate the excitatory equilibrium weight (G∗), such that neurons silence
themselves in response to unstructured input.

Synaptic democracy increases memory capacity. The tendency to equal-
ize the synaptic weights when learning tightly separated classes may also underly
the effective weight equalization (measured as EPSP amplitudes in the soma) in
hippocampal pyramidal cells (Magee and Cook, 2000; Häusser, 2001). These cells
are thought to perform an associative memory task, and therefore need to classify
presynaptic activity patterns as described here. However, the cells will only reach
the maximal storage capacity if distal synapses have the same chance to evoke an
action potential as proximal synapses have. To allow distal synapses to increase their
strengths, without disproportional saturation deteriorating the storage capacity, the
upper bound imposed on the synaptic strength must grow with distance from the
soma. As we showed, synaptic democracy then automatically emerges while learning
tightly separated classes of input patterns. The synaptic equalization is caused by
the synaptic boundedness, which tends to uniform the somatically measured synaptic
strength, and the stopping conditions, which prevents an overlearning of repeatedly
presented stimuli. The neuron can therefore regain its maximal storage capacity,
despite the strong distortions of the synaptic inputs by the dendritic attenuation.
An alternative model explaining the emergence of synaptic equalization was recently
suggested by combining Hebbian and anti-Hebbian spike-timing dependent plasticity
(Rumsey and Abbott, 2003). It would be interesting to reconcile this bottom-up with
the present top-down approach, and specify how Hebbian and anti-Hebbian plastic-
ity may jointly improve learning (e.g. of output distributions as in the Boltzmann
machine) or maximize the memory capacity (as achieved here by the stop-learning
condition).

Weight variability and noise robustness Our assumption that the local in-
hibitory weights are uniform and fixed requires that they directly project onto the
soma. The proximal location of inhibitory input is consistent with experimental find-
ings in hippocampal pyramidal cells (see e.g. Pouille and Scanziani, 2001). However,
the somatically measured excitatory synaptic strengths in biology seem to show a
larger variance than predicted by the present theory (see e.g. Magee and Cook,
2000). A possible explanation for this larger variance could be that biological neu-
rons avoid to exploit the maximal, theoretically available, memory capacity. This is
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reasonable in the presence of noise, since otherwise the effective synaptic strengths
would become too equal and the response of the neurons would become noise sensi-
tive. A strategy to achieve noise robustness is to increase the strength of the global
inhibition. This is because strong global inhibition would start to suppress the
neuronal responses already before the synaptic strengths became too uniform, and
the Hebbian modifications would therefore stop while some variance in the synaptic
weights remains.

Silenced neurons allow to deal with non-separable patterns. Suppress-
ing the activity of a neuron which receives contradictory information is an important
property when dealing with non-separable patterns. As the number of random input
patterns increases (p > 2N), the chance that they are inseparable, and therefore
not classifiable by a neuron, also increases (Cover, 1965). A mechanism is therefore
required which protects the neuron from an overflow of data, and eventually avoids
misclassifications. The studied suppression mechanism represents an intrinsic self-
regulation of a neuron against such an overflow. Non-separable patterns homogenize
the synaptic weights by means of the synaptic saturation, until their response be-
comes suppressed by the global inhibition. The same suppression mechanism can
also be exploited to improve the classification of noisy data like handwritten dig-
its (Senn and Fusi, 2003a). Since patterns which are incorrectly classified typically
evoke a subthreshold response (false negative), the classification can be improved
by adding several stochastic output neurons in parallel. This naturally leads to a
sparse representation of the input patterns, as often seen in cortical recordings (see
e.g. Vinje and Gallant, 2000). We conclude that synaptic saturation, and the way to
prevent it or to make use of it, may have important implications onto the neuronal
organization of the cortex.

Appendix

Perceptron convergence theorem for bounded synapses

The theorem asserts that with the classical Hebbian rule incorporating a stop-
learning condition any set of linearly separable patterns can be learned with bounded
synaptic strengths, provided that the learning rate is small, that there is some global
inhibition, and that the neuronal threshold is small compared to the overall sum of
the presynaptic excitatory weights. For notational convenience we consider equal
learning rates for LTP and LTD, q− = q+ = q.

Theorem. Let C± be any sets of linearly (δ + ε)-separable activity patterns

ξ ∈ [0, R]N with separability threshold θ ∈ R and separability parameters δ ≥ 0,
ε > 0. Let us choose any globally inhibitory weight gI ∈ (0, 1), any scaling factor % ≤
εgI/(2R), and any learning rate q ≤ %εgI/(2R2), where gI = min{gI , 1−gI}. Set the

threshold of the postsynaptic neuron to θ◦ = %θ, and the learning margin to δ◦ = %δ.
Then, for any repeated presentation of the patterns ξ ∈ C± and any initial condition

G0
j ∈ [0, 1]N , the synaptic dynamics (1) converges in at most n◦ = 6/(q%εgI) synaptic

updates.
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Note that the maximal number of stochastic updates, n◦, which is required to
learn the patterns, is independent of the number of patterns p to be learned. This
apparent paradox arises because n◦ only counts the number of presentations which
trigger synaptic updates, i.e. for which the update conditions in (1) are satisfied.
Since the patterns satisfying these conditions are not known a priori, however, an
online algorithm needs to repeatedly cycle through all the p patterns. Hence, for a
periodic cycling, an upper bound for the number of presentations, t, until learning
stops is t◦ = pn◦ = 6p/(q%εgI).

Proof of the theorem. The condition on the linear separability of the sets C±

states that there is an S ∈ RN with ‖S‖2 = N and a separation threshold θ ∈ R such
that ξS > (θ + δ + ε)N for ξ ∈ C+ (i.e. ξpost = 1), and ξS < (θ− δ− ε)N for ξ ∈ C−

(i.e. ξpost = 0). Writing the learning rule (1) in the form Gt+1 = Gt + q∆Gt and
assuming that the conditions for a synaptic update are satisfied, we can decompose
(1) into the linear and forgetting part according to (2). Recall that the condition for
a synaptic update is satisfied if either h = 1

N
GIξ ≤ %(θ + δ) or h = 1

N
GIξ ≥ %(θ− δ)

for ξ ∈ C+ and ξ ∈ C−, respectively.

Learning with the linear part. According to the update and separability condi-
tion for the case ξ ∈ C+ we have ξGI < %(θ + δ)N and ξ%S > %(θ + δ + ε)N , respec-
tively. Subtracting the first from the second inequality we get (%S − GI)ξ ≥ %εN .
Similarly, for the case ξ ∈ C− we have the two conditions ξGI > %(θ − δ)N and
ξ%S < %(θ − δ − ε)N , respectively, and by subtraction we get −(%S − GI)ξ ≥ %εN .
Defining the linear part in the learning rule (2) by ∆L = ξ(1− gI) in case of ξ ∈ C+

and ∆L = −gIξ in case of ξ ∈ C−, respectively, we get the basic inequality (3)
presented previously in the main text,

(%S − GI)∆L ≥ %εgIN . (3)

Controlling the forgetting part. We next estimate the impact of the forgetting
(saturation) term ∆F = −ξ ∗ GI . We show that updating G with q∆F either
supports learning (in the sense of Eq. 3), or at least does not move GI too far away
from %S. Inserting the definition of ∆F , writing ξ =

√
ξ ∗

√
ξ and applying twice

the Cauchy-Schwartz inequality in the form x y ≤ ‖x‖ ‖y‖, with equality if x = y,
we get sequentially

(%S − GI)∆F = GI(ξ ∗ GI) − %S(ξ ∗ GI) =
(

√

ξ ∗ GI

)2

− %
(

√

ξ ∗ S
) (

√

ξ ∗ GI

)

≥ ‖
√

ξ ∗ GI‖
(

‖
√

ξ ∗ GI‖ − % ‖
√

ξ ∗ S‖
)

. (5)

When forgetting supports learning. In the case of ‖√ξ ∗ GI‖ ≥ % ‖√ξ ∗ S‖,
the parenthesis on the right-hand side of (5) is non-negative, and one immediately
concludes from (5) that (%S − GI)∆F ≥ 0. Note that the condition on the norm
of GI roughly states that GI lies ‘behind’ %S when looking from the origin in the
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direction of
√

ξ. In this case the forgetting term ∆F speeds up, or at least does not
counteract, the convergence of GI towards %S. In fact, since ∆G = ∆L + ∆F we
obtain from (%S − GI)∆F ≥ 0, together with (3), that for any %,

(%S − GI)∆G ≥ %εgIN , provided ‖
√

ξ ∗ GI‖ ≥ % ‖
√

ξ ∗ S‖ . (6)

When forgetting counteracts learning. We next consider the case that ‖
√

ξ ∗
GI‖ ≤ % ‖

√
ξ ∗ S‖. Inserting this into (5), while neglecting the term ‖

√
ξ ∗ GI‖ in

the parenthesis on the right-hand side, we get the estimate

(%S − GI)∆F ≥ −‖
√

ξ ∗ GI‖ % ‖
√

ξ ∗ S‖ ≥ −%2 ‖
√

ξ ∗ S‖2 ≥ −%2RN . (7)

For the last inequality we used the definition of the norm square, the fact that
ξj ≤ R, and the assumption on the separation vector that ‖S‖2 = N to obtain
‖
√

ξ ∗ S‖2 =
∑N

i=1 ξiS
2
i ≤ R

∑

i S
2
i = RN . Since the above estimate cannot exclude

that (%S−GI)∆F becomes negative, we cannot preclude that forgetting counteracts
learning. However, since the scaling factor % enters as the square, forgetting becomes
disproportionally weak if % gets small. Let us choose % ≤ εgI/(2R). Using again
∆G = ∆L + ∆F we then get from estimate (7), together with (3), that

(%S − GI)∆G ≥ %N(εgI − %R) ≥ %εgIN/2 , provided ‖
√

ξ ∗ GI‖ ≤ % ‖
√

ξ ∗ S‖ . (8)

Learning in the general case stops. We next show that with each synaptic
update the distance from GI to %S decreases at least by some fixed quantity. We
conclude that the learning process must terminate, since otherwise the distance
from GI to %S would become negative. Let tµ denote the time(s) when pattern ξµ

is presented and the synapses are updated. At a subsequent time step tµ + 1 there

is G
tµ+1
I = G

tµ
I + q∆Gtµ . Combining (6) and (8) we estimate (%S − G

tµ
I )∆Gtµ ≥

%εgIN/2, independently of the value of ‖
√

ξ∗GI‖. Substituting G
tµ+1
I in the following

line, multiplying the norm squares out, inserting (%S − G
tµ
I )∆Gtµ ≥ %εgIN/2, and

choosing a learning rate q ≤ %εgI/(2R2) yields

‖%S − G
tµ+1
I ‖2 − ‖%S − G

tµ
I ‖2 = −2q(%S − G

tµ
I )∆Gtµ + q2‖∆Gtµ‖2 ≤ . . .

. . . ≤ qN(qR2 − %εgI) ≤ −q%εgIN/2 . (9)

Note that by definition of ∆G, see (2), we have ‖∆Gtµ‖2 ≤ R2N . This is because
the synaptic weights G

tµ
j are between 0 and 1, and the stimuli ξµ

j are between 0 and
R. Summing up the contributions of all the updates up to time t evoked by the
different patterns, Gt

I = G0
I + q

∑

t′µ<t ∆Gt′µ , while repeatedly using estimate (9), we
get an estimate of the telescope sum

‖%S − Gt
I‖2 − ‖%S − G0

I‖2 = ‖%S − Gt
I‖2 − ‖%S − Gt−1

I ‖2 +

‖%S − Gt−1
I ‖2 − ‖%S − Gt−2

I ‖2 + − . . .

≤ −ntq%εgIN/2 , (10)
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where nt is the number of synaptic updates up to the t-th presentation of a pattern.
From (10) we immediately obtain

0 ≤ ‖%S − Gt
I‖2 ≤ ‖%S − G0

I‖2 − ntq%εgIN/2 . (11)

Since ‖%S−G0
I‖2 ≤ (%2+g2

I +1)N ≤ 3N we conclude from (11) that ‖%S−Gt
I‖2 ≤

0 after nt = 6/(q%εgI) updates. Hence, the number of synaptic updates until learning
stops must be smaller n◦ = 6/(q%εgI). If we set % = εgI/(2R) and q = %εgI/(2R2),
consistent with the smallness requirements above, we obtain n◦ = 48(R/εgI)

4. Note
that this estimate is independent of the initial state of the synaptic weight vector
G0 ∈ [0, 1]N . q.e.d.
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a) b)

c) d)

Figure 1: Neuronal architecture and sketch of the convergence proof. a) We consider
a postsynaptic neuron receiving direct excitatory input from N presynaptic neurons
(ξj), and indirect input through a inhibitory neuron with linear input-output rela-
tionship. The excitatory weights (Gj) are subject to Hebbian plasticity with weight
saturation and a stop-learning condition. The globally inhibitory weight (gI) is
fixed. The postsynaptic response (ξpost) is the thresholded total synaptic current h,
but any other nonlinear input-output relationship which dichotomizes the input is
also possible. b) The sets C+ (crosses) and C− (circles) of patterns ξ are assumed
to be linearly separable, with a separation vector S and a threshold θ. Since S may
contain negative components and components larger than 1, it cannot in general
be approximated by the excitatory weight vector G. Only if the solution vector S
(and with it the threshold θ) is scaled down by %, and if some global inhibition gI

is present, is it possible to approximate the solution vector, %S ≈ GI = G − gI1,
with a G which is far from saturation at the boundaries 0 and 1 of the hypercube.
c) The synaptic change ∆G triggered by pattern ξ is decomposed into a linear and
forgetting (saturation) part, ∆G = ∆L+∆F . Without global inhibition (gI = 0 and
GI = G), synaptic saturation (∆F ) may prevent the weight vector G to be updated
in the ‘correct’ direction ∆L, in the sense that (%S − GI)∆G > 0. In the shown
example we have (%S−GI)∆G < 0, i.e. the update moves GI away from the solution
vector %S. This is because an update of GI in the desired direction ∆L is distorted
by the nearby boundaries and, instead, GI moves in the direction of ∆G = ∆L+∆F
towards the upper right corner. Such a distortion is not possible if G is close to the
main diagonal and far from 0 and 1 (achieved by a small %, and a gI in between 0
and 1, see a). d) A positive scalar product (%S − GI)∆G > 0 ensures that the GI

moves towards %S, provided that the learning rate q is small (distance indicated by
the upper brace is smaller than that indicated by the lower brace).

18



a)

20 40 60
−5

0

5

h−
(θ

°+
δ °) 

an
d 

(θ
°−

δ °)−
h

Time (number of presentations)

b)

20 40 60
−10

0

10

20

30

40

50

Li
ne

ar
 (

−
) 

an
d 

fo
rg

et
tin

g 
pa

rt
 (

−
.)

Time

Figure 2: Any linearly separable set of patterns is learnable with limited synaptic
strengths. a) Evolution of the signed distance between the total postsynaptic current
and the learning threshold, ht(ξ) − (θ◦ + δ◦), for patterns ξ of class C+, and (θ◦ −
δ◦) − ht(ξ), for patterns of class C−. According to the update condition (Eq. 1),
learning stops as soon as these quantities become all positive, here after a total of 69
pattern presentations (out of which 27 satisfied the condition on ht and let to synaptic
updates). Note that the monotonic convergence of the total weight vector Gt

I towards
the scaled solution vector %S does not imply that for all patterns the total input ht(ξ)
monotonically converges. Further parameters: q = q± = 2 · 10−3, ρ = 0.3, gI = 0.5.
The same set of patterns is used in the subsequent Figures 3-6. b) Evolution of the
learning progress represented by the ‘linear part’, (%S−Gt

I)∆Lt, (solid line) and the
‘forgetting part’, (%S − Gt

I)∆F t, (dashed-dotted line). The quantities represent the
learning progress due to the non-saturating and saturating part: they indicate by how
much the two learning components ∆F and ∆G move the weight vector GI towards
the target vector %S. The flat parts correspond to presentations which did not
trigger synaptic updates because the patterns were already correctly implemented,
and the condition on ht in the update rule (1) therefore was not satisfied. As shown
in the proof, the linear part always supports learning, (%S − Gt

I)∆Lt > 0, while the
forgetting part may counteract learning when Gt

I comes close to %S, as happens at
the 48th, 58th and 68th presentation, where (%S−Gt

I)∆F t < 0. Such forgetting could
become dominant if the threshold (the scaling factor %) were not small enough.
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Figure 3: Learning requires global inhibition and a small scaling factor. a) The
number of iterations (in thousands) required to learn the random set of patterns
is minimal if the global inhibitory strength gI is roughly 0.5, as predicted by the
theory. A inhibitory weight close to 0 or 1 urges the excitatory weights to ‘catch up’
the inhibitory weight, and the emerging synaptic saturation (‘forgetting’) strongly
impairs the learning (cf. Fig. 1c). The learning rate and the scaling factor were
reduced by a factor of 100, yielding q = 2 · 10−5 and % = 0.003, such that it is
still possible to separate the patterns with values of the global inhibition near 0
and 1. b) Number of synaptic updates (in thousands) required for convergence as a
function of the scaling factor %, with the same learning rate q as in a). As predicted
by the theory, learning is impaired if the neuronal threshold, compared to the total
(excitatory) synaptic strength, is not small (% > 0.5, cf. Fig. 1c).
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Figure 4: Individual synaptic modifications should be small and triggered only if the
required response is not matched. a) To prevent overshooting, the learning rates q±

must be a fraction of the separation parameter ε (width of the bracelet: 2(ε + δ),
corresponding to the separation margin between the two classes, as indicated by
the parallel dotted lines). Without stop-learning condition the weight vector Gt

would be repeatedly attracted by the clusters (as appearing on the right), while
patterns not in these clusters start to get misclassified (as the cross most left). The
dashed line shows the separation hyperplane after learning the cluster of crosses. A
subsequent learning of the cluster of circles would move the hyperplane up again
(arrows). b) Same plot as in Fig. 2b, but without stop-learning condition on the
total postsynaptic current ht in (1). The linear part oscillates because the weight
vector G periodically ‘overlearns’ the patterns, i.e. is repeatedly attracted towards
one cluster of patterns and thereby starts to misclassify other patterns. In contrast,
the forgetting part slowly converges, showing that the final weight vector oscillates
close to the main diagonal where synaptic saturation is minimal and the weights are
roughly equalized.
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Figure 5: Balancing and equalization of the synaptic weights through learning. a)
The initial synaptic strengths Gj (solid line) span the whole possible interval be-
tween 0 and 1, scaled up by N . The two narrowly separated black lines represent
the learning thresholds θ◦ ± δ◦, divided by the average presynaptic activity of all
patterns, R/2, to be comparable with the individual synaptic weights. The dashed
line at gI = 0.5 represents the global inhibitory weight (dotted line: Gj − gI). b)
After faithful learning of the set of 10 patterns in 27 synaptic updates (69 presenta-
tions, see Fig. 2) the excitatory synaptic strengths Gj became roughly equal (solid
line). Subtracting global inhibition (dotted line) makes the effective synaptic weights
fluctuating around the threshold. If the stop-learning condition is not imposed, the
weights equalize much less (dashed-dotted line, shown after 200 synaptic updates).
c, d) Learning on a dendritic tree. c) Initial synaptic strength measured locally at
the dendritic site (‘dendritic EPSP amplitude’, Gj, uniformly distributed), and in
the soma (‘somatic EPSP amplitude’, Gjaj, decreasing with distance, see text). d)
After faithful learning the somatically measured synaptic strengths are equalized,
while the dendritically measured strengths increase with distance from the soma.
Further parameter values: ρ = 0.08, θ◦ = 1.4, δ◦ = 6 · 10−4, q± = 5 · 10−5.
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Figure 6: Synaptic saturation suppresses neuronal activity in response to conflicting
patterns. a) Evolution of the total postsynaptic current ht in response to the 5 pat-
terns trained with conflicting outputs, i.e. requiring once the output ξpost = 0 and
once ξpost = 1 for the same input patterns. After a transient response (around up-
date 200) the total postsynaptic currents of all the 5 patterns becomes subthreshold
(horizontal line represents the neuronal threshold θ◦). b) Without synaptic satu-
ration (modelled by setting ∆F = 0 in Eq. 2) the postsynaptic currents do not
become subthreshold. c, d) The final distribution of the synaptic weights Gj (solid
lines) corresponding to the simulations in a) and b) with and without saturation,
respectively (same initial weights as in Fig. 5a). Dashed line: global inhibition,
gI ; double solid line: neuronal threshold scaled by the presynaptic mean activity,
2θ◦/R; dotted line: Gj − gI. Learning the contradicting outputs homogenizes the
weights in the presence of synaptic saturation, and leads to the uniform dominance
of inhibition, and therefore to the suppression of any neuronal activity (c). The final
weight distribution when the upper synaptic bound was relieved does not show the
homogenization, and therefore does not lead to the activity suppression (d).
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Figure 7: Convergence of stochastic learning in the case of binary synapses. a) Total
synaptic input current ht as a function of time, evaluated for all 10 random, linearly
separable patterns. Same parameters as in Fig. 2, except for the number of neurons
which is N = 100 instead of N = 20. The learning process converges in about
150 presentations (15 presentations per stimulus). b) Number of presentations per
pattern required for convergence, as a function of the number of neurons N , for
p = 10, 20, 40 random binary 0/1 patterns with coding level f = 1/4. Other
parameters: q± = .05, gI = 0.5. The classes are constructed to be linearly separable.
The neuronal threshold θ◦ and the learning margin δ◦ are chosen to yield a maximal
separation of the classes after projecting the patterns to a solution vector S.
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