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Abstract

An anomalous diffusion model for ion channel gating is put forward. This modeling scheme is

able to describe the non-exponential, power-law like gating behavior of residence time intervals in

several types of ion channels. Our scheme presents a generalization of the discrete diffusion model

by Millhauser, Salpeter and Oswald [Proc. Natl. Acad. Sci. USA 85, 1503 (1988)] to the case

of a continuous, anomalously slow conformational diffusion. The corresponding generalization is

derived from a continuous time random walk composed of nearest neighbor jumps which in the

scaling limit results in a fractional diffusion equation. The studied model contains three parameters

only: the mean residence time, a characteristic time of conformational diffusion, and the index of

subdiffusion. A tractable analytical expression for the characteristic function of the residence time

distribution (RTD) is obtained. In the limiting case of normal diffusion a prior result of Goychuk

and Hänggi [Proc. Natl. Acad. Sci. USA 99, 3552 (2002)] is reproduced. Depending on the

chosen parameters, the fractional diffusion model exhibits a very rich behavior of the RTD with

different characteristic time-regimes. The corresponding autocorrelation function of conductance

fluctuations also displays nontrivial features. The theoretical model is in good agreement with

experimental data for large conductance potassium ion channels.

PACS numbers: 05.40.-a, 87.10.+e, 87.15.He, 87.16.Uv

∗goychuk@physik.uni-augsburg.de

1

mailto:goychuk@physik.uni-augsburg.de


I. INTRODUCTION

Ion channels are complex membrane proteins which provide ion-conducting, nanoscale

pores in the biological membranes [1]. These proteins undergo spontaneous conformational

dynamics resulting in stochastic intermittent events of opening and closing the pore – the

so-called gating dynamics. It can be described by following kinetic scheme:

C
ko−→
←−
kc

O . (1)

As it stands, this scheme describes Markovian stochastic transitions between the closed

state (C) and the state open (O) of an ion channel which can fully be characterized by the

opening rate, ko, and the closing rate, kc. From a trajectory description of the observed

two-state gating process, these transitions can be characterized by the residence time distri-

butions of open and closed time intervals, ψo(τ) = kc exp(−kcτ) and ψc(τ) = ko exp(−koτ),

respectively.

The invention of patch clamp technique [2] marked the beginning of a new area: detailed

experimental studies of the statistics of such stochastic trajectory realizations have been

rendered possible. These experimental investigations, however, also reveal the fact that

the distributions of the residence time intervals are typically not exponential. This in turn

implies that the corresponding observed two-state dynamics of current fluctuations is not

Markovian. Any such non-exponential distribution can however approximately be fitted by

a sum of (sometimes many) exponentials, e.g.

ψc(t) =

N
∑

i=1

ciλi exp(−λit), (2)

with weights ci obeying
∑N

i=1 ci = 1. The rationale behind this fitting procedure is the

assumption that the corresponding state consists of N discrete substates, separated by po-

tential barriers. This method constitutes the working tool for the majority of molecular

physiologists in interpreting their experimental data within a discrete Markovian scheme

consisting of many (sub)states [3]. The addition of new states (or new configurational di-

mensions in the continuous case) is a well known formal method to unravel a low-dimensional

non-Markovian stochastic dynamics via its embedding into a Markovian dynamics of higher

dimensionality. The problem with such a methodology is, however, that the number of
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substates needed to fit the experimental data can depend on the experimental conditions.

For example, the experimental gating dynamics of a Shaker potassium channel has been

successfully described by a sequential 8-state Markovian scheme with 7 closed states for a

fixed value of temperature about T = 20 oC [4]. However, to describe the experimental data

over a small extended temperature regime between 10− 20 oC already necessitates to add

three additional closed substates [5].

For several types of ion channels the RTDs can alternatively be fitted in terms of non-

exponential distributions such as a stretched exponential ψ(τ) ∝ − d
dτ

exp[−(ντ)α] [6], or by

a power law ψ(τ) ∝ τ−β [7, 8] with a few parameters only. The case of a power law coefficient

near β = 3/2 can be described with normal conformational diffusion over many degenerate

substates [7, 9, 10, 11, 12, 13, 14, 15]. It should be noted, however, that exponents β different

from a normal diffusion behavior have been detected experimentally as well [16, 17, 18].

Therefore, it is of prominent importance to generalize the normal diffusion model to the

case of anomalous diffusion: this objective is at the heart of the following discussion.

II. MODELING ANOMALOUS ION CHANNEL GATING

Let us start from a continuous time random walk (CTRW) [19, 20, 21, 22] generalization

of the discrete state diffusion model by Millhauser et al. [7], see Fig. 1. It is assumed that the

manifold of closed substates consists of N states; namely, the states from j = 2 to j = N −1

(“diffusional states”) are identical and characterized by identical residence time distributions

ψj(τ) = ψ(τ), i.e. the channel stays in the corresponding state j for a random time interval

τ distributed in accordance with ψ(τ), and performs at the end of every time interval a jump

j → j±1 with probability pj+1,j = pj−1,j = 1/2 either to the left, or to the right neighboring

state, respectively. If the RTD is exponential, i.e. ψ(τ) = 2κ exp(−2κτ), then the standard

Markovian rate description with rate κ is recovered. The boundary state j = N possesses

a different RTD ψN (τ) which in the Markovian case reads ψN(τ) = κ exp(−κτ) (transitions

occur always with the probability one, pN−1,N = 1, to the state j = N − 1). Furthermore,

from the state j = 1 the channel can undergo a transition into its open state j = 0 with

the rate γ, or make transition into the manifold of conformational diffusion substates with

the rate κ. For this state, the corresponding RTD reads ψ1(τ) = (γ+κ) exp[−(γ+κ)τ ] and

the transition probabilities are p01 = γ/(γ + κ) and p21 = κ/(γ + κ). The dynamics of state
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FIG. 1: Sketch of the CTRW generalization of the (discrete) diffusion model of ion channel gating.

occupancies pj(t) is described by the generalized master equation (GME) due to Kenkre,

Montroll and Shlesinger [23, 24] and its generalization [25, 26]. The corresponding dynamics

reads (with an initial preparation in some state j0, pj0(0) = 1):

ṗj(t) =

∫ t

0

K(t− t′)[pj−1(t
′) + pj+1(t

′)− 2pj(t
′)]dt′, j = 3, N − 2, (3)

ṗN (t) =

∫ t

0

K(t− t′)pN−1(t
′)dt′ −

∫ t

0

KN(t− t′)pN(t′)dt′, (4)

ṗN−1(t) =

∫ t

0

K(t− t′)[pN−2(t
′)− 2pN−1(t

′)]dt′ +

∫ t

0

KN(t− t′)pN(t′)dt′, (5)

ṗ2(t) =

∫ t

0

K(t− t′)[p3(t
′)− 2p2(t

′)]dt′ + κp1(t), (6)

ṗ1(t) =

∫ t

0

K(t− t′)p2(t
′)dt′ − (κ + γ)p1(t) + kcp0(t), (7)

ṗ0(t) = −kcp0(t) + γp1(t), (8)

with the kernels K(t) and KN (t) defined through their Laplace-transforms

K̃(s) =
1

2

sψ̃(s)

1− ψ̃(s)
,

K̃N(s) =
sψ̃N (s)

1− ψ̃N (s)
, (9)

where ψ̃(s) and ψ̃N (s) are the Laplace-transforms of ψ(τ) and ψN(τ), respectively. The

RTD of the open state is readily obtained, i.e. ψo(τ) = kc exp(−kcτ). In order to calculate

the RTD of the set of closed states one starts out from p1(0) = 1 (the channel has been just

closed) to obtain the survival probability Φc(t) =
∑N

j=1 pj(t) with the boundary condition

that the state j = 0 is absorbing. This latter condition is realized by setting formally kc → 0.

The corresponding RTD then follows from ψc(τ) = −dΦc(τ)/dτ . The total population of

the closed state pc(t) =
∑N

j=1 pj(t) obeys (not allowing for the backward transition, kc → 0):

ṗc(t) = −γp1(t). (10)
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This must be used as the proper boundary condition (it yields a radiation boundary via

continuity equation in the scaling limit, see below) to calculate ψc(τ) [28, 29].

Next let us make the Ansatz that ψ(τ) = − d
dτ
Eα(−(2κτ)α), where Eα(z) :=

∑∞
0 zn/Γ(αn + 1) is the Mittag-Leffler function. It is defined via a generalization of the

Taylor series expansion of the exponential function, E1(z) = exp(z) and Γ(z) is the stan-

dard Gamma-function. In other words, the corresponding survival probability in the state

just occupied [32], Φ(τ) =
∫ ∞

τ
ψ(t)dt is given by Φ(τ) = Eα(−(2κτ)α). Its Laplace-transform

reads Φ̃(s) = sα−1/[sα + (2κ)α] [33, 34] and by use of the relation, ψ̃(s) = 1 − sΦ̃(s), one

obtains ψ̃(s) = (2κ)α/[sα + (2κ)α]. This particular choice of RTD interpolates between

the initial stretched exponential (Weibull) distribution [32] (“stretched exponential” refers

to the survival probability Φ(τ), with ψ(τ) ∝ 1/τ 1−α at τ → 0) and the asymptotic long

time power law ψ(τ) ∝ 1/τ 1+α. It yields anomalously slow diffusion, 〈δx2(t)〉 ∝ tα [34].

For example, such an anomalous diffusion is measured experimentally, along with the RTD

in trapping domains exhibiting the corresponding power law, for colloidal particles in cy-

toskeleton actin networks of biological cells [30]. These latter experimental results offer a

clear clue for understanding the results on virus diffusion in infected cells [31] – that is

an observed anomalously slow diffusion in actin networks combined with active directional

trafficking of viruses by molecular motor proteins [31]. For the discussed form of RTD,

K̃(s) = (2κ)αs1−α/2 and the fractional master equation follows exactly from Eq. (3) as a

particular case of the GME. It reads explicitly,

ṗj(t) =
1

2
(2κ)α 0D̂

1−α

t [pj−1(t
′) + pj+1(t

′)− 2pj(t
′)], (11)

where 0D̂
1−α

t (...) = 1
Γ(α)

∂
∂t

∫ t

0
(...)dt′

(t−t′)1−α is the integro-differential operator of fractional deriva-

tive introduced by Riemann and Liouville, see Refs. [33, 34, 35, 38] for reviews and further

references. In the case of a two-state dynamics a similar fractional master equation was ob-

tained in [36, 37]. Note that the fractional master equation (11) presents in fact an ordinary

generalized master equation being nonlocal in time. The introduction of a fractional time

derivative in the generalized master equation of CTRW is nothing but a shorthand notation

which corresponds to a specific choice of the RTD. The importance of this equation lies in

the fact that it can serve as a useful mathematical tool to model anomalously slow diffusion.

The physical origin of this diffusion can be attributed to very broad residence time distri-

butions on the sites of particle localization with diverging mean residence time [19, 21, 22].
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In practice this implies that the corresponding mean residence time is exceedingly large as

compared with the characteristic time scale of anomalous diffusion in the given domain of

a finite size. As a consequence, the approximation with an infinite mean residence time

becomes physically justified.

Likewise, with ψN (τ) = − d
dτ
Eα(−(κτ)α), Eq. (4) takes on the form

ṗN(t) =
1

2
(2κ)α 0D̂

1−α

t pN−1(t
′)− κα 0D̂

1−α

t pN(t′). (12)

The remaining equations (5), (6), and (7) involving the memory kernel can readily be rewrit-

ten in a similar form upon use of the notation of the fractional time derivative.

A. Scaling limit to a fractional diffusion equation

Let us perform next a continuous limit: namely, assuming the distance ∆x between

neighboring sites we introduce the conformational coordinate x := −j∆x which models

the manifold of closed diffusional substates. The following continuous limit is assumed:

Let ∆x → 0, N → ∞, κ → ∞ whereas keeping Kα := 1
2
(2κ)α(∆x)2 and the diffusion

“length” L := N∆x constant. By use of the expansion: pj±1(t) := P (−[j ± 1]∆x, t) ≈

P (x, t) ∓ ∂P (x,t)
∂x

∆x + 1
2
∂2P (x,t)
∂x2 (∆x)2, in (3) we arrive at the following fractional diffusion

equation in continuous state space, i.e.,

∂P (x, t)

∂t
= Kα 0D̂

1−α

t

∂2P (x, t′)

∂x2
, (13)

where Kα is the diffusion constant of anomalously slow diffusion. The fractional diffusion

equation (13) assumes the form of a continuity equation,

∂P (x, t)

∂t
= −

∂J(x, t)

∂x
(14)

where the probability flux J(x, t) becomes modified due to the fractional time-derivative,

J(x, t) = −Kα 0D̂
1−α

t

∂P (x, t′)

∂x
. (15)

Our derivation of the fractional diffusion equation from the CTRW complements previous

studies [34, 39]; it is rather simple and does not require jumps with a variable step length

beyond nearest neighbors. For this very reason, no overflights of the boundaries occur

that are possible otherwise. This observation is of crucial importance in determining the
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physically correct boundary conditions [40, 41]. This also means that the boundaries are

strictly local in space. The given derivation removes any open query about the space-

locality of boundary conditions for the fractional diffusion equation. After the integration

of the continuity equation from x = −L to x = 0, one deduces that the decrease of the total

probability of the closed state manifold (the survival probability), pc(t) =
∫ 0

−L
P (x, t)dx

occurs due to the probability flux on the boundary. Accordingly, we will replace the original

discrete master equation in space by its corresponding fractional diffusion equation with the

following boundary conditions as they emerge from the original problem. The boundary

x = −L is a reflecting one, obeying :

J(−L, t) = 0 . (16)

The boundary at x = 0 is radiative. Setting p1(t) ≈ ∆xP (0, t) = LP (0, t)/N and using Eq.

(10) one finds

J(0, t) = γLP (0, t)/N. (17)

We additionally use here the specific scaling limit: γ →∞, N →∞ with 〈τc〉 = N/γ being

held fixed. This quantity possesses the meaning of the mean residence time in the closed

state manifold, see below. The radiation boundary acquires then the explicit form

J(0, t) = LP (0, t)/〈τc〉. (18)

Our fractional diffusion modeling for the RTD of closed time intervals thus has three param-

eters only: (i) the mean residence time 〈τc〉, (ii) the characteristic time of conformational

diffusion, i.e. τD := (L2/Kα)
1/α and (iii) the power law index of anomalous diffusion α. In

the case of normal diffusion case, i.e. α = 1, the special scaling limit used here can also be

justified from a Kramers approach [42] to the gating problem [14, 15]. Whereas the solution

of the Kramers approach in Ref. [14] in addition yields also an analytical expression for

〈τc〉, which reproduces the experimental crossover behavior from an exponential-to-linear

voltage dependence due to Hodgkin and Huxley [43], the model here treats 〈τc〉 as one of the

phenomenological parameters. It is also worthwhile to remark that the boundary condition

does not contain the index of anomalous diffusion α. Formally it remains the same as for

normal diffusion. The flux expression (15) is, however, not local in time. Moreover, the

r.h.s. of (18) does not contain the fractional derivative in time. This feature is in accord
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with the original discrete model where the last, final transition into the open state is given

by an ordinary rate transition. The analogy with the Kramers model of Ref. [14] is that

the diffusion in the domain of voltage-dependent states (cf. [14, 15]), which becomes a

thin boundary layer in the considered scaling limit, remains normal. This justifies well the

use of boundary condition (18) in our fractional diffusion model which now is completely

formulated.

B. Characteristics of the residence time distribution

To obtain the distribution of closed residence times ψc(τ) one needs to solve first the

fractional diffusion equation (13) with the boundary conditions (16) and (18) and the initial

condition P (x, 0) = δ(x − x0) with x0 → 0−. The survival probability Φc(t) follows as

the integral of the solution over the spatial variable and subsequently the corresponding

RTD follows as the negative time derivative of the survival probability. This task has been

achieved by use of the Laplace-transform method. The details of the derivation are outlined

in the Appendix. The final result for the Laplace-transformed RTD of closed time intervals

then reads:

ψ̃c(s) =
1

1 + s〈τc〉gα(sτD)
, (19)

where an auxiliary function

gα(z) =
tanh[zα/2]

zα/2
(20)

has been introduced. For α = 1, this result reduces to one for normal diffusion in Ref.

[14, 15]. Moreover, since gα(z) = 1+o(z) for small z, one can readily see from Eq. (19) that

〈τc〉 indeed has the meaning of a mean residence time, 〈τc〉 :=
∫ ∞

0
τψc(τ)dτ = −dψ̃(s)

ds
|s=0.

Note also that the second moment of RTD diverges, 〈τ 2
c 〉 :=

∫ ∞

0
τ 2ψc(τ)dτ → ∞ for all

α < 1 (anomalous diffusion). Furthermore, if τD = 0, then the closed time distribution

becomes strictly exponential, i.e. ψc(τ) = exp(−τ/〈τc〉)/〈τc〉 and the simplest two-state

Markovian model of the ion channel gating is reproduced with the opening rate ko = 〈τc〉
−1.

In general, the expression (19) cannot be inverted to the time domain exactly; its different

characteristic regimes, however, can be discussed analytically.
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In proceeding, let us consider first the limit of a large conformational diffusion time

τD ≫ 〈τc〉. Then (by use of the large-z asymptotic behavior of g(z) ∼ z−α/2), we have

ψ̃c(s) ≈
1

1 + (sτ0)1−α/2
(21)

with τ0 := τD

(

〈τc〉
τD

)1/(1−α/2)

. The inversion of Eq. (21) is given as ψc(τ) = −dΦc(τ)/dτ in

terms of the survival probability

Φc(τ) = E1−α/2

[

−
( τ

τ0

)1−α/2]

, (22)

which is expressed through the Mittag-Leffler function Eα(z). Because E1/2(−z
1/2) =

ezerfc(z1/2) [34], where erfc(z) is the complementary error function, the solution of the

normal diffusion problem in Ref. [12] for the initial and intermediate time evolution regimes

is reproduced from Eq. (22). For τ ≪ τ0, Eq. (22) behaves as a stretched exponential [34],

Φc(τ) ≈ exp
[

−
1

Γ(2− α/2)

( τ

τ0

)1−α/2]

. (23)

This dependence (23) corresponds in the language of time-dependent rates ko(τ) :=

− d
dτ

ln[Φc(τ)] (used in the renewal theory) [6, 32, 44] to ko(τ) ∝ τ−α/2. Such a time-

dependent rate of recovery from inactivation has been measured with α = 1 for a sodium

ion channel in Ref. [45]. In the limit τ → 0, Eq. (23) yields a power law for the RTD,

ψc(τ) ∝ τ−α/2. (24)

Furthermore, for intermediate times τ0 ≪ τ ≪ τD, Eq. (22) yields another power law,

reading

ψc(τ) ∝ τ−β (25)

with β = 2 − α/2. For α = 1 such an intermediate power law with the slope β = 3/2

has been measured for a potassium ion channel in [8]. Note that this particular power law

exponent reflects normal diffusion. Consequently, the origin of the intermediate power law

is principally not due to the anomalous diffusion behavior. Our theory smoothly reproduces

the intermediate power law associated with normal diffusion in the limit α→ 1.

Other power law features were also measured in experiments, for example, for a gramicidin

channel with the slope β ≈ 1.7 [16]. This corresponds to an intermediate power law in Eq.
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(25) with α ≈ 0.6. Moreover, power law exponents with β > 2 are also measured in

experiments [17] analyzed in Ref. [18] from a pure phenomenological perspective without

clarifying a tentative mechanism. Our model can as well capture such anomalous power

laws which cannot be explained within the intermediate power law asymptotics (25).

Indeed, let us assume that τD is sufficiently small and to consider the asymptotic behavior

τ →∞. The corresponding asymptotics can be deduced from the behavior of ψ̃c(s) at small

s. For s→ 0, Eq. (19) yields,

ψ̃c(s) ≈ 1− s〈τc〉[1− (sτD)α/3]. (26)

From this, by way of Φ̃c(s) = (1 − ψ̃c(s))/s ≈ 〈τc〉(1 − (sτD)α/3) for s → 0, it follows [46]

that Φc(τ) ∝ 1/τ 1+α for τ → ∞. This renders then a power law (25) with β = 2 + α

for large τ . This asymptotic power law with β > 2 is a manifestation of the anomalously

slow conformational diffusion in a space domain of finite size. It replaces an exponential

asymptotic behavior of ψc(τ) for τ > τD in the case of normal diffusion [7, 14, 15].

III. APPLICATION TO GATING DYNAMICS OF A LOCUST POTASSIUM ION

CHANNEL

Our fractional diffusion model can be used to describe the rather complex gating behavior

observed for a locust potassium ion channel [18]. This ion channel exhibits experimentally a

Pareto law in its gating kinetics, ψc(τ) = a/(b+τ)β with β ≈ 2.24±0.06. The corresponding

autocorrelation function, however, seems to exhibit three different interchanging power laws

[18]. These features are compatible with our model. Within a two-state reduction we

are dealing with an alternating renewal process [32]. Its (Laplace-transformed) normalized

autocorrelation function reads [47, 48]

k̃(s) =
1

s
−

(

1

〈τo〉
+

1

〈τc〉

)

1

s2

(

1− ψ̃o(s)
)(

1− ψ̃c(s)
)

(

1− ψ̃o(s)ψ̃c(s)
) . (27)

For our case under study this yields

k̃(s) =
1

s

fα(sτD) + s〈τc〉

1 + 〈τc〉
〈τo〉

+ fα(sτD) + s〈τc〉
, (28)

where fα(z) := 1/gα(z)− 1. Note that fα(0) = 0 and for τD = 0 the inversion of (28) yields

the Markovian result k(t) = exp[−(k0+kc)t]. Moreover, the analytical expression (28) allows
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FIG. 2: Normalized autocorrelation function of conductance fluctuations. Numerical inversion of

Eq. (28) is done with the (improved) Stehfest algorithm [51] for the following set of parameters:

〈τc〉 = 0.84 msec, 〈τo〉 = 0.79 msec [18] and assumed τD = 100 msec and α = 0.28.

one to study the asymptotics of k(t) at t→∞. Namely, from fα(sτD) ≈ (sτD)α/3 it follows

that k̃(s) ∝ sα−1 at s→ 0. By virtue of a Tauberian theorem [49], this latter result readily

yields,

k(t) ∝ t−α . (29)

This power law feature agrees well with the experiment which shows asymptotically (29)

with α = 0.28± 0.1. Furthermore, an intermediate asymptotics of k(τ) can be obtained by

studying the limit of very large τD. Using the scaling s̃ := s〈τc〉 and the limit of very large

values y := τD/〈τc〉 ≫ 1 such that s̃ ≪ 1 is allowed for, whereas still s̃y ≫ 1, Eq. (28) can

formally be approximated by

k̃(s) =
sα/2−1

sα/2 + rα/2
, (30)

with r = τ−1
D (1+〈τc〉/〈τo〉)

2/α. The formal inversion of Eq. (30) yields k(t) = Eα/2[−(rt)α/2].

This in turn yields an intermediate asymptotics k(τ) ∝ τ−α/2 within 〈τc〉 ≪ τ ≪ τD. Indeed,

the analysis of experimental data in [18] reveals such an intermediate asymptotics k(τ) ∝

τ−0.14±0.02. The numerical inversion of k̃(s) in Fig. 2 displays three different power law

regimes in qualitative agreement with the experimental data. Only one of these power laws
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FIG. 3: Survival probability of the closed state for the studied model. The set of parameters is the

same as in Fig.2.

– the long-time asymptotical one – seems, however, to present a true power law asymptotics.

The intermediate power law in Fig. 2 does not agree numerically with the experimental one

in Ref. [18]. Nevertheless, the experimental data agree – surprisingly enough – with the

intermediate asymptotics obtained above in the limit τD →∞.

Furthermore, the numerical inversion of ψ̃c(s) in Fig. 3 can be fitted by Pareto law with

β ≈ 2.24. The discrepancy between β − 2 ≈ 0.24 and α = 0.28 is due to the experimental

restrictions on the maximal time intervals measured. The actual power law asymptotics

for τ → ∞ in Fig. 3 is Φc(τ) ∝ τ−1.28. This long time asymptotic regime is not yet

attained in Fig. 3 which instead closely agrees with Φc(τ) ∝ τ−1.24 , see in Fig. 3, giving an

apparent exact agreement with the experimental data. In view of our few elementary model

assumptions, the agreement between theory and the experimental data [17] analyzed in Ref.

[18] is striking indeed.

Our fractional diffusion scheme is not expected to describe the experimental facts quan-

titatively in all details. In particular, it predicts that the low-frequency part of the spectral

power S(f) of ion current fluctuations of the locust BK potassium ion channel corresponds

to 1/fγ noise with γ = 1 − α ≈ 0.72 [48, 50]. The experiment [52] indeed reveals 1/fγ

noise with γ close but to unity, γ ≈ 1. The reason for this discrepancy is not resolved. The

asymptotic behavior of the autocorrelation function in Ref. [18] and the behavior of the
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low-frequency part of the spectrum in Ref. [52] are certainly at odds. It could be that the

authors of Ref. [52] calculated the power spectrum of the measured current signal (which

has a distribution of current values in open and closed states) which was not digitalized (fil-

tered) into the two-state noise corresponding to the gating dynamics. Another reason could

be that the durations of residence time intervals in open and closed states are correlated.

Such correlations can be induced by stochastic binding of calcium ions which regulate the

gating dynamics of large conductance potassium ion channels. To account for such corre-

lation effects our model principally can be generalized in the same spirit like the original

diffusion model has been generalized to include ligand binding effects [53]. Nevertheless, the

qualitative agreement, i.e., the principal theoretical prediction and the measurement of 1/fγ

noise, is comforting.

IV. DISCUSSION AND CONCLUSION

The gating dynamics of protein ion channels in biological membranes is governed by a

conformational dynamics on a very complex energy landscape with a huge number degrees

of freedom. This multidimensional energy landscape can possess deep energy wells (as com-

pared with the thermal energy kBT ) which are separated by potential barriers. In addition,

there exists an underlying energy valley network connecting these wells which results in an

energy quasi-degeneracy. The traditional discrete state approach to the gating dynamics

pursued by the community of molecular physiologists presents an abstraction to this com-

plexity: it has its focus on the fact of deep potential wells being separated by high energy

barriers. The energy quasi-degeneracy of potential wells enters the theory as an entropic

contribution to the corresponding free energies after reduction of the multidimensional re-

ality to low-dimensional models (possessing a few discrete states only). This traditional

approach has proven useful over the past years and it serves as a serviceable working tool

for the analysis of the experimental data. This approach is, however, not able to capture

the physical origin of such complexity features as the presence of power law distributions

of the residence time intervals, the slow decay of the autocorrelations of fluctuations or the

presence of 1/fγ noise feature in the power spectrum of fluctuations of several ion channel

types, to name but a few. Experiments have demonstrated [54] that the 1/fγ noise is due

to the conformational transitions among different conductance states. In particular, the ion
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current is free of 1/fγ noise in a frozen conductance substate of the ion channel. There-

fore, the 1/fγ noise originates due to fluctuations among experimentally distinguishable

substates [54]. These features reveal unambiguously the non-Markovian character of the

observed “on-off” ion current fluctuations [6, 55, 56]. The diffusional models of ion channel

gating [7, 9, 10, 11, 12, 13, 14, 15] present another, complementary abstraction of the ac-

tual dynamics. These approaches attempt to capture the spatial structures of the potential

minima and the associated dynamics, and/or the corrugated and hierarchical features of the

real multidimensional conformation landscape after performing the reduction to a reaction

coordinate picture [57]. It is physically likely that the ion channel protein can become tem-

porarily trapped in some domains of its intrinsic conformational landscape from which it can

escape by activated jumps among those states. Due to a complicated structure of such traps

the corresponding residence time distribution can possess a divergent, – or from a practical

point of view – a very large first moment. This in turn gives rise to an anomalous con-

formation diffusion within the chosen reduced reaction coordinate description. Our scheme

in terms of a fractional, continuous diffusion model, being complemented with appropriate

boundary conditions properly accounts for such complexity.

As demonstrated theoretically and exemplified with the gating of a BK locust potassium

ion channel our fractional diffusion theory presents a powerful approach to describe these

various observed power law characteristics of the underlying gating dynamics.
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APPENDIX A: SOLUTION OF THE BOUNDARY-VALUE PROBLEM

The Laplace-transformed probability P̃ (x, s) :=
∫ ∞

0
e−stP (x, t)dt, Eq. (13) reads:

sP̃ (x, s)− δ(x− x0) = Kαs
1−αd

2P̃ (x, s)

dx2
(A1)

with −L < x0 < 0. Note that the limit x0 → 0− will be taken at the very end of calculation.

The corresponding Laplace-transformed boundary conditions assume the form

dP̃ (x, s)

dx

∣

∣

∣

x=−L
= 0, (A2)

s1−αdP̃ (x, s)

dx

∣

∣

∣

x=0
= −

L

Kα〈τc〉
P̃ (0, s) . (A3)

The challenge is thus the solution of the boundary-value problem (A1)-(A3). Towards this

goal we consider separately the solution in the domains, −L < x < x0,

P̃1(x, s) = A1 exp
(

√

sα

Kα
x
)

+B1 exp
(

−

√

sα

Kα
x
)

, (A4)

and x0 < x < 0,

P̃2(x, s) = A2 exp
(

√

sα

Kα
x
)

+B2 exp
(

−

√

sα

Kα
x
)

. (A5)

At x = x0, the solution is continuous,

P1(x0, s) = P2(x0, s). (A6)

The first derivative dP̃ (x, s)/dx, however, experiences a jump. This can readily be seen

upon integrating Eq. (A1) in an infinitesimally small neighborhood of x = x0. Thus,

Kαs
1−α

[dP̃2(x, s)

dx
−
dP̃1(x, s)

dx

]

x=x0

= −1 . (A7)

The coefficients A1,2 and B1,2 are determined by substitution of (A4) and (A5) into Eqs.

(A2), (A3) (A6) and (A7). Thereby, the proposed objective is exactly solved. The integration

of the solution (A4) from x = −L to x = 0 (x0 → 0−) yields the Laplace-transformed survival

probability Φ̃c(s); the corresponding RTD (19) follows as ψ̃c(s) = 1− sΦ̃c(s).
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